HANDBOOK OF

Respiration

National Academy of Sciences National Research Council
W. B. Saunders Company

HANDBOOK

of
 RESPIRATION

Analysis and Compilation by
PHILIP L. ALTMAN JOHN F. GIBSON JR., M.D. CHARLES C. WANG

Edited by

DOROTHY S. DITTMER
RUDOLPH M. GREBE

Prepared under the direction of the Committee on the Handbook of Biological Data

DIVISION OF BIOLOGY AND AGRICULTURE THE NATIONAL ACADEMY OF SCIENCES THE NATIONAL RESEARCH COUNCIL
© 1958 by W. B. Saunders Company

COPYRIGHT UNDER THE INTERNATIONAL COPYRIGHT UNION

All rights reserved. This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher, exeept for any purpose of the United States Government.

> Made in the United States of America

Foreword

The Handbook of Respiration is the sixth in a series of publications*, each containing information, chiefly tabular, in one or more fields of the biological sciences. These handbooks have been prepared under the general direction of the Committee on the Handbook of Biological Data, Division of Biology and Agriculture, National Academy of Sciences--National Research Council.

The information for the present Handbook was prepared and contributed by leading authorities in the field of respiration. The data were assembled, tabulated, and edited by the Handbook staff, then critically reviewed and authenticated by experts in the areas covered in this volume.

On behalf of the Committee, acknowledgment is made to the numerous scientists who have been so liberal with their time and advice; to Wright Air Development Center United States Air Force, the National Institutes of Health of the Public Health Service, the Division of Biology and Medicine of the Atomic Energy Commission, the Office of Naval Research, the Office of the Surgeon General of the Army, and the Army Chemical Center, for generous support and cooperation, which have made possible the production of this book. The Air Force participation in this undertaking was carried out under Contract No. AF 33(616)-3972 with the National Academy of Sciences. Dr. J. W. Heim, Aero Medical Laboratory, Wright Air Development Center, served as contract monitor.

THE COMMITTEE ON THE HANDBOOK

OF BIOLOGICAL DATA

Theodore C. Byerly, Chairman
David B. Dill
Charles M. Goss
Frank G. Hall
J. W. Heim

Paul E. Howe
Paul J. Kramer
Milton O. Lee
L. A. Maynard** Royal Shanks
W. H. Larrimer, Executive Secretary

Oswald Tippo
Lionel A. Walford
Paul Weiss
Raymund L. Zwemer

** ex officio

HANDBOOK STAFF

W. H. Larrimer, Director

Dorothy S. Dittmer, Associate Editor
Rudolph M. Grebe, Associate Editor

RESEARCH

Philip L. Altman
Everett F. Davis
John F. Gibson, Jr.
Lucy C. Lee
Barbara L. Tuma
Charles C. Wang

Gloria R. Alonso Judith P. Bloomer Nellie F. Brown Helen D. Carmack Viola A. Crowder John M. Exline Doris R. Folen S. W. Lipsman

EDITORIAL

Florence M. Lochrie
Frances S. Merrill
Mary J. Noe
Carol A. Packett
Francys E. Richardson
Laura B. Sheridan
Olga G. Stanczak

[^0]

Contents

CONTRIBUTORS AND REVIEWERS xi
INTRODUCTION $x \mathrm{~V}$
HANDBOOK OF RESPIRATION 1-383
I. BASIC PHYSICAL AND CHEMICAL DATA

1. Absolute Lung Volumes, Defintions and Conversions: ATPS, BTPS, and STPD Conditions (Graph) 1
2. Factors for Conversion of Gas Volumes from ATPS to BTPS Conditions 2
3. Temperature at Various Altitudes 2
4. Altitude vs Atmospheric Pressure, O_{2} Partial Pressure, and Air Density 2
5. Characteristics of Respiratory Media. 3
6. Characteristics of Respiratory Molecules 3
7. Composition and Partial Pressure of Respiratory Gases: Man 4
8. Pressure-Depth Gradient in the Sea. 4
9. Pressure Equivalents 4
10. Partition Coefficients of Various Gases at $37-38^{\circ} \mathrm{C}$ 5
11. Depression of O_{2} and CO_{2} Solubility by Various Salts in Water 5
12. Solubility Coefficients: Gases. 6
Part I: In Water at Various Temperatures 6
Part 1I: O_{2} and CO_{2} in Physiological Fluids at Various Temperatures 7
Part III: In Various Fluids and Tissues 8
13. Diffusion Coefficients and Permeation Coefficients. 10
Part I: O_{2} and CO_{2} in Various Fluids and Tissues 10
Part II: Various Gases Relative to O_{2} as Unity 11
14. Diffusion Coefficients: Gases in Water at Various Temperatures 11
I1. BASIC RESPIRATORY ANATOMY
15. Development of the Respiratory System: Man 12
16. The Respiratory System: Man (Schematic Drawings) 14
17. Bronchopulmonary Segments: Man (Schematic Drawings) 15
18. Lung Weight: Man 16
19. Lung Weight Increments during First Year: Man (Graph) 16
20. Lung Weight and Volume Increments during First Year: Man (Graph) 17
21. Dimensions of Tracheobronchial Tree: Man, Adult 17
22. Diameter of Respiratory Alveoli: Man 17
23. Length of Bronchi: Man 18
24. Diameter of Trachea and Bronchi: Man 18
25. Dimensions of Trachea: Man 19
26. Diameter of Sinuses: Man 19
27. Lung Weight Relationships: Laboratory Mammals 20
Part I: Lung Lobes (Schematic Drawings) 20
Part II: Body Weight vs Lung Weight 21
Part III: Lung Lobe Weight Relationships 21
28. Lung Weight: Vertebrates 22
Part I: Mammals 22
Part II: Birds 25
Part III: Reptiles 26
Part IV: Amphibians 26
I1. LUNG VOLUMES AND PULMONARY FUNCTION
29. Subdivisions of Lung Volume: Man 27
Part 1: Diagram 27
Part II: Standardized Terms vs Some Previous Terms 27
30. Prediction Formulas and Some Normal Values in Pulmonary Physiology: Man. 28
Part 1: Lung Volumes 28
Part II: Basal Respiratory Functions 28
Part 111: Exercise and Maximal Ventilation; Intrapulmonary Mixing 29
31. Vital Capacity vs Age: Children and Adolescents 30
32. Vital Capacity vs Standing Height: Children and Adolescents 31
33. Vital Capacity vs Weight: Children and Adolescents 32
34. Vital Capacity vs Surface Area: Children and Adolescents 33
35. Vital Capacity vs Standing Height: Children and Adolescents (Graphs) 34
Part l: Males 34
Part 1l: Females 35
36. Vital Capacity vs Age and Standing Height: Children and Adolescents 36
37. Vital Capacity vs Age and Sitting Height: Children and Adolescents 37
38. Lung Volumes: Man 38
39. Effect of Postural Change on Lung Volumes: Man 40
40. Effect of Pregnancy on Lung Volumes and Other Ventilatory Variables: Man 40
41. Respiratory Rate, TidaI and Minute Volumes: Vertebrates 41
42. Respiratory Rate, Tidal and Minute Volumes: Infants 42
43. Tidal and Minute Volumes: Man 43
44. Basal Respiratory Funcions: Man 44
45. O_{2} and CO_{2} Pressures in Alveolar Air and Subcutaneous Tissue: Man 44
46. Ventilation and O_{2} Uptake, Right vs Left Lung: Man 45
47. Respiratory Dead Space: Man 46
Part I: At Rest 46
Part 11: During Activity 47
Part 111: During CO_{2} Hyperpnea 47
48. Respiratory Dead Space and Change in Functional Residual Capacity: Dog (Graph) 48
49. Some Factors Affecting Respiratory Dead Space: Man 48
Part I: Effect of Breathholding 48
Part 11: Effect of Breathing Level 49
Part 111: Dead Space for $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{He}$, and N_{2} 49
50. Respiratory Dead Space and Tidal Volume: Man 50
51. Respiratory Dead Space and Tidal Volume: Dog (Graph) 50
52. Respiratory Dead Space in Pathological Conditions: Man. 51
53. Diffusion Capacity of the Lungs: Man 52
Part l: At Rest and during Activity 52
Part II: Effect of Acclimatization to Altitude 52
54. Alveolar-Capillary Diffusion: Man (Graphs) 53
Part 1: Pulmonary Capillary O_{2} Pressure 53
Part 1I: End- and Mean Capillary O_{2} Pressures 53
55. Dynamics of Pulmonary Circulation: Man, Dog. 54
IV. BLOOD RESPIRATORY CHARACTERISTICS
56. Blood Gases, Variables, Factors, and Constants: Man 56
57. Arterial and Venous Blood Gas Comparisons: Man, Adult and Newborn 57
58. Arterio-Venous O_{2} and CO_{2} Differences: Man, Dog, Monkey 58
59. Arterio-Venous Lactate and Pyruvate Differences in Various Structures: Man 59
60. Arterio-Venous Postabsorptive Glucose Differences: Man 59
61. Blood Lactate Venous Levels in Conditions of Rest, Exercise, and Hyperventil- ation: Mar. 60
62. Arterio-Venous Lactate Differences in Conditions of Rest, Exercise, and Hyper- ventilation: Man 60
63. Arterio-Venous Glucose Differences as Influenced by Alimentary Hyperglycemia: Man 61
64. Effect of Temperature Change on $\mathrm{Blood} \mathrm{CO}_{2}$ and O_{2} Pressures: Man, Dog (Line Charts) 62
65. Temperature and pH vs Serum pK': Man, Dog (Nomogram) 63
66. $\mathrm{H}_{2} \mathrm{CO}_{3}$ Dissociation Constants: Man, Dog, Ox 63
67. Blood CO_{2} Absorption as Function of CO_{2} Pressure: Man 64
68. Blood CO_{2} Absorption as Function of CO_{2} Pressure: Animals 65
69. Data for Construcing Blood O_{2} Dissociation Curves 66
Part l: Man 66
Part II: Mammals 66
Part III: Birds. 68
Part IV: Reptiles 68
Part V: Amphibians 69
lart VI: Fish 69
Part VIl: Invertebrates 70
70. Blood O_{2} Dissociation Line Charts: Man 72
71. Blood O_{2} Dissociation Curves: Man 74
Part I: At Various pll Values 74
Part II: At Various Temperatures 75
72. Blood O_{2} Dissociation Curves: Mammals 76
Part 1: Methods of Observation 76
Part II: Man 77
Part III: Carnivores 78
Part IV: Rodents. 79
Part V: Ungulates 80
Part VI: Cetacean 81
73. O_{2} Capacity of Umbilical Vein Blood at Various Stages of Pregnancy: Man 82
74. O_{2} Saturation in Blood of Umbilical Vessels, Normal and Difficult Labor: Man 82
75. O_{2} Pressure Gradient between Fetal and Maternal Blood: Man 83
76. O_{2} Dissociation Relationships of Fetal and Maternal Blood: Man, Cow, Sheep 83
77. O_{2} Dissociation Curves for Fetal Blood: Mammals 84
Part I: Methods of Observation 84
Part II: Man. 85
Part III: Cow, Goat, Rabbit. Sheep 85
78. Acid-Base Balance of Blood: Man 86
Part I: Constants, Factors, and Formulas 86
Part II: Arterial Blood 88
Part III: Venous Blood 89
Part IV: Cutaneous Blood 90
Part V: Summary: Blood, Adults 90
Part Vl: Physiological Variability 91
79. Acid-Base Balance of Blood: Vertebrates 93
80. Acid-Base Imbalance of Blood: Man. 95
Part I: Definitions 95
Part II: Normal Ionic Patterns, Arterial Blood (Diagram). 96
Part III: Classification 97
Part IV: Pathways (Diagram) 98
V. ERYTHROCYTES AND RESPIRATORY PIGMENTS
81. Erythrocyte and Hemoglobin Values: Man. 99
82. Erythrocyte and Hemoglobin Values in Pregnancy and Postpartum: Man 100
83. Erythrocyte and Hemoglobin Values in Fetus, Newborn, and Adult Female: Mammals 100
84. Erythrocyte and Hemoglobin Values from Birth to Maturity: Man 102
85. Erythrocyte O_{2} Consumption: Vertebrates 103
86. Erythrocyte and Hemoglobin Values: Vertebrates 104
87. Erythrocyte and Hemoglobin Values at Sea Level and Altitude: Vertebrates 106
88. Erythrocyte and IIemoglobin Values at Sea Level and Altitude: Man 107
89. Physical, Chemical, and Biological Properties: Pyrrole Pigments and Related Compounds 108
Part 1: Porphyrins 108
Part 11: Iron Porphyrins 110
Part 1II: Bilirubinoids and Related Dipyrryl Compounds 118
90. Physical, Chemical, and Biological Properties: Cytochromes of Animals and Higher Plants 124
91. Cytochrome System of Mitochondria (Schematic Diagram) 126
92. Physical, Chemical, and Biological Properties: Bacterial Cytochromes 128
Part 1: Absorption Spectra of Cytochromes in Intact Bacteria. 128
Part 1I: Properties of Soluble Bacterial Cytochromes 128
V1. MECHANICS OF BREATHING
93. Maximal Breathing Capacity: Children and Adolescents 130
Part I: Vs Age 130
Part 1I: Vs Standing Height 130
Part III: Vs Weight 131
Part IV: Vs Surface Area. 131
94. Maximal Breathing Capacity: Man. 132
95. Mechanics of Breathing 133
Part l: Slow Pressure-Volume Curves: Cat 133
Part 1I: Intrapulmonary Pressures at Various Lung Volumes: Man 134
Part 11I: Pressure-Volume Diagram of Chest and Lungs: Man 134
Part IV: Intrapleural Pressures: Man 135
Part V: Compliance of Lung-Thorax System: Mammals 135
Part VI: Relaxation Pressure Curve: Man. 135
Part VII: Pulmonary Compliance: Man 136
Part VIII: Pulmonary Compliance vs Vital Capacity: Man 136
Part 1X: Pulmonary Compliance: Vertebrates. 137
Part X: Clinical Range of Pulmonary Compliance: Man. 137
Part XI: Resistance of Lungs and Airway: Man 137
96. Mean Respiratory Air Flow Characteristics: Man 138
97. Respiratory Reflexes: Man 139
VII. ARTIFICIAL RESPIRATION
98. Required Tidal Volume vs Body Weight and Breathing Frequency: Man (Nomogram). 140 99. Mean Tidal Volume for Various Techniques of Artificial Respiration: Man 141
Part I: Apneic Infants 141
Part II: Apneic Adults 141
99. Ventilatory Characteristics of Various Respirators and Techniques of Artificial Respiration: Man 142
VIII. EFFECTS OF EXERCISE
100. Ventilation and Gas Exchange vs Exercise and Recovery: Man 143
101. Effects of Exercise on Pulmonary Function and Heart Rate: Man 144
Part l: Males, 4-33 Years 144
Part II: Males, $20-66$ Years 144
Part Ill: Females, 4-25 Years 145
102. Effect of Various Work Loads on Pulmonary Function and Heart Rate: Man 145
103. Summary, Effects of Exercise on Pulmonary Function and Heart Rate: Men at Various Ages (Graphs) 146
104. Energy Cost of Progression: Man 147
105. O_{2} Requirement al Various Running and Walking Speeds: Men (Graph) 150
1X. EFFECTS OF VARIOUS CONCENTRATIONS OF INHALED GASES
106. Effect of Breathing N_{2} on Respiratory Rate, Tidal and Minute Volumes: Man 151
107. Effect of Breathing N_{2} on Respiratory Rate and Minute Volume: Dog 151
108. Pulmonary Function: Residents and Newcomers at High Altitudes. 151
109. Blood Gases: Residents and Newcomers at High Altitudes. 151
110. Effect of Reduced Barometric Pressures on Pulmonary Function and Heart Rate: Man 152
111. Effect of Reduced Barometrlc Pressures and CO_{2} Inhalation on Pulmonary Function and Heart Rate: Man 154
112. Effect of Reduced Barometric Pressures and Exercise on Pulmonary Function and Heart Rate: Man 155
113. Effect of Acclimatization to Reduced Barometric Pressures on Pulmonary Function: Man 156
114. Effect of Reduced Barometric Pressures and Exercise on Ventilation: Man 156
115. Effect of Acule Exposure to $2.43 \% \mathrm{O}_{2}$ on Pulmonary Function: Dog 157
116. Effect of Progressive Anoxia on Pulmonary Function: Dog 157
117. Effect of Hyperventilation on Blood CO_{2} Carriage: Man 157
118. Effect of Combined Anoxia and Ilypercapnia on Alveolar CO_{2} and O_{2} : Man 158
Part l: Tabular 158
Part Il: Graphic 159
119. Effects of Breathing CO_{2} 160
Part I: On Ventilation: Mammals 160
Part 11: On Blood Gases and Alveolar CO_{2} Threshold: Man 163
Part 111: On Other Respiratory Variables: Mammals 164
120. Effects of Breathing O_{2} 167
Part I: On Ventilation: Mammals 167
Part II: On Other Respiralory Variables: Man 169
121. Pulmonary N_{2} Washout: Man 171
Part I: Tabular 171
Part Il: Graphic 171
122. Effect of Breathing O_{2} at 3-4 Atmospheres on Blood Gases: Man 172
123. Effect of 13reathing Air at One Atmospherc and O_{2} at 3-3.92 Atmospheres on Blood Gascs: Dog 172
124. Effect of Breathing O_{2} at 3-4 Atmospheres on Respiratory Rate, Pulsc Rate, and Blood Pressure: Man 174
125. Effect of Breathing Air, $6 \% \mathrm{O}_{2}$ in N_{2}, and $100 \% \mathrm{O}_{2}$ at 3.5 Atmospheres on Respiratory Exchange: Man. 174
126. REffect of Kapid Decompression from a lligh Pressure Atmosphere on I3lood Gascs: Dog 175
127. Elfect of Decompression in 5 Seconds from lligh Pressurc Atmospheres on Respiratory Rate and Blood Pressure: Dog. 175
128. Eflect of Decompression and Recompression on l3lood Pressure, Respiratory IRate, and Pulse Rate: Dog (Graphs) 176
129. Effect of Decompression on Internal Pressures: Dog 177

X. EFFECTS OF DRUGS

131. Effect of Drugs on Pulmonary Function: Man and Laboratory Animals 178
132. Respiratory Action of Drugs Influencing Afferent End-Organs: Cat, Dog, Rabbit. 200
133. Direct Action of Drugs on the Bronchi 202
134. Sympathomimetic Amines and Related Drugs Acting on the Bronchi 215
135. Antagonists and Potentiators of Drugs Acting on the Bronchi. 226
Part I: Parasympatholytics and Local Anesthetics 226
Part II: Anticholinesterases 230
Part III: Antihistamines 231
Part IV: Ergot Derivatives 239
Part V: 2-Haloethylamines 240
Part VI: Triazines 242
Part VII: Esters 244
Part VIII: Miscellaneous Compounds 246
136. pA_{x} Values for Antagonists of Drugs Acting on the Bronchi 249
137. Aerosols, Gases, and Vapors Acting on the Bronchi 250
Part I: Direct Action 250
Part II: Sympathomimetic Amines 251
Part III: Antagonists 252
XI. OTHER FACTORS AFFECTING RESPIRATION
138. Effects of External Ionizing Radiation on the Respiratory System: Mammals 253
139. Effects of Internal Radiation Emitters on the Respiratory System: Mammals. 259
140. Summary, Factors Affecting Composition of Respired Air: Man 263
Part I: Voluntary Control. 263
Part II: Exercise 263
Part III: Heat 264
Part IV: CO_{2} Inhalation. 265
Part V: O_{2} lnhalation 265
Part VI: Added Resistance 266
Part VIl: Added Dead Space 266
Part VIII: Acidosis 267
Part IX: Alkalosis 267
Part X: Inhaled Phosgene Retention 267
141. Effects of Pulmonary Fibrosis on Pulmonary Function: Man 268
142. Comparative Pathology of the Pneumoconioses 270
143. Physiologic Classification of Hypoxias 272
144. Physiology of Dyspnea 274
Part I: General Causes 274
Part II: Mechanisms Involved 274
XII. O_{2} CONSUMPTION: ANIMAL ORGANISMS
145. O_{2} Consumption: Protozoa 275
146. O_{2} Consumption: Helminths 276
147. O_{2} Consumption: Invertebrates 278
148. O_{2} Consumption: Vertebrates Other than Mammals 281
149. O_{2} Consumption: Mammals 283
150. Respiratory Exchange Characteristics: Vertebrates 285
XIII, RESPIRATION: ANIMAL TISSUES
151. O_{2} Consumption: Animal Tissues 286
Part I: Blood-Formed Elements, Blood Vessels, Lymph Nodes, Marrow, Spleen, Thymus 286
Part II: Epithelium and Associated Tissues 287
Part III: Gland Tissues 288
Part IV: Liver 290
Part V: Lung 291
Part VI: Muscle Tissues 291
Part Vll: Neoplasms 293
Part VIll: Nerve Tissues 294
Part 1X: Reproductive Tissues. 297
Part X: Placental Tissues 298
152. O_{2} Consumption: Fetal Tissues 299
Part I: Sheep 299
Part II: Rat. 299
Part IIl: Guinea Pig 300
Part 1V: Chick 300
Part V: Black Snake (Coluber constrictor) 302
Part VI: Frog (Rana fusca) 303
Part VII: Frog (Rana temporaria) 303
Part Vlll: Grass or Leopard Frog (Rana pipiens) 303
Part IX: Pacific Coast Newt, or "Water Dog" (Triturus torosus). 305
Part X: Spotted and Tiger Salamanders (Amblystoma punctatum, A. tigrinum) 305
Part XI: Spotted Salamander (Amblystoma maculatum) 306
Part XII: Mexican Salamander (Amblystoma mexicanum) 306
Part XIII: Atlantic Salmon (Salmo salar). 307
Part XIV: Common Killifish (Fundulus heteroclitus) 307
153. Effect of Potassium Ion Concentration on O_{2} Consumption: Animal Tissues 308
Part I: Guinea Pig Liver and Rabbit Kidney Cortex 308
Part II: Rabbit Kidney Cortex, Various Temperatures 308
Part III: Rat Diaphragm, Various pH Levels 309
Part IV: Rat Brain, Various Substrates 309
Part V: Rat Cerebral Cortex, Various Substrates 309
Part VI: Guinea Pig Cerebral Cortex, Various Relative Concentrations of Potassium and Sodium 310
Part Vll: Rat and Rabbit, Various Tissues 310
Part VIll: Frog Sciatic Nerve 310
Part IX: Crab Limb Nerve 310
154. Survival and Revival under Conditions of Anoxia or Arrested Circulation: Animal Tissues 311
155. Cerebral Blood Flow, O_{2} Consumption, and Vascular Resistance: Man, Cat, Monkey 312
156. Cerebral Respiration: Dog 313
Part I: Cerebral vs Blood Glucose 313
Part 1I: Cerebral Constituents vs Blood Gases 313
Part III: Cerebral Metabolism in Anoxia. 314
XIV. RESPIRATION: PLANTS
157. Respiration Rates: Bacteria. 315
158. Respiration Rates: Algae 316
159. Respiration Rates: Lichens 320
160. Respiration Rates: Fungi 322
161. Respiration Rates: Liverworts and Mosses. 346
162. Respiration Rates: Horsetails and Ferns 347
163. Respiration Rates: Higher Plants, Seeds 348
164. Respiration Rates: Higher Plants, Roots 352
165. Respiration Rates: Higher Plants, Stems. 355
166. Respiration Rates: Higher Plants, Leaves 361
167. Respiration Rates: Higher Plants, Flowers 373
168. Respiration Rates: Higher Plants, Fruits 377
169. Respiration Rates: Higher Plants, Whole Organisms 382
I. Constants for Use in Body Surface Area Formula: Mammals 387
170. Body Surface Area: Infants and Young Children (Nomogram) 388
III. Body Surface Area: Older Children and Adults (Nomogram) 389
IV. Standard Symbols in Respiratory Physiology. 390
V. Respiratory Equations. 390
V1. Summary: Values Useful in Pulmonary Physiology 392

Abajian, John, Jr.
Abramson, David 1.
Adler, Harry F.
Aebi, H. E.
Alexander, James K.
Allen, Paul J.
Altland, Paul D.
Altschule, Mark D.
Alvis, Harry J.
Armstrong, Bruce W.
Armstrong, J. McD.
Asmussen, Erling
Assali, N. S.
Astrand, P.-O.
Attinger, Ernst O.
Aviado, Domingo M., Jr.

Babers, Frank H.
Baldwin, Eleanor deF.
Barach, Alvan L.
Barker, S. B.
Barron, Donald H.
Bartels, H.
Barth, L. G.
Bateman, J. B.
Bates, D. V.
Beerstecher, Ernest, Jr.
Beevers, Harry
Behnke, A. R.
Benedict, H. M.
Berry, L. J.
Bethell, Frank H.
Bing, Richard J.
Bishop, Jack G.
Black, Edgar C.
Black, Virginia S.
Blakemore, William S.
Blinks, Lawrence R.
Bliss, Dorothy E.
Bōving, Bent G.
Boyd, Edith
Boyden, Edward A.
Boyle, Frank P.
Brecher, George
Brink, Frank
*Brody, Samuel
Brown, Ethan Allan
Bruce, Robert A.

Cantino, Edward C.
Carlsen, Elizabeth
Carter, Earl T.
Carton, Robert W.
Cassin, S. C.
Cecchini, L. P.
Chance, Britton
Chang, Shih Lu
Chapin, John L.
Chapman, H. W.

* Charr, Robert

Cherry, R. B.
Chesley, Leon C.
Chu, Florence C. H.

Clark, Hugh
Clements, John A.
Cohn, Jerome E.
Collier, H. B.
Comroe, Julius H., Jr.
Conner, Eugene H.
Cournand, Andre
Craig, F. N.
Cronkite, Eugene P.
Cullumbine, H .
Currens, James H.

Dacie, J. V.
Dale, W. Andrew
Darby, Richard T.
Darling, Louise
Darrow, Daniel C.
Davies, Dean F.
Dawber, Thomas R .
Dawes, G. S.
Dayman, Howard G.
Deavers, Stephanie
DeMarsh, Q. B.
Denstedt, Orville F.
Diggs, Lemuel W.
Dill, D. B.
Dische, Zacharias
Dole, Vincent P.
Douglas, C. G.
Drabkin, David L.
Dripps, Robert D.
DuBois, Arthur B.
Dudley, Horace C.
Duffner, G. J.
Dukes, H. H.
Dwyer, J. V.

Ebaugh, Franklin G., Jr.
Ebert, Richard V.
Eckenhoff, James E.
Edwards, J.
Elam, James O.
Elisberg, Edward 1.
Elliott, K. A. C.

Fabian, F. W.
Farhi, Leon E.
Fenn, Wallace O.
Ferguson, J. K. W.
Ferguson, John H.
Ferris, Benjamin G., Jr.
Fidler, J. C.
Filley, Giles F.
Finch, Clement A.
Fishman, Alfred P.
Fitzgerald, Laurence R.
Flemister, Launce J.
Flemister, Sarah C.
Florkin, Marcel
Foldes, Francis F.
Forbes, William Hathaway
Foreman, Charles W.

Forster, Robert E.
Forward, D. F.
Fox, R. T.
Frank, N. R.
Frenkel, Albert W.
Fritts, Harry W., Jr.
Fry, Donald L.

Gaensler, Edward A.
Gaffron, H.
Galston, Morton
Gemmill, Chalmers L.
Glaser, Kurt
Glicksman, Arvin S.
Goldstein, Merrill M.
Gordon, Alvin
Gordon, Archer S.
Gordon, Helmut A.
Gorlin, Richard
Graham, R. C. B.
Gram, H. C.
Granick, S.
Grayson, J.
Greig, Margaret E.
Griffin, E. Harrison
Grob, David
Gross, Paul
Guest, George M.
Guest, M. Mason
Gurdjian, E. S.
Gutman, Alexander B.

Haber, Fritz
Handley, Carroll A.
Harden, K. Albert
Hart, J. Sanford
Hastings, A. Baird
Hawkins, D. F.
Hegnauer, A. H.
Heinle, Robert W.
Helm, Robert A.
Hemingway, Allan
Henderson, James H. M.
Henderson, Lavaniel L.
Henry, Franklin M.
Hernandez, Thomas
Heukelekian, H.
Hickam, John B.
Hickman, Cleve, Jr.
Himwich, Harold E.
Hirschboeck, John S.
Hoffman, William S.
Holaday, Duncan A.
Horecker, Bernard L.
Howard, C. C.
Huber, John Franklin Huckabee, William E. Huggins, Russell A. Hunter, F. R.

Ingram, Marylou

[^1]Irvin, J. Logan
Isaacs, Raphael
lvey, Mack
lvy, A. C.

Jackson, Chevalier L.
Jandorf, Bernard J.
Jensen, R.
Joffe, Milton H .
Jones, Galen E.

Kaiser, Irwin H.
Kaltreider, Nolan L.
Kelly, Sally
Kety, Seymour S.
Keynes, R. D.
Kibler, H. H.
King, E. J.
Kirk, John Esben
Kisch, Bruno
Kleiber, Max
Klein, Richard M.
Knowles, John H.
Koelle, George B.
Kollros, Jerry J.
Kough, Robert H,
Krebs, H. A.
Krogman, Wilton M.

Lambertsen, Christian J.
Lanphier, E. H.
Larks, S.
Latimer, Homer B.
Lees, William M.
Lehninger, A. L.
Lemberg, Rudolf
Levitt, Marvin
Lewis, Robert
Loew, Earl R.
Lu, F. C.
Lucas, Miriam Scott
Luft, Ulirich C.
Lynn, R. B.
Lyon, Charles J.

McCutcheon, F. Harold
McGuire, Johnson
Machlis, Leonard
Mcllroy, Malcolm B.
Mandels, Gabriel R.
Marbarger, John P.
Martin, C. J.
*Mason, Edward C.
Mayerson, H. S.
Meister, Alton
Mendlowitz, Milton
Meyer, Marion P.
Michaels, Rhoda M.
Michaelson, S.
Mlchel, Burlyn E.
Mitchell, Roger S.
Moog, Florence
Morales, Daniel R.

Morehouse, Laurence E.
Morrison, Peter
Morrow, Paul E.
Morse, Minerva
Morton, R. K.
Murnaghan, M. F.
Musacchia, X. J.
Myers, Jack

Nahum, Louis H.
Nesbitt, Robert E. L., Jr.
Nims, Robert G.

Oberholzer, R.
*Opitz. Erich
Ordway, Nelson K.
Ornstein, George G.
Osgood, Edwin E.
Otis, Arthur B.

Paintal, A. S.
Patterson, John L., Jr.
Pearson, Oliver P.
Peel, A. A. Fitzgerald
Penrod, Kenneth E.
Petering, H. G.
Peterson, Lysle H.
Petter, Charles K.
Platner, Wesley S.
Ponder, Eric
Price, Henry L.

Quastel, J. H.
Quiring, D. P.

Radiord, Edward P., Jr.
Rahn, Hermann
Randall, Lowell 0 .
Ransom, Vaughn R.
Raper, John R.
Rayford, A. A.
Redfield, Alfred C.
Reyniers, James A.
Reynolds, A. K.
Richards, Dickinson W.
Richardson, Alfred W.
Riley, Richard L.
Riser, William H., Jr.
Robertson, R. N.
Robinson, Sid
Root, Raymond W.
Ross, B. B.
Rossier, P. H.
Rossi-Fanelli, A.
Rossiter, R.J.
Roth, Laurence W.

Sabine, Jean C.
Safar, Peter
Samet, Philip
Sander, Oscar A.
Sanghvi, L. M.

Sawaya, Paulo
Schaefer, Karl Ernst
Scheinberg. Peritz
Schmidt, Carl F.
Scholander, P. F.
Scholefield, P. G.
Schreider, Eugène
Scott, Charles C.
Segal, Maurice S.
Seligson, David
Selzer, Arthur
Sendroy, Julius, Jr.
Sevag. M. G.
Severinghaus, John W.
Shepard, Richard H.
Shephard, Roy J.
Shock, Nathan W.
Siebens, Arthur A.
Siker, Ephraim S.
Silverman, Milton
Singer, Richard B.
Sizer, Irwin W.
Skinner, Dorothy
Smith, Arthur H.
Smith, Clement A.
Smith, Lucile
Snider, Gordon L.
Sonnenschein, Ralph R.
Spangler, S.
Spencer, William A.
Sprague, Patricia Ivy
Spratt, Nelson T., Jr.
Stannard, J. N.
Stickney, J. Clifford
Stohlman, Frederick, Jr.
Stroud, Robert C.
Sturkie, Paul D.
Suckling, E. E.
Sugioka, Kenneth
Suskind, Mitzi
Sussman, Alfred S.
Swank, Roy L.
Swann, H. G.
Talbot, Nathan B.
Tomashefski, Joseph F.
Towers, Bernard
Turino, Gerard M.
Turner, John S.
*Vallance, K. B.
Vandam, Leroy D.
Vander, J.
Van Harreveld, A.
Van Slyke, Donald D.
Vernberg, F. John
Vernberg, Winona B.
von Brand, Theodor
Vorwald, Arthur J.

Wagenknecht, Austin C.
Warren, James V.
Washburn, Alfred H . Wechsberg, P. H. Wechsler, Richard

Wells, Lemen J.
Werner, Gerhard
Wesolowski, Sigmund A.
Whittenberger, James L.
Wichterman, Ralph
Widdicombe, J. G.
Williams, M. Henry, Jr.
Wilson, May G.

Wilson, Russell H.
Windle, William F.
Winterstein, Hans
Wintrobe, M. M.
Witschi, Emil
Wittich, F. W.
Wolf, Stewart
Wood, Earl H.

Woolf, Colin R.
Wright, George W.

Yeoman, M. M.
Young, 1. Maureen
Zierler, Kenneth L.
ZoBell, Claude E.

Introduction

This Handbook has been prepared for the purpose of making readily available in a single, comprehensive compilation useful data on respiration and associated phenomena. To this end, information has been organized for ready reference in the form of tables, graphs, nomograms, schematic diagrams, and line charts. Contents of the volume have been made available and authenticated by some 400 leading investigators in the fields of biology and medicine. The extended review process to which all tables have been subjected was designed to eliminate, insofar as possible, both errors and such strongly controversial or questionable material as tends naturally to inhere in a work of his scope and complexity.

Frequently, a group of tables is preceded by an explanatory headnote designed to serve as an introduction to the subject matter, or to account for inconsistencies and inclusion of controversial material. Usually, individual tables are supplied with a short headnote containing such essential information as definitions; units, methods, and conditions of measurement; conversion factors; abbreviations; and estimate of the range of variation. Following each presentation there appears a list of contributors of the material, together with bibliographic references. In the latter, abbreviations conform wherever possible to the LIST OF ABBREVIATIONS FOR SERIAL PUBLICATIONS, Fourth Series, Army Medical Library, Washington, D. C. (U. S. Government Printing Office, 1948), and the 1955 SUPPLEMENT thereto.

Technical and mechanical problems in the preparation of copy made impossible the use of standard symbols and abbreviations in respiratory physiology as recommended in FEDERATION PROCEEDINGS 9:602, 1950; the same limitations precluded the use of italics. The symbols \underline{d} and $\underline{\underline{l}}$ indicate, in terms of optical rotation, respectively dextro- and levorotatory; D and $ц$ are used for dextro and levo in the configurational sense for amino acids and carbohydrates or for the stereoisomeric forms of an organic substance.

The number of subjects and observations has been given whenever such information was available, provided only that space permitted. There may on occasion appear between two tables differences in values for the same specifications, and there may be found certain inconsistencies in nomenclature and occasional overlapping of coverage. These represent not oversights, nor failure to choose between alternatives; on the contrary, they result from the deliberate intention of the research staff to respect the judgment and preferences of individual contributors. On the other hand, with only the rarest of exception, each presentation is itself internally consistent.

Values are generally presented as a mean and the upper and lower limit of the 95% range. Letter designations (a, b, c, d) identify types of ranges:
(a) By the method of greatest accuracy, the 95% range is obtained by fitting a recognized type of frequency curve to a group of measured values and excluding the extreme 2.5% of area under the curve at each end (see sketch). Estimate is made by this procedure only when the group of values is relatively large.
(b) By a less accurate method, the 95% range is estimated by a simple statistical calculation, assuming a normal distribution and using the standard deviation. This estimate is used when the group of values is too small for curve fitting, as is usually the case.
(c) A third and still less accurate procedure for estimate of the 95% range is simply to take as range limits the highest value and lowest value of the reported sample group of measurements. It underestimates the 95% range for small samples (3 or 4 values) and overestimates for larger sample sizes, but may be used in preference to the preceding method when the sample shows convincing evidence that the variable is asymmetrical in distribution.

(d) The upper and lower limits of the range of variation, as commonly encountered by an investigator experienced in measuring the quantity in question, constitute still another estimate of the 95% range. The trustworthiness of limits so placed should not be underestimated.

Although the data in each table are the best available at the time the table was prepared, it is recognized that all data are subject to revision as investigators improve techniques and make more measurements. The reader is invited to submit any values or ranges that he feels should be given consideration, and is particularly invited to add to the coverage of animal forms.

Gas volume in the lung exists at Body Temperature and atmospheric Pressure and is completely Saturated with water vapor at body temperature--hence the designation BTPS.

However, once the gas has been blown into a measuring device such as a spirometer, the temperature will have dropped to the spirometer or Ambient Temperature; although the gas volume is still Saturated with water vapol at the lower ambient temperature the water vapor volume is reduced. The Pressure of the atmosphere is the same. This condition is designated ATPS.

Under average laboratory conditions (ATPS), the "true" lung volume (BTPS) will shrink, in response to the ambient temperature and barometric pressure, to perhaps 93%, as shown in the figure below. If this lung volume is then converted to conditions of Standard Temperature and Pressure with all water vapor removed (or Dry). this STPD value will be approximately 83% of the BTPS lung volume--sometimes even less in accordance with the barometric pressure (also as shown in the figure below).

It must also be borne in mind that lung volume measurements are often made on closed breathing circuits which contain a CO_{2} absorber. Any volume expired into such a system will, of course, be automatically reduced by the percentage of CO_{2} in the expired air; for a Vital Capacity obtained after full inspiration and before maximal expiration, this reduction may well be of the order of $2-3 \%$. This discrepancy must be considered in making reference to "absolute volumes."

All lung volumes are normally recorded at ATPS conditions. Conversion to BTPS conditions which represent true or anatomical lung volume requires knowledge of room or spirometer temperature and approximate barometric pressure.

True lung volume ($B T P S$) $=$ lung volume at $A T P S \times \frac{310}{273+1} \times \frac{P_{B}-\mathrm{pH}_{2} \mathrm{O}}{\mathrm{P}_{\mathrm{B}}-47}$, where $\mathrm{t}=$ spirometer temperature in degrees $\mathrm{C} ; \mathrm{P}_{\mathrm{B}}=$ barometric pressure in mm Hg : and $\mathrm{pH}_{2} \mathrm{O}=$ vapor pressure of water at spirometer temperature t . 310 is absolute body temperature of $37^{\circ} \mathrm{C}$, and 47 mm Hg is the vapor pressure of water at $37{ }^{\circ} \mathrm{C}$.

Contributor: Rahn, H .
2. FACTORS FOR CONVERSION OF GAS VOLUMES FROM ATPS TO BTPS CONDITIONS ATPS $=$ At Ambient Temperature and atmospheric Pressure, completely \bar{S} aturate \bar{d} with water vapor. BTPS $=$ At \bar{B} ody Temperature ($37^{\circ} \mathrm{C}$) and atmospheric Pressure. completely Saturated with water vapor. Atmospheric pressure is assumed to be standard (760 mm Hg). It is unnecessary to correct for small deviations from standard barometric pressure. For additional information on these concepts see Page 1.

Factor to Convert Volume to $37^{\circ} \mathrm{C}$ Saturated	When Gas Temperature $\left.\mathbf{O}^{\circ} \mathrm{C}\right)$ is	With Water Vapor Pressure (mm)	
1	1.102	$(\mathrm{~B})$	(C)
2	1.096	20	17.5
3	1.091	21	18.7
4	1.085	22	19.8
5	1.080	23	21.1
6	1.075	24	22.4
7	1.068	25	23.8
8	1.063	26	25.2
9	1.057	27	26.7
10	1.051	28	28.3
11	1.045	29	30.0
12	1.039	30	31.8
13	1.032	31	33.7
14	1.026	32	35.7
15	1.020	33	37.7
16	1.014	34	39.9
17	1.007	35	42.2
18	1.000	36	44.6

3. TEMPERATURE AT VARIOUS ALTITUDES
U. S. standard atmosphere.

Altitude			Temperature		
ft		km	${ }^{0} \mathrm{C}$	O_{F}	${ }^{\circ} \mathrm{K}$
1	0	(B)	(C)	(D)	(E)
2	5,000	0	15.0	59	288.0
3	10,000	1.524	5.1	41.2	278.1
4	15,000	3.049	-4.8	23.3	268.2
5	20,000	6.573	-14.7	5.5	258.3
6	25,000	7.698	-24.6	-12.3	248.4
7	30,000	9.147	-34.5	-30.2	238.5
8	35,000	10.671	-54.4	-48.0	228.6
9	40,000	12.196	-55.0	-65.8	218.7
10	50,000	15.245	-55.0	-67.0	218.0
11	60,000	18.294	-55.0	-67.0	218.0
12	70,000	21.483	-55.0	-67.0	218.0
13	80,000	24.392	-55.0	-67.0	218.0
14	90,000	27.441	-55.0	-67.0	218.0
15	100,000	30.490	-55.0	-67.0	218.0
16	200,000	60.980	33.8	93.0	306.8
17	300,000	91.470	-2.2	28.0	270.0

Contributor: Haber, F .
References: [1] Willis, R. G., National Advisory Committee For Aeronautics, Tech. Rept. No. 147, 1922. [2] Diehl, W. S., National Advisory Committee For Aeronautics, Tech. Rept. No. 218, 19?5.
[3] Bromdracher, W. G., National Advisory Committee For Aeronautics. Tech. Rept. No. 538, 1935. [4] Warfield, C. N., National Advisory Committee For Aeronautics, Tech. Rept. No. 1235, Tech. Note 1200, 1947.

Reference: Comroe, J. H., Jr., "Methods in Medical Research," vol 2, pp 74-244, Chicago: The Year Book
Publishers, Inc., 1950.
4. Altitude vs atmospheric pressure, O_{2} Partial pressure, and alr density

Altitude			Pressure						pO_{2}	Density $\mathrm{g} / \mathrm{cu} \mathrm{cm}$	Weight $\mathrm{lb} / \mathrm{cu} \mathrm{ft}$	$\begin{gathered} \text { Density }{ }^{4} \\ \text { Ratio } \end{gathered}$
	ft	km	atm ${ }^{1}$	mm Hg	in. Hg	psi^{2}	millibar	Katio ${ }^{3}$	mm Hg			
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)
1	0	0	1.000	760.0	29.92	14.70	1013.2	1.00	159.2	1.25×10^{-3}	0.07651	1.00
2	5,000	1.524	0.832	632.3	24.89	12.23	842.9	8.32×10^{-1}	132.5	1.08×10^{-3}		8.62×10^{-1}
3	10,000	3.049	0.688	522.9	20.59	10.11	697.1	6.88×10^{-1}	109.5	9.22×10^{-4}	0.05649	7.38×10^{-1}
4	15,000	4.573	0.564	428.6	16.87	8.288	571.4	5.64×10^{-1}	89.8	7.86×10^{-4}		6.29×10^{-1}
5	20,000	6.098	0.459	348.8	13.73	6.745	465.0	4.59×10^{-1}	73.1	6.66×10^{-4}	0.04075	5.33×10^{-1}
6	25,000	7.622	0.371	282.0	11.10	5.452	375.9	3.71×10^{-1}	59.1	5.60×10^{-4}		4.48×10^{-1}
7	30,000	9.147	0.297	225.7	8.885	4.364	300.9	2.97×10^{-1}	47.3	4.67×10^{-4}	0.02861	3.74×10^{-1}
8	35,000	10.671	0.235	178.6	7.031	3.453	238.1	2.35×10^{-1}	37.4	3.87×10^{-4}		3.10×10^{-1}
9	40,000	12.196	0.185	140.6	5.535	2.719	187.4	1.85×10^{-1}	29.4	3.06×10^{-4}	0.01872	2.45×10^{-1}
10	50,000	15.245	0.115	87.4	3.44	1.69	116.5	1.15×10^{-1}	18.3	1.90×10^{-4}	0.01161	1.52×10^{-1}
11	60,000	18.294	0.071	54.1	2.13	1.05	72.1	7.12×10^{-2}	11.3	1.18×10^{-4}	0.00720	9.41×10^{-2}
12	70,000	21.483	0.044	33.6	1.32	0.65	44.8	4.42×10^{-2}	7.0	7.30×10^{-5}	0.00447	5.84×10^{-2}
13	80,000	24.392	0.027	20.8	0.82	0.40	27.8	2.74×10^{-2}	4.3	4.52×10^{-5}	0.00277	3.62×10^{-2}
14	90,000	27.441	0.017	12.9	0.51	0.25	17.2	1.70×10^{-2}	2.7	2.80×10^{-5}	0.00172	2.24×10^{-2}
15	100,000	30.490	0.011	8.0	0.32	0.16	10.6	1.05×10^{-2}	1.7	1.74×10^{-5}	0.00107	1.39×10^{-2}
16	200,000	60.980	3.15×10^{-4}	0.24	0.009	0.005	0.32	3.14×10^{-4}	0.05	3.28×10^{-7}		2.63×10^{-4}
17	300.000	91.470	7.23×10^{-6}	0.0055	0.0002	0.0001	0.0073	7.23×10^{-6}	0.00011	8.57×10^{-9}		6.86×10^{-6}

/1/Atmospheres. /2/Absolute pressure, $1 \mathrm{~b} / \mathrm{sq} \mathrm{in}$. / / / Pressure at given altitude vs pressure at sea level.
/4/ Density at given altitude vs density at sea level.
Contributors: (a) llaber, F., (b) ZoBell, C. E.
References: [1] Willis, R. G.. National Advisory Committee for Aeronautics. Tech. Rept. No. 147, 1922. [2] Diehl, W. S., National Advisory Committee for Aeronautics, Tech. Rept. No. 218, 1925. [3] Bromdracher. W. G., National Advisory Committee for Aeronautics, Tech. Rept. No. 538, 1935. [4] Warfield, C. N., National Advisory Committee for Aeronautics, Tech. Rept. No. 1235, Tech. Note 1200, 1947.

5. CHARACTERISTICS OF RESPIRATORY MEDIA

The solvents, water or nitrogen, through which exchange of O_{2} and CO_{2} occur, are the primary substances mechanically inspired by animals that actively ventilate the respiratory organ. Values in parentheses are relative coefficients with O_{2} as unity.

Variable		Media			
		Aquatic ($\mathrm{H}_{2} \mathrm{O}$)		Atmospheric (N_{2})	
		Ocean	Fresh	Sea Level	6000 m
	(A)	(B)	(C)	(D)	(E)
1	Temperature, ${ }^{\circ} \mathrm{C}$	-2.0 to 30.0	2.0-32.0	0.7-15.7	-28.1 to -15.1
2	Pressure, total, mm Hg	760-760,000	760-20,000	760	347.5-360.2
3	Density, g/L	10271, $20^{\circ} \mathrm{C}$	$1000^{1}, 4^{\circ} \mathrm{C}$	1.223-1.290	0.649-0.659
Concentration					
4	$\mathrm{H}_{2} \mathrm{O}$, vol \%	100.00	100.00	1.002	1.002
5	N_{2}, vol \%	1.031. $15^{\circ} \mathrm{C}$	$1.33^{1}, 15^{\circ} \mathrm{C}$	78.03 (STP)	78.03 (STP)
6	CO_{2}, vol \%	$0.021 .15{ }^{\circ} \mathrm{C}$	$0.03{ }^{1}, 150{ }^{\circ} \mathrm{C}$	0.03 (STP)	0.03 (STP)
7	O_{2}, vol \%	$0.58{ }^{1} .^{150} \mathrm{C}$	$0.72^{1}, 150 \mathrm{C}$	20.99 (STP)	20.99 (STP)
8	Salts, \%/00	34.48	0.181		
9	pH	7.5-8.4	3.2-10.6		
10	Inert gases, vol \%	Traces	Traces	0.95 (STP)	0.95 (STP)
Partial Pressure (Tension)					
11	$\mathrm{H}_{2} \mathrm{O}, \mathrm{mm} \mathrm{Hg}$	12.79, $150{ }^{\circ} \mathrm{C}$	$6.10 .4^{\circ} \mathrm{C}$	$6.403,15^{\circ} \mathrm{C}$	$0.72^{3},-15^{\circ} \mathrm{C}$
12	$\mathrm{N}_{2}, \mathrm{~mm} \mathrm{Hg}$	593.02 (STP)	593.02 (STP)	593.02 (STP)	281.064 (STP)
13	$\mathrm{CO}_{2}, \mathrm{~mm} \mathrm{Hg}$	0.231 (STP)	0.231 (STP)	0.23 (STP)	0.11^{4} (STP)
14	$\mathrm{O}_{2}, \mathrm{~mm} \mathrm{Hg}$	159.52^{1} (STP)	159.52^{1} (STP)	159.52 (STP)	$75.61{ }^{4}$ (STP)
15	Inert gases, mm Hg	7.46 (STP)	7.46 (STP)	7.46 (STP)	3.42^{4} (STP)
16	Total pressure, mm Hg	760.00 (STP)	760.00 (STP)	760.00 (STP)	360.20 (STP)
Diffusion Coefficient ($\mathrm{ml} / \mathrm{min} / \mathrm{sq} \mathrm{cm} \times \mathrm{cm}$ at $760 \mathrm{~mm} \mathrm{Hg}, 20^{\circ} \mathrm{C}$)					
17	N_{2}		$0.000018^{5}(0.53)$		
18	CO_{2}		0.000785^{5} (23.1)		
19	O_{2}		0.000034 (1)	11.0	

/1/ Averages of many determinations; vary widely with conditions of measurement. /2/Varies, but never absent and always of biological significance. /3/Calculated for 50% relative humidity. /4/Calculated. /5/Calculated from measured value for $\mathrm{O}_{2}\left(20^{\circ} \mathrm{C}\right)$ and relative coefficients $\left(180-19{ }^{\circ} \mathrm{C}\right)$.
Contributor: McCutcheon, F. H.
References: [1] Heilbrunn, L. V.. "General Physiology," Philadelphia: W. B. Saunders Co., 1952. [2] Hodgman, C. D., "Handbook of Chemistry and Physics," Cleveland: Chemical Rubber Publishing Co., 1948. [3] Krogh, A., J. Physiol., Lond. 52:391, 1919. [4] Pearse, A. S., "Animal Ecology." New York: McGraw-Hill, 1939.
[5] Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., "The Oceans," New York: Prentiss-Hall, 1946.

6. CHARACTERISTICS OF RESPIRATORY MOLECULES

Values, unless otherwise indicated, are for standard conditions (STP) of temperature ($0^{\circ} \mathrm{C}$) and pressure (760 mm Hg).

Type		Weight$(0=16)$	$\begin{aligned} & \text { Diameter } \\ & \mathrm{cm} \times 10^{-8} \end{aligned}$	$\begin{gathered} \text { Density } \\ \mathrm{g} / \mathrm{L} \end{gathered}$	Mean Free Path$\begin{gathered} \mathrm{cm} \times 10^{-6} \\ (750 \mathrm{~mm} \mathrm{Hg}) \end{gathered}$	Collision Frequency $\left(20^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Average } \\ & \text { Velocity } \\ & \mathrm{cm} \times 100 / \mathrm{sec} \end{aligned}$	```Water Solubility vol %```			
		STP						$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
1	N_{2}	28.02	3.15-3.53	1.251	8.50	5070	454	2.35	1.54	1.18	
2	$\mathrm{H}_{2} \mathrm{O}$	18.02	3.0-5.0	0.005-0.030 ${ }^{2}$			566				
3	CO_{2}	44.01	3.34-3.40	1.977	5.56	6120	362	171.3	87.8	53.0	
4	O_{2}	32.00	2.92-2.98	1.429	9.05	4430	425	4.89	3.10	2.31	

/1/ Range indicates variations with method of measurement (e.g., viscosity, heat conductivity). /2/Water vapor in saturated air, i.e., in equilibrium with water, at $0^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$.
Contributor: McCutcheon, F. H.
References: [1] Dorsey, N. E., "Properties of Ordinary Water Substances in All lts Phases," New York: Reinhold, 1940. [2] Hodgman, C. D., "Handbook of Chemistry and Physics," Cleveland: Chemical Rubber Publishing Co., 1948.
7. COMPOSITION AND PARTIAL PRESSURE OF RESPIRATORY GASES: MAN

Values in parentheses conform to estimate "d" of the 95% range (cf Introduction).

	Gas	Water		Nilrogen		Oxygen		Carbon Dioxide		Reference
		vol \%	mm Hg							
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
Ventilated Gas										
1	Inspired	0^{1}	± 5.72	79.02^{1}	596^{2}	20.95^{1}	158^{2}	0.031	0.30^{2}	$\begin{aligned} & B, D, F, H, \\ & 1 ; C, E, G, \\ & 1,2 \end{aligned}$
2	Alveolar ${ }^{3}$	01	47^{4}	80.40^{1}	573^{4}	$14.00{ }^{1}$	100^{4}	$5.60{ }^{1}$	40^{4}	
3	Expired	01	47^{4}	$79.20{ }^{1}$	565^{4}	16.30^{1}	116^{4}	$4.50{ }^{1}$	32^{4}	2
Transported Gas										
4	In arterial blood	83(81-86)	47	0.975	573	19.6(17.3-22.3)	94	48.2(44.6-50.4)	40	$\begin{aligned} & \mathrm{B}, 3 ; \mathrm{C}, \mathrm{~F}- \\ & \mathrm{H}, 2 ; \mathrm{D}, \mathrm{E}, \\ & \mathrm{I}, 4 \end{aligned}$
5	In capillary blood	$83(81-86)$	47	0.975	573	± 1 to 22.35	± 1 to 945	± 44.6 to 57.7^{5}	± 40 to 50	$\begin{aligned} & \text { B, 3;C, 2; } \\ & \text { D, E, } 4 ; \text { F- } \\ & 1, a \end{aligned}$
6	In tissue fluid	83(81-86)	47	0.975	573	$\pm 0.185^{5}$	± 305	± 3.0465	± 505	$\begin{aligned} & \mathrm{B}, 3 ; \mathrm{C}, 2 ; \\ & \mathrm{D}, \mathrm{E}, 4 ; \mathrm{F}- \\ & 1,5 \end{aligned}$
7	In venous blood	83(81-86)	47	0.975	573	$12.9(11.0-16.1)^{6}$	40	$54.8(51.0-57.7)^{6}$	46	$\begin{aligned} & B, 3 ; D, E, \\ & 4 ; C, F-1,2 \end{aligned}$

$/ 1 /$ Dry air. Partial pressure in $m m \mathrm{Hg}=$ vol $\% / 100 \times 760 \mathrm{~mm} \mathrm{Hg}$ (Dalton's law). /2/Ambient air; slight variations exist. Vol \% = $100 \times$ (partial pressure in $m m \mathrm{Hg}$)/760 mm Hg (Dalton's law). /3/ "Alveolar" air, actually last part of expired samples. / $4 /$ Physiological air, normal temperature ($37{ }^{\circ} \mathrm{C}$), and standard pressure (760 mm $\mathrm{Hg})$. /5/Variable, depending on blood flow, tissue activity and relation of sample to capillary length or field.
/6/ lnternal jugular.
Contributor: (a) McCutcheon, F. H.
References: [1] Krogh, A., "The Comparative Physiology of Respiratory Mechanisms," Philadelphia: Univ. of Pennsylvania Press, 1941. [2] Nims, L. F., in Fulton's "Textbook of Physiology, "Philadelphia: W. B. Saunders Co., 1949. [3] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (average from Table 67). [4] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (average from Table 94). [5] Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (average from data for plasma, Table 94).

8. PRESSURE-DEPTH GRADIENT IN THE SEA

Hydrostatic pressure increases with depth at approximately 0.1 atmosphere per meter, the exact value being affected by salinity, temperature and latitude of the water. Salinity is expressed in parts per thousand $(0 / 00)$.

Depth, in		Salinity, \%/00	Temperature, ${ }^{\circ} \mathrm{C}$	Pressure, $\mathrm{atm} / \mathrm{m}$ l		
		Latitude 30°		Latitude 60°		
	(A)		(B)	(C)	(D)	(E)
1	0	32	0	0.099141	0.099403	
2	0	32	20	0.098831	0.099092	
3	0	35	0	0.099375	0.099638	
4	0	35	20	0.099052	0.099314	
5	5000	35	0	0.101757	0.102026	
6	5000	35	5	0.101660	0.101929	
7	10,000	35	0	0.103952	0.104225	

$/ 1 / 1 \mathrm{atmosphere}=1.01325$ bars, $1.03327 \mathrm{~kg} / \mathrm{sq} \mathrm{cm}, 14.696 \mathrm{lb} / \mathrm{sq} \mathrm{in}, 760 \mathrm{~mm} \mathrm{Hg}$.
Contributor: ZoBell, C. E.
9. PRESSURE EQUIVALENTS

	Atmospheres	mm Hg	Absolute $\mathrm{lb} / \mathrm{sq}$ in	Gauge $\mathrm{ib} / \mathrm{sq}$ in	Diving Depth ft
	(A)	(B)	(C)	(D)	(E)
1	1	760	14.7	0	0
2	2	1520	29.4	14.7	33
3	3	2280	44.1	29.4	66
4	4	3040	58.8	44.1	99
5	5	3800	73.5	58.8	132
6	6	4560	88.2	73.5	165
7	7	5320	102.9	88.2	198
8	8	6080	117.6	102.9	231
9	9	6840	132.3	117.6	204
10	10	7600	147.0	132.3	297

Contributor: Behnke, A. R.
10. PARTITION COEFFICIENTS OF VARIOUS GASES AT $37-38^{\circ} \mathrm{C}$

Adapted from Kety. S. S., Pharm. Rev., Balt. 3:5, 1951.
Partition coefficient = the ratio at equilibrium in which a given substance (gas) distributes itself between two or more different solvents.

Contributors: Bartels, H., and Opitz, E.
References: [1] Widmark, E. M., Acta med. scand. 52:87, 1919. [2] Grollman, A., J. Biol. Chem. 82:317, 1929. [3] Taylor, H1. L., and Chapman. C. B., Fed. Proc. 9:124, 1950. [4] Lawrence, J. H., Loomis, W, F., Tobias, C. A., and Turpin, F. Il., J. Physiol. 105:197. 1946. 75] Moore, B., and Roaf, H. F., Proc. Roy. Soc., Lond. 73:382, 1904. [6] Nicloux, M., and Yovanovitch, A., C. rend. Soc. biol. 91:1285, 1924. [7] Tissot, M. J., ibid $\overline{60}: 195$, 1906. [8] McCollum, J. L., J. Pharm. Exp. Ther. 40:305, 1930. T9] Orcutt, F. S., and Seevers, M. H., ibid 59:206, 1937. [10] Ruigh, W. L., Proc. Soc. Exp. Biol. $40: 608$, 1939. [11] Harmel, M. H., Pharm. Rev.. Balt. 3:1, 1951. [12] Haggard, H. W., J. Biol. Chem. 55:131, 1923. [13] Haggard, H. W., ibid 59:771, 1924. [14] Hawkins, J. A., and Schilling, C. W., ibid $113: 649,1936$. [15] Van Slyke, D. D., Dillon, R. T., and Margaria, R., ibid 105:571, 1934. [16] Campbell, J. A., and Hill, L.. Quart. J. Exp. Physiol., Lond. 23:219. 1933. [17] Campbell, J. A., and Hill, L., J. Physiol. 71:309, 1931. [18] Tobias, C. A., Jones, H. D., Lawrence, J. H., and Hamilton, J. G., J. Clin. Invest. $28: 1375$, 1949. [19] Siebeck, R., Skand. Arch. Physiol., Berl. 21:368, 1909. [20] Kety. S. S., Harmel, M. H., Broomell, H. T., and Rhode, C. B., J. Biol. Chem. 173:487, 1948. [21] Eckenhoff, J. E., Hafkenschiel, J. H., Harmel, M. H., Goodale, W. T., Lubin, M., Bing. $\overline{\text { R. J., and Kety, S. S.. Am. J. Physiol. 152:356, } 1948 .}$
11. DEPRESSION OF O 2 AND CO_{2} SOLUBILITY BY VARIOUS SALTS IN WATER
$\Delta a=$ solubility depression per unit M concentration of salt. Values of Δ are for salt concenlrations up to 0.3 M .

Salt		$\triangle \mathrm{aO}_{2}$	$\triangle \mathrm{aCO}_{2}$		Salt	$\triangle a_{2}$	$\triangle \mathrm{aCO}_{2}$
(A)		(B)	(C)		(A)	(B)	(C)
1	Sodium chloride	0.0073	0.111	6	Sodium biphosphate		0.218
2	Potassium chioride	0.0069	0.087	7	Potassium biphosphate		0.185
3	Potassium fluoride	0.0078		8	0.155 M NaCl	0.001131	0.01721
4	Sodium bicarbonate	0.0081		9	0.119 M NaCl	0.00087	0.0132
5	Lactic acid	0.0003					

/1/ Corrections for physiological substitute-solutions,
Contributors: Bartels, H., and Opitz, E.
References: [Column B] Sendroy, J., Jr., Dilion, R. T., and Van Slyke, D. D., J. Biol. Chem. 105:597, 1934.
[Column C] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J. M., ibid 78:765, 1928.

Part I: IN WATER AT VARIOUS TEMPERATURES
Solubility coefficient: $a=\frac{m}{m l}$ liquid at 760 mm pressure.

	emp ${ }^{\circ} \mathrm{C}$	$\mathrm{aN}_{2}{ }^{1}$	aO_{2}	aH_{2}	aCO_{2}	aCO		emp ${ }^{\circ} \mathrm{C}$	$\mathrm{aN}_{2}{ }^{1}$	aO_{2}	aH_{2}	aCO_{2}	${ }^{\text {a }}$ CO
	(A)	(B)	(C)	(D)	(E)	(F)		(A)	(B)	(C)	(D)	(E)	(F)
1	0	0.02354	0.04889	0.02148	1.713	0.03537	29	28	0.01376	0.02691	0.01720	0.699	0.02051
2	1	0.02297	0.04758	0.02126	1.646	0.03455	30	29	0.01358	0.02649	0.01709	0.682	0.02024
3	2	0.02241	0.04633	0.02105	1.584	0.03375	31	30	0.01342	0.02608	0.01699	0.665	0.01998
4	3	0.02187	0.04512	0.02084	1.527	0.03297	32	312	0.01323	0.02574	0.01692	0.650	0.01974
5	4	0.02135	0.04397	0.02064	1.473	0.03222	33	322	0.01304	0.02541	0.01686	0.636	0.01950
6	5	0.02086	0.04287	0.02044	1.424	0.03149	34	332	0.01284	0.02507	0.01679	0.621	0.01925
7	6	0.02037	0.04180	0.02025	1.377	0.03078	35	34^{2}	0.01265	0.02474	0.01673	0.607	0.01901
8	7	0.01990	0.04080	0.02007	1.331	0.03009	36	35	0.01256	0.02440	0.01666	0.592	0.01877
9	8	0.01945	0.03983	0.01989	1.282	0.02942	37	36^{2}	0.01242	0.02413	0.01662	0.580	0.01857
10	9	0.01902	0.03891	0.01972	1.237	0.02878	38	372	0.01227	0.02386	0.01657	0.567	0.01836
11	10	0.01861	0.03802	0.01955	1.194	0.02816	39	38^{2}	0.01213	0.02360	0.01653	0.555	0.01816
12	11	0.01823	0.03718	0.01940	1.154	0.02757	40	392	0.01198	0.02333	0.01648	0.542	0.01795
13	12	0.01786	0.03637	0.01925	1.117	0.02701	41	40	0.01184	0.02306	0.01644	0.530	0.01775
14	13	0.01750	0.03559	0.01911	1.083	0.02646	42	41^{2}	0.01173	0.02262	0.01640	0.520	0.01758
15	14	0.01717	0.03486	0.01897	1.050	0.02593	43	422	0.01162	0.02218	0.01636	0.510	0.01741
16	15	0.01685	0.03415	0.01883	1.019	0.02543	44	432	0.01152	0.02175	0.01632	0.499	0.01724
17	16	0.01654	0.03348	0.01869	0.985	0.02494	45	44^{2}	0.01141	0.02131	0.01628	0.489	0.01707
18	17	0.01625	0.03283	0.01856	0.956	0.02448	46	452	0.01130	0.02187	0.01624	0.479	0.01690
19	18	0.01597	0.03220	0.01844	0.928	0.02402	47	46^{2}	0.01122	0.02168	0.01621	0.470	0.01675
20	19	0.01570	0.03161	0.01831	0.902	0.02360	48	472	0.01113	0.02148	0.01618	0.462	0.01660
21	20	0.01545	0.03102	0.01819	0.878	0.02319	49	48^{2}	0.01105	0.02129	0.01614	0.453	0.01645
22	21	0.01522	0.03044	0.01805	0.854	0.02281	50	49^{2}	0.01096	0.02109	0.01611	0.445	0.01630
23	22	0.01498	0.02988	0.01792	0.829	0.02244	51	50	0.01088	0.02090	0.01608	0.436	0.01615
24	23	0.01475	0.02934	0.01779	0.804	0.02208	52	60	0.01023	0.01946	0.01600	0.359	0.01488
25	24	0.01454	0.02881	0.01766	0.781	0.02174	53	70	0.00977	0.01833	0.0160		0.01440
26	25	0.01434	0.02831	0.01754	0.759	0.02142	54	80	0.00958	0.01761	0.0160		0.01430
27	26	0.01413	0.02783	0.01742	0.738	0.02110	55	90	0.0095	0.0172	0.0160		0.0142
28	27	0.01394	0.02736	0.01731	0.718	0.02080	56	100	0.0095	0.0170	0.0160		0.0141

/1/ Atmospheric nitrogen $=98.815 \%$ by vol nitrogen $+1.185 \%$ by vol air. /2/Values for these temperatures were obtained by graphic or calculated interpola-
Part II: O_{2} AND CO_{2} IN PHYSIOLOGICAL FLUIDS AT VARIOUS TEMPERATURES

$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$		$\mathrm{aO}_{2}{ }^{1}$			$\mathrm{aCO}_{2}{ }^{1}$		$\begin{aligned} & \text { Temp } \\ & \text { oC } \end{aligned}$		$\mathrm{aO}_{2} 1$			$\mathrm{aCO}_{2}{ }^{1}$	
		$\begin{gathered} 0.155 \mathrm{~N} \\ \mathrm{NaCl}^{2} \end{gathered}$	$\begin{aligned} & 0.119 \mathrm{~N} \\ & \mathrm{NaCl}^{2} \end{aligned}$	Whole Blood 3	$\begin{gathered} 0.155 \mathrm{~N} \\ \mathrm{NaCl}^{4} \end{gathered}$	$\begin{aligned} & 0.119 \mathrm{~N} \\ & \mathrm{NaCl}^{4} \end{aligned}$			$\begin{aligned} & 0.155 \mathrm{~N} \\ & \mathrm{NaCl} \end{aligned}$	$\begin{aligned} & 0.199 \mathrm{~N} \\ & \mathrm{NaCl}^{2} \end{aligned}$	Whole Blood 3	$\begin{gathered} 0.155 \mathrm{~N} \\ \mathrm{NaCl}^{4} \end{gathered}$	$\begin{gathered} 0.199 \mathrm{~N} \\ \mathrm{NaCl} 4 \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)		(A)	(B)	(C)	(D)	(E)	(F)
1	10	0.03689	0.03715		1.177	1.181	17	26	0.02670	0.02696	0.0300	0.721	0.725
2	11	0.03605	0.03631		1.137	1.141	18	27	0.02623	0.02649	0.0293	0.701	0.705
3	12	0.03524	0.03550		1.100	1.104	19	28	0.02578	0.02604	0.0285	0.682	0.685
4	13	0.03446	0.03472		1.066	1.070	20	29	0.02536	0.02562	0.0279	0.665	0.669
5	14	0.03373	0.03399		1.033	1.037	21	30	0.02495	0.02521	0.0273	0.648	0.652
6	15	0.03302	0.03328		1.002	1.006	22	31	0.02461	0.02487	0.0267	0.633	0.637
7	16	0.03235	0.03216		0.968	0.972	23	32	0.02428	0.02454	0.0261	0.619	0.623
8	17	0.03170	0.03196		0.939	0.943	24	33	0.02394	0.02420	0.0257	0.604	0.608
9	18	0.03107	0.03133		0.911	0.915	25	34	0.02361	0.02387	0.0252	0.590	0.594
10	19	0.03048	0.03074		0.885	0.889	26	35	0.02327	0.02353	0.0247	0.575	0.579
11	20	0.02989	0.03015	0.0344	0.861	0.865	27	36	0.02300	0.02326	0.0241	0.563	0.567
12	21	0.02931	0.02957	0.0337	0.837	0.841	28	37	0.02273	0.02299	0.0237	0.550	0.554
13	22	0.02875	0.02901	0.0329	0.812	0.816	29	38	0.02247	0.02273	0.0232	0.538	0.542
14	23	0.02821	0.02847	0.0321	0.787	0.791	30	39	0.02220	0.02246	0.0228	0.523	0.529
15	24	2.02768	0.02794	0.0312	0.764	0.768	31	40	0.02193	0.02219	0.0223	0.513	0.517
16	25	0.02718	0.02744	0.0306	0.742	0.746							

Van Slyke [2]. /3/ The values for blood were calculated through graphic interpolation from Figure 3 of Sendroy, Dillon, and Van Slyke [2]. /4/ The decrease in solubility through addition of salt was calculated according to the data of Van Slyke, Sendroy, Hastings, and Neill [3]
Contributors: Bartels, H., and Opitz, E.
References: [1] Hodgman, C. D.. "Handbook of Chemistry and Physics," p 1532, Cleveland: Chemical Rubber Publishing Co., 1952. [2] Sendroy, J., Jr., 1928.
12. SOLUBILITY COEFFICIENTS: GASES (Concluded)
See Introduction for explanation of apparent discrepancies in values given in different parts of table.
Part 111: 1 N VARIOUS FLUIDS AND TISSUES

	Medium	Source	Temp, ${ }^{\circ} \mathrm{C}$	aN_{2}	aO_{2}	aH_{2}	aCO_{2}	aHe	$\mathrm{aN}_{2} \mathrm{O}$	$\mathrm{aC}_{2} \mathrm{H}_{4}$	$a \mathrm{C}_{2} \mathrm{H}_{2}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)
1	Water		25	0.01483	0.02831	0.01754	0.759		0.549	0.108		D, 1;E, 2; F, 3;G, 4;1-J, 5
2			37.5							0.078	0.747	J-K, 6
3			38	0.01272	0.02323	0.01620	0.545	0.0085				D, 1;E,7;F, 8;G, 9; H, 10
4	0.155 N NaCl		25	0.01409								D, 1
5			38	0.01220	0.02211	0.01559	0.529					D, 1;E, 7; F, 8;G,9
6	Whole blood	Man	37		0.02356				0.412			E, 11, 12;1,10
7					$0.0214+2$							E, 11, 12
8			37.5							0.123	0.740	J-K, 6
9			38				0.4943,4					G, a
10							0.4923 .5					G, a
11							0.4881, ${ }^{3}$					G, a
12							$0.4853,6$					G, a
13							$0.482^{3,7}$					G, a
14		Myeloid leukemia	37.5								0.735	K, 6
15		Polycythemia	37.5								0.710	K, 6
16		Dog	37						0.425			1,13
17			37.5							0.141	0.759	J-K, 6
18			38					0.0088^{1}				H, 10
19		Ox	38	0.01301	0.02301	0.0149^{1}	0.471	0.0088				D, 1;E, 7; F, 8;G,9;H,10
20				$0.0117+8$	$0.0209+2$							D, 1;E, 7
21		Rabbit	37.5							0.128	0.703	J-K, 6
22	Plasma	Man	37		0.0214		0.5269					E, 11, 12;G, a
23			38				0.510					G, 8
24		Lipemia	38				0.552					G, 8
25		Dog	37.5								0.690	K, 6
26		Ox	38	0.0117	0.0209	0.01533	0.510					D, 1;E,7; F, 8;G,9
27	Erythrocytes	DOg	37.5								0.778	K, 6
28		Ox	38	0.0146	0.0261	0.01454	0.44					D, 1;E,7;F,8;G,9
29	Urine	Man	38				0.522					G, 14
30	Heart	Man	37						0.446			1,15
31		Dog	37						0.447			I, 15
32	Brain	Man	37						0.437			1,15
33		Dog	37						0.437			I, 15
34		Sheep	37	0.0162								D, 16
35	Liver	Sheep	37	0.0162								D, 16
36	Connective tissue	Dog.	22				0.73					G, 17
37		Fros	20				0.73					G, 18
38	Skeletal muscle	Dog	22				0.78					G, 17
39		Frog	22				0.78					G. 19-21

Contributors: (a) Bartels, H., and Opitz, E., (b) Behnke, A. R.

[^2]
13. DIFFUSION COEFFICIENTS AND PERMEATION COEFFICIENTS

$D=$ "true" diffusion coefficient in sq cm/min $\left(\frac{\partial c}{\partial t}=-D \frac{\partial^{2} c}{\partial x^{2}}\right) ; c=$ concentration in ml gas (STPD) dissolved per ml liquid; $t=$ time in min; $x=$ distance in $c m . D^{\prime}=$ permeation coefficient in $s q c m / m i n / a t m:$ volume of gas (ml, STPD) diffusing per unit time (min), area (sq cm), and thickness (cm), if the difference in partial pressure of the diffusing gas is 1 atm in the direction of the gas flow. $D=\frac{D^{\prime}}{a}$, where a is the Bunsen solubility coefficient, mas (STPD) dissolved per ml liquid at a partial pressure of 1 atm . The temperature coefficient of D in the range $15-40^{\circ} \mathrm{C}$ is in most cases nearly $2 \%^{\circ} \mathrm{C}[1,2]$, and temperature coefficient of D^{\prime} nearly 1% per o ${ }^{\circ} \mathrm{C}$ in the same range. [3]

Part 1: O_{2} AND CO_{2} IN VARIOUS FLUIDS AND TISSUES
Unless otherwise stated, values of D and D^{\prime} were recalculated from data in the references, with the aid of solubility coefficients given in these tables.

	Substance	Temp, ${ }^{\circ} \mathrm{C}$	D $\times 10^{-4}$	0	$\mathrm{D}^{\prime} \times 10^{-5}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
Oxygen						
1	Water	25	15.1	0.0283	4.3	B-E, 2
2	Water	37	19.3	0.0239	4.6	B-E, 2
3	Seruml	25	11.9	0.025	3.0	B-C, 2; D, 4, 5 ; E, a, b
4	Serum	37	15.25	0.021	3.2	B-C, 2;D, 4, 5;E, a, b
5	Serum protein solution, $8 \%{ }^{2}$	25	11.1	0.025	2.8	B-C, 6,7;D,calc. by a,b from 4,5;E,a,b
6	Methemoglobin solution, $8 \%{ }^{2}$	25	11.2	0.025	2.8	B-C, 8;D, calc.bya, b from 4,5; E, a,b
7	Serum protein, 30\%	25	4.6			B-C, 6, 7
8	Methemoglobin, 30\% ${ }^{3}$	25	5.5	0.032	1.8	B-C, $8 ; \mathrm{D}$, calc. by a, b from 4,$5 ; \mathrm{E}, \mathrm{a}, \mathrm{b}$
9	Muscle, frog	20	4.5	0.031^{4}	1.4	B-C, E, 3;D, 4, 5, 9
10	Muscle, frog	37	7.0	0.0235^{4}	1.655	B-C, a, b;D, 4, 5; E, 3
11	Connective tissue, frog	20	3.7	0.0314	1.15	B-C, E, 3;D, 4, 5
12	Connective tissue, dog	37	5.75	0.0235^{4}	1.356	B-C, a, b; D, 4, 5; E, 3
13	Chitin	20			0.13	B, E, 3
14	Gelatin, 15\%	20			2.8	B, E, 3
15	Rubber	17	0.57			B-C, 10
16	Rubber	20			0.77	B, E, 3
Carbon Dioxide						
17	Water	20	10.657	0.878	93.5	B-E, 11, 12
18	Water	37	15.38			B-C, calc. bya, b from 11, 12
19	Muscle, frog	22	$11.7{ }^{7}$	0.78	91.0	B-C, 13;D, 14;E, a, b
20	Muscle, frog	22	6.8	0.787	53.07	B-C, a, b;D-E, 14
21	Muscle, dog	22	6.0	$0.78{ }^{7}$	47.07	B-C, a, b;D-E, 14
22	Muscle, smooth, cal	22	6.4	0.78	50.07	B-C, a, b;D-E, 14
23	Connective tissue, frog	20	5.3	0.777	41.0^{7}	B-C, a, b; D, 14;E, 3
24	Diaphragm, dog	22	3.6	$0.73{ }^{7}$	26.5	B-C, a, b;D-E, 14
25	Nerve	22	0.71^{7}	0.78	5.5	B-C, 13;D, 14;E, a, b
26	Skin, frog	22	4.2	0.737	30.57	B-C, a, b;D-E, 14
27	Skin, acidified	22	5.7	$0.78{ }^{7}$	$44.7{ }^{7}$	B-C, a, b;D-E, 14
28	Rubber	17	$0.51{ }^{7}$	0.93	4.8	B-C, 10;D-E, a, b
29	Rubber	22	0.51	$0.93{ }^{7}$	4.87	B-C, E, a, b;D, calc. by 14 from 15

$11 /$ Solubility of O_{2} at $25^{\circ} \mathrm{C}$ was calculated from the value for whole blood [5] and the ratio a serum $=0.908$ [4]. $12 /$ For the solubility coefficient of O_{2} in 8% serum protein solution and in 8% methemoglobin solution, the value for serum was taken [4]. /3/For the solubility coefficient of O_{2} in 30% methemoglobin, the value for erythrocytes [4] was taken. $/ 4 /$ Solubility of whole blood was used $[4,5]$ as the partition coefficient ($\frac{\text { atissue }}{a}$ blood $)$ for most gases is too close to 1.0 [9]. /5/ Value for D^{\prime} is calculated from 9 E , assuming a temperature coefficient for D^{\prime} of 1% per ${ }^{\circ} C[3]$. $16 / V a l u e$ for D^{\prime} is calculated from 11 E , assuming a temperature coefficient for D^{\prime} of 1% per ${ }^{\circ} \mathrm{C}$ [3]. /7/Value directly determined. $/ 8 /$ Value for D is calculated from 17 C by assuming a rise of D by 2% per ${ }^{\circ} \mathrm{C}$ [2,11].

Contributors: (a) Bartels, H., (b) Opitz, E.
References: [1] Carlson, T., J. Am. Chem. Soc. 33:102, 1911. [2] Gertz, K. H., and Loeschcke, H. H., unpublished. [3] Krogh, A., J. Physiol., Lond. 52:391, 1919. [4] Sendroy, J., Jr., Dillon, R. T., and Van Slyke, D. D., J. Biol. Chem. 105:597. 1934. [5] Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941. [6] Kreuzer, F., Helvet. physiol. pharm. acta $8: 505,1950$. [7] Kreuzer, F., ibid $9: 388,1951$. [8] Pircher, L., ibid $10: 110,1952$. [9] Kety, S. S., Pharm. Rev., Balt. 3:1, 1951. [10] Daynes, H. A., Proc. Roy. Soc., Lond., A 97:286, 1920. [11] Carlson, T., J. Am. Chem. Soc. 33:1027, 1911. [12] 1lüfner, G., Wied. Ann. Physik. 60:134, 1897. [13] Fenn, W. O., Am. J. Physiol. 85:207, 1928. [14] Wright, C., J. Gen. Physiol. 17:652, 1934. [15] Glazebrook, R. T., "Dictionary of Applied Physics," vol V, London: Macmillan Co., 1923.

DIFFUSION COEFFICIENTS AND PERMEATION COEFFICIENTS (Concluded) Part II: VARIOUS GASES RELATIVE TO O 2 AS UNITY
$\frac{\mathrm{D} \text { gas }}{\mathrm{D} \mathrm{O}}$ or $\frac{\mathrm{D}^{\prime} \text { gas }}{\mathrm{D}^{\prime} \mathrm{O}_{2}}$. Absolute values for O_{2} obtained from Part 1 of this table.

Substance		$\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Absolute Value O_{2}	H_{2}		He		N_{2}		CO		CO_{2}		Reference	
		D		D^{\prime}	D	D^{\prime}	D	D^{\prime}	D	D ${ }^{\prime}$	D	D'			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
1	Water	20	$D=13.7 \times 10^{-4}$	1.62				0.91		0.94				D, H, 1;J, 2	
2			$a=0.0239$												
3			$D^{\prime}=3.3 \times 10^{-5}$								0.89		31.8	K, $\overline{2} ; \mathrm{M}, 1$	
4		37	$D=19.3 \times 10^{-4}$	1.57		1.97		0.93				0.62		D, F, H, 1;L, 3	
5			$a=0.02386$									1.33		L, 1	
6			$D^{1}=4.6 \times 10^{-5}$		1.09		0.69		0.483				14.5	E, G, I, M, a,b	
7	Serum	37	$D=15.24 \times 10^{-4}$	1.54				0.85						D, H, 1	
8			$a=0.021$												
9			$D^{\prime}=3.2 \times 10^{-5}$		1.118				0.479					E, 1, 4	
10	Muscle	16-20	$D=4.5 \times 10^{-4}$									1.37		L, 5	
11			$\mathrm{a}=0.031$												
12			$\mathrm{D}^{\prime}=1.4 \times 10^{-5}$						0.60		0.70		35.0	1, K, M, 2	
13	Connective tissue	16-20	$D=3.7 \times 10^{-4}$									0.97		L, 5	
14			$a=0.031$												
15			$D^{\prime}=1.15 \times 10-5$						0.46		0.75		36.0	1,K, M, 2	
16													23.0	M, 2	
17	Rubber	$16-17$	$D^{\prime}=0.77 \times 10^{-5}$						0.52		0.56		5.0	I, K, M, 2	
18					2.15				0.39		0.44		5.3	E, $1, K, M, 6$	

Contributors: (a) Bartels, H., (b) Opitz, E.
References: [1] Gertz, K. H., and Loeschcke, 11. H., Zschr. Naturforsch. 9b: 1, 1954. [2] Krogh, A.. J. Physiol., Lond. 52:391, 1919. [3] Gertz, K. H., and Loeschcke, H. H., Zschr. Naturforsch. 11b:61, 1956. [4] Tammann, G., and Jessen, V., Zschr. anorg. u. allgem. Chem. 179:125, 1929. [5] Wright, C. J., J. Gen. Physiol. 17:657, 1934. [6] Graham, T., Ann. Physik Chem. 129:548, 1866.
14. DIFFUSION COEFFICIENTS: GASES IN WATER AT VARIOUS TEMPERATURES

Methods: $U=$ unspecified; $A=$ measurement of the volume of gas diffusing per unit time into a gel of $1-2 \%$ agar in water, in temperature range $0-30^{\circ} \mathrm{C} ; \mathrm{B}=$ measurement of the volume of gas diffusing from a gas bubble into the surrounding water in the temperature range $21-37^{\circ} \mathrm{C}$ (the relative values of the coefficients for various gases obtained by this method were converted to absolute values by means of DH2 as measured directly [1]); C = colorimetric measurement of the diffusion velocity of O_{2} by addition of 0.03-1\% hemaglobin as indicator; $D=$ measurement of the volume of gas diffusing per unit time into a tube filled with gas-free water; P = polarographic measurement with the dropping-mercury electrode; $T=$ measurement of the velocity of diffusion within a tube of 1 cm diameter filled with water or a 2% solution of agar in water.

Gas		Method		D $\times 10^{-4}$, sq cm per min				Reference	
		$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{C}$			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	H_{2}	A	16.65	21.75	24.3	26.85	30.4	1	
2		B		22.2	24.3	26.8	30.3	2	
3	He	B					37.2	2	
4	$\mathrm{C}_{2} \mathrm{H}_{2}$	A	8.75	10.95	12.08	13.2	14.77	1	
5	N2	A	8.2	10.05	11.0	11.93	13.2	1	
6		T		11.6				3, 4	
7		U		11.9				3, 4	
8		B		12.5	14.2	15.5	18.0	2	
9	CO	U		6.1				5	
10				13.1				6	
11	O_{2}	U		10.9				3, 4	
12				12.35				3,4	
13		B		13.7	15.1	16.8	19.3	2	
14		P			15.6			7	
15		C, P			13.5			8-10	
16	CO_{2}	A	7.48	9.14	9.98	10.82	12.03	1	
17		B			14.8	16.3	18.9	11	
18		U	8.76	10.6				3, 4, 12	
19		D		9.5				5	
20	$\mathrm{N}_{2} \mathrm{O}$	T	9.23	10.0				3	
21		B, D		9.2				5	

Contributors: Bartels, H., and Opitz, E.
References: [1] Tammann, G., and Jessen, V., Zschr. anorgan. u. allgem. Chem. 179:125, 1929. [2] Gertz, K. H., and Loeschcke, H. H., Zschr. Naturforsch. 9b:1, 1954. [3] Hüfner, G., Wied. Ann. Physik. 60:134, 1897.
[4] Bruins, H. R., International Critical Tables, vol V, p63, New York: McGraw-Hill, 1929. [5] Longmuir, J. S., and Roughton, F. J., J. Physiol., Lond. 118:264, 1952. [6] Krogh, A., ibid 52:391, 1919. [7] Kolthoff, J. M., and Miller, C. S., J. Am. Chem. Soc. 63:101, 1941. [8] Kreuzer, F., Helvet. physiol. pharm. acta 8:505, 1950.
[9] Kreuzer, F., ibid 9:388, 1951. [10] Pircher, L., ibid 10:110, 1952. [11] Gertz, K. H., and Loeschcke, H. H.,
Zschr. Naturforsch. 11b:61, 1956. [12] Carlson, T., J. Am. Chem. Soc. 33:1027, 1911.

 features. Letters with connecting dashes are ranges. $A=$ anlage, primordium, condensation, appearance; first becomes distinct. $B=$ becomes increas-
ingly characteristic or distinct; differentiation. $C=c o m p l e t i o n ~ o f ~ b a s i c ~ p l a n . ~$
$D=$ degeneration, dwindling, decrease, atrophy, regression, lag. $E=$ erup-

 $e=$ appearance of elastic tissues; $g=$ appearance of glands; $j=$ formation of joint-cavities; $m=$ appearance of muscle fibers; $n=i n n e r v a t i o n ~ e s t a b l i s h e d ; ~$
$w=$ excavation of bone.

Contributors: (a) Bŏving, B. G., (b) Towers, B.
 J. P., Am. J. Anat. $10: 313,1910$. Schaeffer, J. P., J. Morph. 21:613, 1910. Schaeffer, J. P., "The Embryology, Development and Anatomy of the Nose, Paranasel Sinuses, Nasolacrimal Passageways and Olfactory Organ in Man," Philadelphia: Blakiston, 1920. Streeter, G. L., series on "Developmental Horizons," Carnegie Institution, Washington, D. C. Towers, B., unpublished. LARYNX. Frazer, J. E., J. Anat., Lond. $44: 156,1910$. Grosser, O., Anatomique 2:176, 1894. Streeter, G. L., series on "Developmental Horizons," Carnegie Institution, Washington, D. C. Towers, B., unpublished
 Anat. Abt., Jahrg. 1919, p 1. His, W., ibid, Jahrg. 1887, p 89. Keibel, F., and Elze, C., "Normentafein zur Entwicklungsieschichte des Mensch "1 p 314 Jenna: Gustav Fischer, 1908. Lenzi, L., Monit. zool. ital. 9:213, 1898. Linser, P., Anat. Hefte 13:307, 1900. Lopez, A., Arch. españ. morf. 2:123, 1954. Congres federatif international d'anatomic Résumés, p 185, 1955, Streeter, G. L. series on "Developmental Horizons," Carnegie Institution, Washington D. C. Towers, B., unpublished. Wells, L. J., and Boyden, E. A., Am. J. Anat. 95:163, 1954.

Heference: "Dorland's lllustrated Mudical Dictionary," 23rd ed.. p 1355. Philadelphia: W. B. Saunders Co., 1957.
17. BRONCHOPULMONARY SEGMENTS: MAN

For practical purposes, the lungs may be divided into lobes which are fairly constant and well recognized, and each lobe into segments. These segments are supplied by the principal subdivisions of the bronchus entering that lobe. There is a fair degree of constancy in these bronchial subdivisions, both with respect to their point of origin in the tracheobronchial tree and to the part of lung which they supply. Terminology used is that suggested by Jackson and Huber.

Contributors: Jackson, C. L. and Huber, J. F.
Reference: Jackson, C. L.. and Iluber, J. F., Dis. Chest 9:319, 1943.
18. LUNG WEIGHT: MAN

Age is given in years, unless otherwise specified. Values are mean weight for both lungs. Data collated by Scammon, R.E.

							Sexes
	Age	Specimens no.	Lung Weight	Specimens no.	Lung Weight	Specimens no.	Lung Weight
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Birth	92	51.7	71	50.9	232	50.0
2	Birth-3 mo	46	68.8	47	63.6	93	06.2
3	3-6 mo	53	94.1	52	93.3	113	94.2
4	$6-9 \mathrm{mo}$	72	128.5	55	114.7	127	122.6
5	9-12 mo	49	142.4	63	142.1	115	142.7
6	1-2	78	170.3	84	175.3	166	173.7
7	2-3	76	245.9	62	244.3	145	243.8
8	3-4	51	304.7	34	265.5	88	286.5
9	4-5	32	314.2	21	311.7	56	310.8
10	5-6	18	260.6	27	319.9	51	301.9
11	6-7	8	399.5	17	357.5	29	377.6
12	7-8	15	365.4	10	404.4	25	381.0
13	8-9	5	405.0	7	382.1	14	400.7
14	9-10	5	376.4	5	358.4	11	342.2
15	10-11	15	474.5	4	571.2	20	495.7
16	11-12	8	465.6	4	535.0	12	488.7
17	12-13	4	458.8	3	681.7	7	554.3
18	13-14	6	504.5	4	602.3	12	521.8
19	14-15	12	692.8	6	517.0	19	632.1
20	15-16	12	691.7	13	708.8	28	702.4
21	16-17	9	747.3	6	626.5	15	699.0
22	17-18	12	776.9	13	694.5	25	734.0
23	18-19	20	874.7	15	654.9	35	780.5
24	19-20	19	1035.6	12	785.2	31	938.7
25	20-21	13	935.0	28	792.8	42	848.8
26	20-40	259	1169.3	150	885.5	410	1065.4

Contributor: Boyd, E.
Reference: Boyd, E., "Outline of Physical Growth and Development." Table 17, Minneapolis: Burgess, 1941.

19. LUNG WEIGHT INCREMENTS DURING FIRST YEAR: MAN

Data represent mean value at birth and for each trimester of first year, as determined from 600 observations collated from the literature and the author's own investigations. $B=$ birth.

Reference: Krogman, W. M., Tabulae Biologicae 20:609, 1941 ladapied from Scammon. R. E., Radiology 9:93. 1927).

Figures in parentheses are total number of observations.

Reference: Krogman, W. M., Tabulae Biologicae 20:669. 1941 (adapted from Scammon, R. E., Radiology 9:101, 1927).

```
21. DIMENSIONS OF TRACHEOBRONCHLAL TREE: MAN, ADULT
```

Values tabulated below represent average dimensions of the adult tracheobronchial tree, computed by Findeisen and Landahl, according to a functional concept of structure rather than a strictly anatomical description. Here, the major bronchi are listed according to their order of generation rather than to lobar or segmental distribution. This table serves two purposes: First, it permits listing bronchi of similar size in the same category, and second, it serves as a tool for the functional description of airflow characteristics at various points of the tracheobronchial tree. However, the user of these values must recognize that there is considerable overlapping of the various orders of branching.

Segment		Branches no.		Length cm		Diameter mm	
		Findeisen	Landahl	Findeisen	Landahl	Findeisen	Landah1
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Trachea	1	1	11.0	12.0	13.0	16.0
	Bronchi						
2	Primary (main)	2	2	6.5	6.0	7.5	10.0
3	Secondary	12	12	3.0	3.0	4.0	4.0
4	Tertiary	100	100	1.5	1.5	2.0	2.0
5	Quartenary	770	770	0.5	0.5	1.5	1.5
	Bronchioles						
6	Terminal	5.4×10^{4}	6×10^{4}	0.3	0.3	0.6	0.6
7	Respiratory	1.1×10^{5}	1.5×10^{5}	0.15	0.15	0.5	0.4
	Alveolar ducts						
8	1 st order	2.6×10^{7}	3×107	0.02	0.05	0.2	0.3
9	2nd order		4×10^{7}		0.03		0.25
10	Alveolar sacs	5.2×10^{7}	10^{8}	0.03	0.033	0.3	0.33

Contributor: Ross, B. B.

References: [1] Findeisen, W., Pflügers Arch. 236:367. 1935. [2] Landahl, H. D., Bull. Math. Biophys. 12:43, 1950.

22. DIAMETER OF RESPIRATORY ALVEOLI: MAN

Values are in millimeters.

$\left.\begin{array}{c}\text { Age } \\ \hline\end{array} \mathrm{A}\right)$	Diameter	
1	Few hr	(B)
2	$1-11 / 2 \mathrm{yr}$	0.05
3	$3-4 \mathrm{yr}$	0.10
4	$5-6 \mathrm{yr}$	0.12
5	$10-15 \mathrm{yr}$	0.14

Age		Diameter
	(A)	(B)
6	$18-20 \mathrm{yr}$	0.20
7	$25-40 \mathrm{yr}$	0.22
8	$50-60 \mathrm{yr}$	0.30
9	$70-80 \mathrm{yr}$	0.34

Contributor: Boyd, E.
Reference: Scammon, R. E., in "Pediatrics," (Abt, 1. A., ed.), vol I, p 257, Philadelphia: W. B. Saunders Co., 1923.

Values are in millimeters.

Age	Main Right Bronchus	Right Upper Lobe Bronchus	Portion between Upper and Middle Lobe Bronchi	Left Main Bronchus
(A)	(B)	(C)	(D)	(E)
11 mo	9	4	8	21
23 mo	10	5	10	24
35 mo	8	4.5	10	21
46 mo	10	6	11	25
51 yr	11	5	12	29
62 yr	13	6	11	29
73 yr	13	6	12	31
84 yr	12	7	12	32
95 yr	13.5	7	14	34
107 yr	11	10	17	33
1110 yr	14	10	13	35
1213 yr	22	10	19	42
13.40 yr	20	13	22	52

Contributor: Boyd, E.
Reference: Engel, S., Arch. Kinderh. 60:267, 1913.
24. DIAMETER OF TRACHEA AND BRONCHI: MAN

Values are in millimeters.

Age		No.	Trachea		Right Bronchus		Left Bronchus		
		Sagittal	Frontal	Sagittal	Frontal	Sagittal	Frontal		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	1 mo	2	5.65	6.45	4.6	5.0	3.9	4.15	
2	3 mo	1	6.5	6.8	5.0	4.7	4.0	4.1	
3	5 mo	1	7.0	7.2	6.1	5.9	4.9	4.3	
4	1 yr	2	7.0	7.9	5.9	6.25	4.4	5.1	
5	$1 \frac{1}{2} \mathrm{yr}$	1	8.0	10.4	7.7	7.8	4.7	7.3	
6	2 yr	1	9.4	8.8	7.5	7.3	4.9	5.2	
7	$2 \frac{1}{2} \mathrm{yr}$	1	8.6	8.9	6.6	6.5	5.5	5.0	
8	3 yr	1	10.8	9.4	7.4	7.3	7.0	5.5	
9	$3 \frac{1}{2} y r$	1	9.0	10.7	7.0	8.2	5.0	7.6	
10	4 yr	1	9.1	11.2	8.4	9.1	6.0	6.8	
11	5 yr	2	10.25	9.7	8.55	7.5	6.3	0.95	
12	7 yr	1	10.4	11.0	9.0	9.3	6.9	8.2	
13	$7 \frac{1}{2} \mathrm{yr}$	1	11.4	11.6	10.4	9.3	7.2	7.8	
14	10 yr	1	9.3	12.4	8.6	9.2	7.3	8.4	
15	13 yr	1	10.7	13.5	9.6	10.9	8.5	8.5	
16	40 yr	1	16.7	14.4	14.0	12.7	11.5	11.1	

Contributor: Boyd, E.

Reference: Engel, S., Arch. Kinderh. 60:267, 1913.

Based on data of Engel, Gegovd, Koike, Mettenheimer, Oppikofer, Passavant, and Scammon.

Age		Length		Lumen Diameter		
		Specimens no.	cm	Specimens no.	Sagittal mm	$\begin{gathered} \text { Frontal } \\ \mathrm{mm} \\ \hline \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)
1	$0-1 \mathrm{mo}$	20	4.0	11	3.6	5.0
2	1-3 mo	30	3.8	35	4.6	6.1
3	3-6 mo	35	4.2	37	5.0	5.8
4	6-12 mo	23	4.3	25	5.6	6.2
5	1-2 yr	17	4.5	18	6.5	7.6
6	2-3 yr	19	5.0	22	7.0	8.8
7	3-4 yr	12	5.3	12	8.3	9.4
8	4-6 yr	22	5.4	25	8.0	9.2
9	6-8 yr	14	5.7	16	9.2	10.0
10	8-10 yr	14	6.3	16	9.0	10.1
11.	$10-12 \mathrm{yr}$	8	6.3	10	9.8	11.3
12	12-14 yr	5	6.4	6	10.3	11.1
13	14-16 yr	9	7.2	10	12.7	14.0
14	Adult		12(9-15)		17.2(13-23)	14.7(12-18)

Contributor: Boyd, E.
Reference: Scammon, R. E., in "Pediatrics" (Abt, 1. A., ed.), vol 1, p 257, Philadelphia: W. B. Saunders Co., 1923.
26. DIAMETER OF SINUSES: MAN

Values are in millimeters.

Age		No.	Diameter				
		Ostium	Vertical	Lateral	Ant.-Post.		
	(A)		(B)	(C)	(D)	(E)	(F)
Left Frontal							
1	$8 \mathrm{da}-1 \mathrm{yr}$	10	2.5×0.75	2.7	1.6	3.3	
2	1-2 yr	10	2.3×0.75	4.0	2.5	3.8	
3	2-3 yr	8	2.0×0.87	6.5	3.1	5.4	
4	5-6 yr	3	3.5×1.8	9.0	5.1	7.0	
5	$9-10 \mathrm{yr}$	2	3.5×2.0	8.5	6.2	7.5	
6	13-14 yr	3	4.1×1.7	11.3	11.8	12.3	
7	17-18 yr	4	2.8×1.4	26.2	26.5	10.6	
8	20-21 yr	2	5.0×3.1	26.6	19.0	18.2	
Left Sphenoidal							
9	$8 \mathrm{da}-1 \mathrm{yr}$	10	0.7×0.7	2.8	2.0	1.6	
10	1-2 yr	10	0.9×0.7	4.5	3.4	2.2	
11	2-3 yr	8	1.0×0.7	5.4	4.1	2.8	
12	5-6 yr	3	1.6×1.3	7.0	5.4	5.0	
13	$9-10 \mathrm{yr}$	2	3.2×2.0	11.0	12.2	7.3	
14	13-14 yr	3	3.0×1.3	10.8	11.1	11.7	
15	17-18 yr	4	3.0×1.0	21.0	15.3	20.2	
16	20-21 yr	2	2.5×0.9	22.0	15.3	18.0	
Left Maxillary							
17	$8 \mathrm{da}-1 \mathrm{yr}$	10	1.5×0.6	5.7	4.6	13.3	
18	1-2 yr	10	2.1×0.8	8.3	6.7	17.9	
19	2-3 yr	8	2.0×0.8	9.2	7.9	20.2	
20	5-6 yr	3	3.3×1.1	12.3	14.0	26.2	
21	9-10 yr	2	4.0×2.5	18.5	19.0	30.5	
22	13-14 yr	3	3.7×1.1	23.6	18.0	31.1	
23	17-18 yr	4	3.3×1.5	32.2	24.5	36.0	
24	20-21 yr	2	3.5×1.0	26.5	20.0	32.0	

Contributor: Boyd, E.
Reference: Davis, W. B.. "Development and Anatomy of the Nasal Accessory Sinuses in Man," Philadelphia: W. B. Saunders Co., 1914.

Part I: LUNG LOBES

Lobes arbitrarily numbered as referred to in Part III.

Monkey

Rabbit

Contributors: (a) Joffe. M. 11.. (b) Ross, B. B.
References: [1] U. S. Army Chemical Warfare Laboratories. Army Chemical Center. Maryland. [2] Rahn, H., and Hoss, B. B., J. Appl. Physiol. 10:154. 1957.
27. LUNG WEIGHT RELATIONSHIPS: LABORATORY MAMMALS (Concluded)

Part II: BODY WEIGHT VS LUNG WEIGHT
Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Animal		No.	Body Weight kg	Wet Weight		Dry Weight			Reference	
		Whole Lung g		\% Body Weight	Whole Lung g	\% Body Weight	\% Wet Weight			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Cat	5	3.08(2.1-4.0)	23.19(16.3-28.0)	0.75	5.57(3.6-6.8)	0.18	24.43	1	
2	Dog	11	18.3(11.5-25.0)			42.6(25.2-68.9)	0.23		2	
3	Guinea pig	16	0.50(0.29-0.76)	4.11(2.3-7.0)	0.82	0.86	0.17	20.86	1	
4	Monkey	6	3.12(2.1-4.1)	25.46(20.0-33.0)	0.82	5.52(3.9-8.1)	0.18	21.66	1	
5	Rabbit	4	2.33(2.0-2.5)	10.5(9.8-13.0)	0.45	2.23(2.0-2.6)	0.10	21.55	1	

Contributors: (a) Joffe, M. H., (b) Ross, B. B.

References: [1] U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland. [2] Ross, B. B., unpublished.

Part III: LUNG LOBE WEIGHT RELATIONSHIPS
Specification: $A-W=$ actual weight in grams: \% T-D-W $=\%$ total dry weight.

Animal		Specification	Lung Lobe						Tracheal	Reference	
		$\begin{gathered} \text { (Left } \\ \text { Apical) } \\ \text { Ll } \end{gathered}$	(Left Diaphragmatic) L2	$\begin{array}{\|c} \text { (Right } \\ \text { Apical) } \\ \text { R1 } \end{array}$	$\begin{gathered} \text { (Right } \\ \text { Middle) } \\ \text { R2 } \end{gathered}$	(Right Diaphragmatic) R3	$\begin{gathered} \text { (Azygos) } \\ \text { R4 } \end{gathered}$				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
1 2	Cat	$\begin{aligned} & A-W \\ & \% T-D-W \end{aligned}$	$\begin{aligned} & 0.77 \\ & 13.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 21.55 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 6.66 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 6.68 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 17.2 \end{aligned}$	1	
3	Dog	$\begin{aligned} & \text { A-W } \\ & \% \text { T-D-W } \end{aligned}$	$\begin{aligned} & 5.3 \\ & 12.4 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 21.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.7 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 18.1 \end{aligned}$	2	
5	Monkey	$\begin{aligned} & \text { A-W } \\ & \% \text { T-D-W } \end{aligned}$	$\begin{aligned} & 1.07 \\ & 19.3 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 23.73 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 1.44 \\ & 26.08 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 4.36 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 6.86 \end{aligned}$	1	
7 8	Rabbit	$\begin{aligned} & \text { A-W } \\ & \% \text { T-D-W } \end{aligned}$	$\begin{aligned} & 0.21 \\ & 9.14 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 26.74 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 8.72 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 8.85 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 27.84 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 4.89 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 12.6 \end{aligned}$	1	

/1/ Tracheal length weighed included structure between thyroid cartilage and bifurcation.

Contributors: (a) Joffe, M. H., (b) Ross, B. B.

References: [1] U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland. [2] Ross, B. B., unpublished.

28. LUNG WEIGHT: VERTEBRATES

Part 1: MAMMALS
Values, unless otherwise indıcated, are for adult weights, on a fresh basis, and are g/l00g body weight determined immediately after death of animal.

/1/ Infant. /2/ Juvenile.

Part I: MAMMALS (Continued)
Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/l00g body weight determined immediately after death of animal.

Species		No. and Sex	Body Weight kg	Lung Weight		Habitat	
		g		$\mathrm{g} / 100 \mathrm{~g}$			
	(A)		(B)	(C)	(D)	(E)	(F)
Carnivores (concluded)							
56	Seal, bearded (Erignathus barbatus)	1%	281	4536	1.61	Canada	
57	(Phoca richardi geronimensis)	10°	107.3	1880	1.75	California	
58	Ringed (P . hispida)	30',29	39.73	734	1.85	Canada	
59	Serval (Felis capensis)	10', 2 \%	7.88	87.8	1.11	Maji Moto, Africa	
60	Skunk (Mephitis mephitis)	10°	1.7	27.1	1.59	New York	
61	Tiger (Felis tigris)	2,079	184	1454	0.79	200	
62	Weasel, arctic (Mustela arctica)	30',1\%	0.182	3.72	2.04	Canada, and 200	
63	Wolf, Russian (Canis lupus lupus)	10	22.68	807	3.56	Zoo	
64	Timber (C. lubilus)	100	29.94	379	1.26	Minnesota	
	Rodents						
65	Agouti, brown (Dasyprocta punctata dariensis)	2,0\%	3.17	16	0.50	Panama	
66	Spotted (Cuniculus paca virgatus)	3,0\%	3.63	23.5	0.65	Panama	
67	Beaver (Castor canadensis)	2, 0 \%	5.01	48.9	0.97	Michigan	
68	Capybara (Hydrochoerus isthimius)	2,0\%	27.67	227	0.82	Panama	
69	Chipmunk (Tamlas striatus fisheri)	20 0	0.075	0.719	0.96	Cleveland. Ohio	
70	Guinea pig (Cavia cutleri)	560,66\%	0.368	3.56	0.97	Cleveland, Ohio	
71	Hamster, golden (Cricetus cricetus)	20,2\%	0.118	0.54	0.46	Cleveland, Ohio	
72	Hare, African (Lepus capencis)	18	2.93	17.91	0.61	Maji Moto, Africa	
73	Arctic (L. arcticus arcticus)	20,2\%	2.27	43.9	1.93	Tavane, Canada	
74	Lemming, brown (Lemmus trinucronatus)	40', 18	0.039	0.77	1.97	Churchill, Canada	
75	Rock (Dicrostonyn rubricatus richardsoni)	40	0.052	0.83	1.59	Churchill, Canada	
76	Mouse, African (Mastomys coucha microdon)	106	0.022	0.24	1.10	Maji Moto, Africa	
77	Dormouse (Claviglis saturatus)	108	0.018	0.27	1.50	Maji Moto, Africa	
78	Jumping (Zapus hudsonicus) ${ }^{3}$	10, 3\%	0.017	0.243	1.42	Ohio	
79	Meadow (Microtus drummondi) ${ }^{3}$	$670^{\circ}, 42 \%$	0.023	0.39	1.70	Churchill. Canada	
80	(M. pennsylvanicus pennsylvanicus)	530',42\%	0.026	0.394	1.51	Ohio	
81	(Peromyscus sp) ${ }^{3}$	140, 2 \%	0.015	0.26	1.71	Guatemala	
82	Muskrat (Ondatra zibethica alba)	10°	0.9	4.35	0.98	Churchill, Canada	
83	Porcupine (Erethizon dorsatus)	2, 0 ¢	2.91	29	0.98	Maji Moto, Africa, and New York	
84	Rabbit, Flemish giant (Lepus sp)	229	2.59	13.72	0.53	Ohio	
85	Rat, Norway (Rattus norvegicus)	20,19	0.251	1.98	0.79	Ohio	
86	Squirrel, ground (Citellus paryii paryii)	$50^{\circ}, 39$	0.908	10.23	1.11	Churchill, Canada	
87	Red (Sciurus hudsonicus)	500,4\%	0.21	2.91	1.38	Churchill, Canada	
88	(S. hudsonicus loquax)	20゙, 2\%	0.17	2.29	1.35	Cleveland, Ohio	
	Artiodactyles						
89	Bison, American (Bison bison)	10	54.9	1190	2.17	California	
90	Buffalo (Syncerus caffer caffer)	20°	759	8110	1.07	Maji Moto, Africa	
91	Bushbuck (Tragelaphus scriptus massaicus)	2,0゚¢	44.2	727	1.64	Maji Moto; Lake Manyara, Africa	
92	Caribou, Barren ground (Rangifer arcticus arcticus)	$20^{\circ} 19$	112.0	1862	1.66	Canada	
93	Cattle, calf (Bos taurus)	10°	10.891	3021	2.771	Kentucky	
94		18	98.4	1411	1.43	Kentucky	
95	Cow, Aberdeen Angus ${ }^{4}$	18	719	2654	0.37	Kentucky	
96		449	491	3311	0.67	Kentucky	
97	Guernsey ${ }^{4}$	62%	450	3143	0.698	Kentucky	
98	Holstein ${ }^{4}$	2009	574	4336	0.75	Kentucky	
99	Jersey ${ }^{4}$	218 ?	413	3057	0.74	Kentucky	
100	$\begin{aligned} & \text { Deer (Odocoileus chiriquensis) } \\ & \text { lndian axis (Cervas axis) } \\ & \text { White-tailed (Odocoileus virginianus) } \end{aligned}$	17	13.9	520	3.73	Panama	
101		10	88.5	1726	1.95	200	
102		10	65.2	1318	2.02	Z00	
103	Dik-dik (Rhynchotragus kirki)	10°	4.97	44.4	0.97	Maji Moto, Africa	
104	Elk (Cervus canadensis)	10	13.61	319	2.34	200	
105	Gazelle, Thomson's (Gazella thomsoni)	20	24.37	280	1.15	Maji Moto, Africa	
106	Giraffe (Giraffa camelopardalis tippelskischi)	106	1220	12,060	0.99	Maji Moto, Africa	

/1/ Infant. /3/ Preserved weight. /4/ Data furnished by the Bureau of Animal Industry, U. S. Dept. of Agriculture.

28．LUNG WEIGHT：VERTEBRATES（Continued）
Part 1：MAMMALS（Concluded）
Values，unless otherwise indicated，are for adult weights，on a fresh basis，and are g／l00g body weight deter－ mined immediately after death of animal．

Species		No．and	Body Weight	Lung W	Weight	Habit
		Sex	kg	g	$\mathrm{g} / 100 \mathrm{~g}$	Habital
（A）		（B）	（C）	（D）	（E）	（F）
Artiodactyles（concluded）						
107	Hartebeest，Coke＇s（Bublis cokei cokei）	18	134	1850	1.38	Maji Moto，Africa
108	Hippopotamus（Hippopotamus amphibius） Impala（Acpyceros melampus）	19	5433	$4910{ }^{3}$	0.903	Maji Moto，Africa
109		18	1351	11，340	0.84	Maji Moto，Africa
110		40	47.73	650	1.36	Maji Moto，Africa
111	Lamb（Ovis aries）	40， 78	33.9	624.1	1.84	Kentucky
112	Peccary，collared（Pecari angulatus bangsi）	10	29	279	0.96	Z00
113	Reedbuck（Redunca redunca tohi）	20	31.7	462	1.47	Lake Manyara，Africa
114	Steinbok（Raphicerus campestris neumanni）	$2{ }^{\circ}$	8.62	150	1.74	Maji Moto，Africa
115	Swine（Sus scrofax）	20\％， 1 \％	8.98	255.2	2.84	Kentucky
116		18	113.2	609.7	0.538	Kentucky
117	Warthog（Phacochoerus acthiopicus）	10	65.3	550	0.84	Maji Moto，Africa
118	Wildbeast（Gnutaurinus albojubatus）	20	212	2850	1.34	Maji Moto，Africa
119	Perissodactyles					
	Burro（Equus asinus）	18	150.7	1260	0.83	Guatama la
120	Horse（Equus caballus） Arabian stallion， $28 \mathrm{yr}^{5}$	200	412	5777	1.40	Ohio
121	Percheron， $18 \mathrm{yr}^{5}$ Polo pony， $25 \mathrm{yr}^{5}$	2，08	703	5510	0.78	Ohio
122		18	380	8616	1.50	Ohio
123	Saddle－bred gelding	20	3352	31892	0.952	Kentucky
124	Shetland pony	10	272	1871	0.69	Ohio
125	Thoroughbred，2－3 yr ${ }^{5}$	30゙，7\％	421.2	4123	0.98	Kentucky
126		$90^{\circ}, 19$	319	3043	0.95	Kentucky
127	Colt，yearling Foal 4.3 da 5	180゙，19？	53.38	1390	2.60	Kentucky
128	Fetus， 15.3 da premature ${ }^{5}$	150゙，11\％	43.29	1352	3.12	Kentucky
129	50.4 da premature ${ }^{5}$ Stallion， $15.1 \mathrm{yr}^{5}$	50゙，5\％	26.88	1135	4.22	Kentucky
130		60°	508	5977	1.17	Kentucky
131	Mule，Panama（Equus asinus）	4， 0 ¢ 9	279.2	4026	1.44	Panama
132		10°	$42.64{ }^{2}$	6282	1.472	Panama
133		19	444.5	5678	1.28	Kentucky
134	Rhinoceros（Rhinoceros bicornis）	10	764	7350	0.96	Maji Moto，Africa
135	Tapir（Tapirella bairdii）	19	58.1	2068	3.55	Panama Canal Zone
136	Zebra（Equus quagga granti），embryo Fetus	10	7.9	300	3.79	Maji Moto，Africa
137		10	29.5	655	2.22	200
138	Infant	18	43.1	740	1.72	200
139	6 wk Adult	19	56.6	1025	1.81	Maji Moto，Africa
140		20°	255	2025	0.79	Maji Moto，Africa．
	Proboscideans，Hyracoideans，and Sirenians					
141	Elephant（Loxodonta africana knochenhaueri）	10	6654	138，790	2.08	Maji Moto，Africa
142	Hyrax（Heterohyrax brucci）	10	0.75	5.53	0.74	Lake Manyara，Africa
143	Manatee（Trichechus manatus）	2，009	496	3395	0.68	Florida
	Cetaceans					
144	Porpoise（Phocaena phocaena）	10°	142.4	5250	3.69	Florida
145	Whale，white（Delphinapterus leucas）	40́， 29	375.1	10.014	2.67	Churchill，Canada
	Insectivores					
146	Mole（Scalopus aquaticus）	10	0.04	0.74	1.86	Ohio
147	Shrew（Blarina breuicauda）	2900，39\％	0.018	0.39	2.16	Ohio
	Edentates					
148	Anteater（Tamanduas tetractyla chiriquensis）	2，08	3.69	27	0.73	Panama
149	Armadillo（Dasypusnovemcinctus fenestratus）	10．0\％	3.4	24	0.70	Panama
150	Sloth，three－toed（Bradypus griseus griscus）	4，088	2.02	27.42	$1.37{ }^{2}$	Panama
	Marsupials					
151	Opossum（Didelphis marsupialis ctensis）	4，0＇8	1.15	9.5	0.83	Panama

／2／Juvenile．／3／Preserved weight．／5／Average．
Contributor：Quiring，D．P．
Reference：Quiring．D．1＇．＂Functional Anatomy of the Vertebrates，＂New York：McGraw Hill， 1950.
28. LUNG WEIGHT: VERTEBRATES (Continued)

Part II: BIRDS
Values, unless otherwise indicated, are for adult weight, on a fresh basis, and are $\mathrm{g} / 100 \mathrm{~g}$ body weight determined immediately after death of animal.

Species		$\begin{gathered} \text { No. and } \\ \text { Sex } \\ \hline \end{gathered}$	Body Weight Lung Weight			Habitat	
		kg	g	$\mathrm{g} / 100 \mathrm{~g}$			
(A)			(B)	(C)	(D)	(E)	(F)
1	Blackbird (Quiscalus quiscula aeneus)	10	0.082	0.172	0.21	Ohio	
2	Bustard, greater (Choriotis kori, struthiunculus) Lesser, (Haliaoetus bociter bociter)	2,0゙\%	7.77	85.24	1.09	Athi Plain, Africa	
3		19	1.10	14.4	1.30	Maji Moto, Africa	
4	Buzzard, steppe (Buteo vulpinus vulpinus) Turkey (Cathartes aura septentrionalis)	18	0.56	4.64	0.83	Maji Moto, Africa	
5		10	0.5	14.7	2.94	Florida	
6	Catbird (Dumetella carolinensis)	1%	0.033	0.607	1.84	Ohio	
7	Canary (Serinus canarius)	10	0.017	0.25	1.47	Ohio	
8	Crane, crested (Balearica pavonina) Gray (Grus canadensis)	2,0゙\%	4.45	44.13	0.99	Ohio	
9		18	1.65	15.33	0.93	Florida	
10	Crow (Corvus brachyrhynchos)	10°	0.34	9.97	2.93	Ohio	
11	Dovekie (Alle alle)	2,009	0.103	1.65	1.61	Florida	
12	Duck (Nyroca affinis) Pintail (Dafila acuta tzitzihoa)	10	1.041	17.6	1.69	Ohio	
13		1%	0.67	17.1	2.56	Churchill, Canada	
14	Eagle, fish (Haliaetus vocifer vocifer) Tawney (Aquila rapax rapax)	19	3.5	47.33	1.35	Maji Moto, Africa	
15		30	2.05	25.1	1.22	Maji Moto, Africa	
16	Egret, great white (Casmerodius albus melanorhynechos) Yellow-bill (Mesophyox intermedia brachyrhyneha)	1%	1.03	33.10	3.21	Maji Moto, Africa	
17		106	0.525	5.4	1.02	Maji Moto, Africa	
18	Flamingo (Phoeniconaias minor)	20\%.39	1.504	22.33	1.48	Maji Moto, Africa	
19	Fowl, leghorn (Gallus gallus domesticus) 108 da old 136 da old White Orpington White Wyandotte bantam, conventionall Germfree	49	1.263	10.5	0.87	Ohio	
20		100, 109	0.49	4.13	0.84	Ohio	
21		80, 16 ?	0.674	4.1	0.6	Ohio	
22		10	2.2	13.17	0.59	Ohio	
23		20, 5\%	0.72	3.09	0.43	Ohio	
24		30, 2 ?	0.83	2.49	0.30	Ohio	
25	Goose, Egyptian (Alopochen aegypticus)	1 \%	1.94	35.2	1.80	Lake Manyara, Africa	
26	Guinea fowl (Numida meleagris)	10	1.62	29.0	1.79	Maji Moto, Africa	
27	Gull, Bonaparte's (Larus philadelphia) Ring-billed (L. delawarensis) Shearwater (Puffinus griseus)	10	0.2	7.12	3.56	Churchill, Canada	
28		18	0.72	9.13	1.27	Florida	
29		18	0.27	2.45	0.91	Florida	
30	Hawk, red-tailed (Buteo borealis) ${ }^{2}$ Sharp-shinned (Acclpiter velox velox) Sparrow (Falce sparverius sparverius)	19	1.03	9.3	0.9	Ohio	
31		18	0.52	7.7	1.48	Ohio	
32		10	0.112	1.5	1.36	Florida	
33	Hornbill, ground (Bucorvus cafer)	10°	3.3	52.3	1.61	Maji Moto, Africa	
34	Hummingbird (Amazilia tzacatl tzacatl)	18	0.005	0.095	1.9	Guatemala	
35	Loon, red-throated (Gavia stellata)	20\%,19	1.56	22.5	1.44	Tavane, Canada	
30	Merganser, red-breasted (Mergus serrator)	18	0.8	18.2	2.27	Tavane, Canada	
37	Ostrich, Masai (Struthio camelus massaicus)	10°	123	2900	2.36	Maji Moto, Africa	
38	Owl, horned (Bubo virginianus virginianus)	10°	1.18	10.7	0.91	Ohio	
39	Pelican (Pelecanus occidentalis)	28	3.3	29.8	0.91	Florida	
40	Pigeon (Columbia livia)	$30^{\circ}, 19$	0.26	4.58	1.76	Ohio	
41	Ptarmigan, willow (Lagopus lagopus)	30, 1\%	0.54	10.17	1.88	Churchill, Canada	
42	Robin (Turdus migratorius migratorius)	20	0.07	1.68	2.24	Ohio	
43	Scaup, greater (Nyroca marila)	18	0.79	18	2.29	Churchill, Canada	
44	Sparrow (Passer domesticus)	750.118	0.0234	0.3837	1.64	Ohio	
45	Starling (Sturnus vulgaris)	150,109	0.0576	1.08	1.87	Ohio	
46	Stork, Abdim (Sphenorhynchus abdini) European (Ciconia ciconia ciconia)	106	0.95	10.63	1.11	Maji Moto, Africa	
47		10	3.35	27.2	0.81	Maji Moto, Africa	
48		28	3.35	42.3	1.26	Maji Moto, Africa	
49	Hammerhead (Scops umbretta) Marabou (Leptopilos crumeniferous)	10	0.32	8.2	2.57	Maji Moto, Africa	
50		20	7.13	72.2	1.01	Maji Moto, Africa	
51	Teal, green-winged (Nettion carolinensis)	19	0.3	9.2	3.07	Churchill, Canada	

/1/ For a discussion of the meaning of "germ-free," consult Reference [2]. /2/Juvenile.
Contributors: (a) Quiring, D. P., (b) Reyniers, J. A., and Gordon, H. A.
References: [1] Quiring, D. P., "Functional Anatomy of the Vertebrates, " New York: McGraw Hill, 1950.
[2] Reyniers, J. A., and Gordon. H. A., Lobund Report No. 3, University of Notre Dame.

Part III: REPTILES
Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are g/l00g body weight determined immediately after death of animal.

Species		No. and Sex	Body Weight	Lung Weight		Habitat	
		kg	g	$\mathrm{g} / 100 \mathrm{~g}$			
	(A)		(B)	(C)	(D)	(E)	(F)
1	Alligator (Alligator mississippiensis)	18	52.4	393	0.75	Zoo	
2		$2{ }^{\circ}$	189	1014	0.54	Florida	
3	Crocodile (Crocodilus americanus)	10	134	1.125	0.85	Florida	
4	Gila monster (Heloderma suspectum)	18	0.514	6.45	1.25	Arizona	
5		18	1.34	3.70	0.276	Guatemala	
6	(Amblyrhynchus cristatus)	18	4.191	64.41	1.5361	Galapagos Islands	
7	Snake, black (Coluber constrictor)	2,08\%	0.401	3.79	0.88	Ohio	
8	Boa, imperator (Boa imperator)	18	1.829	14.0	0.76	Guatemala	
9	Water moccasin (Agkistrodon piscivorus)	18	0.728	22.62	3.12	Florida	
10	Turtle (Aromochelys tristycha)	18	0.116	0.863	0.741		
11		28	0.088	0.954	1.08		
12	(Clemmys guttata)	10°	2.163	31.95	1.48	Ohio	
13	(Chelydra serpentina)	18	5.125	85.07	1.66	Maji Moto, Africa	
14	(Malacoclymmys lesueri)	10	0.254	1.14	0.449		
15	Green (Chelonia mydra)	10°	111.30	2.650	2.38	Florida	
16	Cumberland (Chrysemys elegans)	210.18	0.852	0.956	0.112		
17	Snapping (Macrochelys lacertina)	10	1.848	34.9	1.89	Ohio	

/1/ Preserved weight.
Contributors: (a) Quiring, D. P., (b) Latimer, H. B.
References: [1] Quiring, D. P.. "Functional Anatomy of the Vertebrates," New York: McGraw Hill, 1950.
[2] Latimer, H. B., Anat. Record 18:35, 1920. [3] Latimer, H. B., ibid 19:347. 1920.

Part IV: AMPHIBIANS

Values, unless otherwise indicated, are for adult weights, on a fresh basis, and are $\mathrm{g} / \mathrm{l} 00 \mathrm{~g}$ body weight determined immediately after death of animal.

Species	No. and Sex	Body Weight	Lung Weight		Habitat
		kg	g	$\mathrm{g} / 100 \mathrm{~g}$	
(A)	(B)	(C)	(D)	(E)	(F)
1 Frog, bullfrog (Rana catesbiana)	70°	0.429	2.27	0.53	La., N. Carolina
2 Leopard (R. pipiens)	100*, 19%	0.037	0.81	2.19	
3 - . 3 -	200 , 109	0.02751	0.86	3.1281	
4 Toad, horned (Phrynosoma cornutum)	2\%,3\%	0.025	0.594	2.48	Arizona

/1/ Preserved weight.
Contributors: (a) Quiring, D. P., (b) Latimer, H. B.
References: [1] Quiring, D. P., "Functional Anatomy of the Vertebrates, " New York: McGraw Hill, 1950.
[2] Latimer, H. B., Anat. Record 18:35, 1920. [3] Latimer, H. B., ibid 19:347. 1920.

Part I: DIAGRAM

Volumes corrected to BTPS conditions (cf Page 1).

Reference: Comroe, J. H., Jr., et al, Fed. Proc. 9:602, 1950.

Part 1I: STANDARDIZED TERMS VS SOME PREVIOUS TERMS

	Standardized Term	Definition	Previous Term
1	Inspiratory reserve volume	Maximal volume that can be inspired from end-tidal inspiration.	Complemental air. Complementary air. Complemental air minus tidal air. Inspiratory capacity minus tidal volume.
2	Tidal volume	Volume of gas inspired or expired during each respiratory cycle.	Tidal air.
3	Expiratory reserve volume	Maximal volume that can be expired from resting expiratory level.	Supplemental air. Reserve air.
4	Residual volume	Volume of gas in lungs at end of maximal expiration.	Residual air. Residual capacity.
5	Inspiratory capacity	Maximal volume that can be inspired from resting expiratory level.	Complemental air. Complementary air.
6	Functional residual capacity	Volume of gas in lungs at resting expiratory level.	Functional residual air. Equilibrium capacity. Mid-capacity. Normal capacity.
7	Vital capacity	Maximal volume that can be expired after maximal inspiration.	Vital capacity.
8	Total lung capacity	Volume of gas in lungs at end of maximal inspiration.	Total lung volume.

Reference: Comroe, J. H., Jr., "The Lung," Chicago: The Year Book Publishers, 1956.

Part I: LUNG VOLUMES
$A=$ adults $; C=$ children; $B S A=$ body surface area. Age is in years.

/1/Age range 4-17 yr. /2/ Increases with age. /3/Volume uncorrected (cf Page 1); body position not stated. /4/ Decreases with age. /5/Volume corrected to BTPS (cf Page 1); body position supine. /6/ Assuming normal weight range. /7/Age range $10-17 \mathrm{yr}$. /8/ Closed-circuit oxygen rebreathing technique. /9/Age range 6-17 yr. /10/Closed-circuit hydrogen rebreathing technique. /11/Closed-circuit helium rebreathing technique.

Contributor: Gaensler, E. A.
References: [1] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922. [2] Baldwin, E. deF., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [3] West, H. F., Arch. Int. M. 25:306, 1920. [4] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 30:380, 1952. [5] Robinson, S., Arbeitsphysiologie 10:251, 1938. [6] Kaltreider, N. L., Fray, W. W., and Hyde, H. V., Am. Rev. Tuberc. 37:662, 1938. [7] Whitfield, A. G., Waterhouse, J. A., and Arnott, W. M., Brit. J. Social M. 4:1, 1950. [8] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [9] Gaensler, E. A., Am. Rev. Tuberc. 64:256, 1951. [10] Gaensler, E. A., Science 114:444, 1951.

Part 11: BASAL RESPIRATORY FUNCTIONS
$A=$ adults $; C=$ children $; B S A=$ body surface area; $M B C=$ maximal breathing capacity.

	Measurement	Subject	Formula	Value	Reference
	(A)	(B)	(C)	(D)	(E)
1	Pulmonary ventilation, L/min/sqm BSA	$\begin{aligned} & \text { A o } \\ & \text { A } 9 \end{aligned}$		$\begin{aligned} & 3.5(2.6-4.9)^{1} \\ & 3.3(2.5-4.3) 1 \end{aligned}$	$\begin{aligned} & 1,2 \\ & 1,2 \end{aligned}$
3	O_{2} consumption, $\mathrm{cc} / \mathrm{min} / \mathrm{sq} \mathrm{m}$ BSA	$\begin{aligned} & \mathrm{A} \text { of } \\ & \mathrm{A} \text { o } \\ & \hline \end{aligned}$		$\begin{aligned} & 138(107-186)^{2} \\ & 127(105-150)^{2} \end{aligned}$	$\begin{aligned} & 1,2 \\ & 1,2 \end{aligned}$
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Basal heat production, Cal/hr/sq m BSA	$\begin{aligned} & \mathrm{ACo} \% \\ & \mathrm{C} \text { of } \\ & \mathrm{A} \text { o } \\ & \mathrm{A} \% \end{aligned}$	O_{2} consumption $\times 0.2895^{3}$	$\begin{aligned} & (40-52)^{2}, 4 \\ & (37-41)^{2}, 4 \\ & (34-38)^{2}, 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
$\begin{array}{r}9 \\ 10 \\ \hline\end{array}$	Ventilatory equivalent, $\mathrm{L} / 100 \mathrm{cc}$	$\mathrm{ACơq}$ A 0 of	$\frac{\text { Pulmonary ventilation, } L}{\text { oxygen uptake, cc }} \times 100$	$(2.2-2.6)^{5,6}$	$\begin{aligned} & 2,4,5 \\ & 2,4,5 \end{aligned}$

/1/ Usually expressed at BTPS (cf Page 1). /2/ Usually expressed at STPD (cf Page 1). /3/ Assuming a non-protein respiratory quotient of 0.82 , or $4.825 \mathrm{CaI} / \mathrm{L}$ of O_{2} consumed. /4/ Decreases with age. /5/ Increases with age. /6/ Decreases during exercise.

Part II: BASAL RESPIRATORY FUNCTIONS (Concluded)
$\mathrm{A}=$ adults; $\mathrm{C}=$ children; $\mathrm{BSA}=$ body surface area; $\mathrm{MBC}=$ maximal breathing capacity.

Measurement		Subject	$\begin{aligned} & \text { Formula } \\ & \text { (C) } \end{aligned}$	Value	Reference
		(B)		(D)	(E)
11	O_{2} removal, cc/L	ACoof	Oxygen uptake, cc/min Pulmonary ventilation, L/min		1,6
12		$\begin{aligned} & \text { A o } \\ & \text { A } 9 \end{aligned}$		$\begin{array}{r} 43(34-54)^{4}, 7 \\ 45(37-62)^{4,7} \\ \hline \end{array}$	$\begin{aligned} & 1,6 \\ & 1,6 \end{aligned}$
14	Breathing reserve. \%	A of	$\frac{\text { MBC (L/min) }- \text { Pulmonary ventilation (L/ } / \mathrm{min})}{\text { MBC }(\mathrm{L} / \mathrm{min})} \times 100$	$(88-95)^{4}$	1,7
15	Right lung, \% total ${ }^{8}$	A σ \%		(51-63)	8
16	Left Iung, \% total ${ }^{8}$	A 0 \%		(38-49)	8

/4/ Decreases with age. 17/ Increases during exercise. /8/ Percentages of total function apply to oxygen uptake and ventilation at rest and during exercise, to vital capacity and residual volume.

Contributor: Gaensler, E. A.
References: [1] BaIdwin, E. deF., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [2] Matheson, H. W., and Gray, J. S., J. Clin. Invest. 29:688, 1950. [3] Aub, J. C., and DuBois, E. F., Arch. Int. M. 19:823, 1917. [4] Anthony, A. J., Deut. Arch. klin. Med. 167:129, 1930. [5] Knipping, H. W., and Moncrieff, A., Quart. J. M. 1:17, 1932. [6] Robinson, S., Arbeitsphysiologie 10:3, 1938. [7] Knipping, H. W., Beitr. Klin. Tuberk. 82:133, 1933. [8] Gaensler, E. A., et al, J. Laborat. Clin. M. 39:417: 40:223, 558, 1952.

Part 111: EXERCISE AND MAXIMAL VENTILATION; INTRAPULMONARY MIXING
$A=$ adults; $B S A=$ body surface area. Age is in years.

	Measurement	Subject	Formula	Value	Reference
	(A)	(B)	(C)	(D)	(E)
1 2 3	Maximal breathing capacity, L/min ${ }^{\text {l }}$	$\begin{aligned} & \text { A o } \\ & \text { A } \sigma \\ & \text { A } \% \end{aligned}$	$[228-(1.82 \times$ age $)] \pm 17.6 \%$ $[86.5-(0.522 \times$ age $)] \times$ BSA in $s q \mathrm{~m}$ $[71.3-(0.474 \times$ age $)] \times$ BSA in s 9 m	$\begin{aligned} & 147(121-173)^{2,3} \\ & (58-169)^{3,4} \\ & (47-118)^{3,4} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
4	Standard walking ventilation, L/min sq m BSAl	A Ơ\&		$(9-11)^{5}$	3
5	Walking dyspnea index, \%	A ơ?		$(8-20)^{5,6}$	3,4
6	Air velocity index	A ofo	\% of predicted maximal breathing capacity \% of predicted vital capacity	$1.0(0.8-1.2)^{3}$	5
7	Capacity ratio	A of	Maximal breathing capacity, L/min Vital capacity, L	$(28-35)^{3}$	6,7
8 9	Intrapulmonary mixing. $\% \mathrm{~N}_{2}$ in alveolar air	$\begin{aligned} & \text { A ơ? } \\ & \text { A ơ? } \end{aligned}$		$\begin{aligned} & <2.5^{7} \\ & (0.3-1.5)^{7} \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$

/1/ Usually expressed at BTPS (cf Page 1). /2/ Obtained by open-circuit technique. /3/Decreases with age. /4/ Obtained by closed-circuit technique. /5/ Standard walk on level at $180 \mathrm{ft} / \mathrm{min}$, expired air collected from second to fourth minute. /6/Increases with age. $17 /$ After O_{2} breathing, at rest for 7 minutes.
Contributor: Gaensler, E. A.
References: [1] Wright, G. W., "Methods in Medical Research," $2: 212$, Chicago: The Year Book Publishers, Inc., 1950. [2] Baldwin, E. deF., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [3] Patton, W. E., Watson, T. R., Jr., and Gaensler, E. A., Surg. Gyn. Obst. 95:477, 1952. [4] Warring, F. C., Jr., Am. Rev. Tuberc. 51:432, 1945. [5] Gaensler, E. A., ibld 62:17, 1950. [6] Gaubatz, E., Beitr. Klin. Tuberk. 91:201, 1938. [7] Matheson, H. W., Spies, S. N., Gray, J. S., and Barnum, D. R., J. Clin. Invest. 29:682, 1950. [8] Cournand, A., Baldwin, E. deF., Darling, R. C., and Richards, D. W., Jr., J. Clin. Invest. 20:681, 1941. [9] Gaensler, E. A., Frank, N. R., Patton, W. E., Devney, R. E., and Smith, S. S., unpublished.

31. VITAL CAPACITY VS AGE: CHILDREN AND ADOLESCENTS

Ventilatory values have been corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges. Age ranges conform to estimate "c" of the 95% range (cf Introduction). Vital capacity ranges of Ferris and Shock conform to estimate "b" of the 95% range; those of Morse conform to estimate "c."

Age yr		Vital Capacity, Ll		
		Ferris ${ }^{2}$	Morse ${ }^{3}$	Shock
	(A)	(B)	(C)	(D)
Males				
1	5.0-5.9	1.29(0.83-1.75)	0.544	
2	6.0-6.9	1.65(1.27-2.03)	0.924	
3	7.0-7.9	1.93(1.45-2.41)	1.58(1.17-2.00)	
4	8.0-8.9	2.16(1.34-2.98)	$1.38{ }^{4}$	
5	9.0-9.9	2.17(1.69-2.65)	2.13(1.83-2.22)	
6	10.0-10.9	2.30)1.75-2.71)	2.28(1.86-2.53)	
7	11.0-11.9	2.54(1.80-3.28)	2.30(1.86-2.70)	
8	12.0-12.9	3.75(3.21-4.29)	2.65(1.81-3.40)	2.69(1.70-3.48)
9	13.0-13.9	3.81(2.53-5.09)	2.73(1.66-4.33)	3.03(2.13-4.15)
10	14.0-14.9	4.29(2.77-5.81)	3.45(2.06-5.09)	3.43(2.11-4.82)
11	15.0-15.9	4.47(3.23-5.71)	3.84(2.36-5.42)	3.89(2.38-5.33)
12	16.0-16.9	4.51(3.67-5.35)	4.23(3.10-5.55)	4.37(2.93-5.67)
13	17.0-17.9	4.49(3.67-5.31)	3.81(3.55-4.07)	4.61(3.28-6.10)
14	18.0-18.5			4.63(2.92-6.34)
Females				
15	5.0-5.9	1.08(0.74-1.42)	0.90^{4}	
16	6.0-6.9	1.45(1.07-1.83)	1.38(1.13-1.56)	
17	7.0-7.9	1.51(1.19-1.83)	1.56(1.31-1.81)	
18	8.0-8.9	1.87(1.23-2.51)	1.51(1.17-1.90)	
19	9.0-9.9	2.04(1.38-2.70)	1.91(1.70-2.30)	
20	10.0-10.9	2.29(1.81-2.77)	2.40(2.16-2.78)	
21	11.0-11.9	2.57(1.71-3.43)	2.13(1.63-2.67)	
22	12.0-12.9	3.03(2.17-3.89)	2.58(1.83-3.10)	2.58(1.84-3.42)
23	13.0-13.9	3.49(2.13-4.85)	3.00(2.29-4.06)	2.96(2.26-3.71)
24	14.0-14.9	3.40(2.42-4.38)	3.05(2.66-3.59)	3.10(2.42-3.72)
25	15.0-15.9	3.66(2.83-4.44)	3.02(2.50-3.26)	3.16(2.59-3.84)
26	16.0-16.9	3.63(2.91-4.35)	2.664	3.26(2.63-3.99)
27	17.0-17.9	4.00(3.16-4.84)		$3.27(2.64-3.96)$

/1/ Maximal volume of gas expelled from the lungs by forceful effort, following a maximal inspiration. / $2 /$ Subjects seated; body surface area obtained from DuBois nomogram; Benedict-Roth type spirometer (Collins ventilometer). 13/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W., (e) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished. [5] Shock, N. W., and Norris, A. H., Gerontology Branch, National Institutes of Health, unpublished.

Ventilatory values of Stewart conform to ATPS conditions. All other ventilatory values are corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges; in data of Morse they conform to estimate " c " of the 95% range (cf Introduction); in data of Ferris, Shock, and Stewart, they conform to estimate " b," unless otherwise indicated.

Height cm		Vital Capacity, Ll			
		Ferris ${ }^{2}$	Morse ${ }^{3}$	Shock	Stewart 4
	(A)	(B)	(C)	(D)	(E)
Males					
1	100.0-104.9		0.545		0.79(0.50-0.90) ${ }^{\text {c }}$
2	105.0-109.9				1.06(0.79-1.34)
3	110.0-114.9	1.46(0.82-2.10)	0.925		1.19(0.90-1.49)
4	115.0-119.9	1.46(0.82-2.10)			1.34(1.04-1.64)
5	120.0-124.9	1.64(1.32-1.96)	1.27(1.17-1.38)		1.50(1.1-1.85)
6	125.0-129.9	1.79(1.43-2.15)	1.835		1.67(1.29-2.06)
7	130.0-134.9	2.05(1.63-2.47)			1.85(1.49-2.22)
8	135.0-139.9	2.27(1.37-3.17)	1.99(1.81-2.11)		2.03(1.58-2.48)
9	140.0-144.9	2.41(1.59-3.23)	2.22(1.66-2.58)	2.32(1.92-2.72)	2.22(1.72-2.72)
10	145.0-149.9	2.38(1.76-3.00)	2.40(1.86-3.39)	2.53(2.20-2.86)	2.42(1.88-2.97)
11	150.0-154.9	2.69(1.79-3.59)	2.57(1.89-3.17)	2.80(2.10-3.50)	2.66(2.14-3.18)
12	155.0-159.9	3.52(2.64-4.40)	2.82(2.15-3.40)	2.95(2.40-3.50)	2.93(2.23-3.63)
13	160.0-164.9	3.72(2.78-4.66)	3.22(2.49-3.67)	3.22(2.53-3.91)	3.24(2.51-3.97)
14	165.0-169.9	4.07(3.19-4.95)	3.65(3.00-4.07)	3.54(2.81-4.27)	3.55(2.74-4.36)
15	170.0-174.9	4.47(3.39-5.55)	3.97(3.45-4.72)	3.85(3.11-4.59)	3.99(2.75-4.40) ${ }^{\text {c }}$
16	175.0-179.9	4.82(3.74-5.90)	4.30(3.80-4.76)	4.25(3.45-5.05)	4.02
17	180.0-184.9	5.24(4.26-6.22)	5.07(4.74-5.42)	4.72(3.62-5.82)	4.17
18	185.0-189.9			4.99(4.19-5.79)	
19	190.0-194.9			$5.77(5.57-5.96)^{\text {c }}$	
Females					
20	100.0-104.9	0.95(0.40-1.45)			0.88
21	105.0-109.9	1.00(0.80-1.20)			$0.85(0.60-1.20)$
22	110.0-114.9	1.12(0.78-1.46)			1.14(0.85-1.42)
23	115.0-119.9	1.37(0.99-1.75)	1.01(0.89-1.13)		1.28(0.98-1.58)
24	120.0-124.9	1.70(1.00-2.40)	1.435		1.41(1.13-1.70)
25	125.0-129.9	1.70(1.26-2.14)	1.44(1.31-1.81)		1.56(1.22-1.90)
26	130.0-134.9	1.97(1.31-2.63)	2.01(1.95-2.06)		1.71(1.34-2.07)
27	135.0-139.9	2.19(1.66-2.72)	1.84(1.65-2.14)	2.26(2.15-2.36) ${ }^{\text {c }}$	1.87(1.47-2.26)
28	140.0-144.9	2.32(1.68-2.96)	1.84(1.63-2.30)	2.24(2.05-2.42) ${ }^{\text {C }}$	2.04(1.59-2.49)
29	145.0-149.9	2.53(1.87-3.19)	2.37(2.16-2.78)	2.47(1.97-2.97)	2.23(1.73-2.73)
30	150.0-154.9	2.94(2.34-3.54)	2.37(2.16-2.67)	2.77(2.15-3.39)	2.44(1.83-3.05)
31	155.0-159.9	3.28(2.44-4.12)	2.70(2.22-3.04)	2.81(2.29-3.33)	2.65(2.00-3.29)
32	160.0-164.9	3.57(2.75-4.39)	3.12(2.60-4.06)	2.98(2.41-3.55)	2.83(2.18-3.48)
33	165.0-169.9	3.85(2.97-4.73)	2.99(2.66-3.59)	3.24(2.45-4.03)	2.98
34	170.0-174.9	3.91(2.39-4.43)	3.23(2.72-3.72)	3.22(2.84-3.60)	3.10
35	175.0-179.9			$3.50(2.95-4.05)$	

/1/ The maximal volume of gas expelled from the lungs by forceful effort, following maximal inspiration. /2/Subjects seated; Benedict-Roth type spirometer (Collins ventilometer), with soda lime container and valves removed. /3/All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/Position not stated; wet spirometer. /5/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W., (c) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. $31: 380$, 1952. [4] Morse, M., Univ. of Chicago, unpublished. [5] Shock, N. W., and Norris, A. H., Gerontology Branch, National Institutes of Health, unpublished. [6] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

33. VITAL CAPACITY VS WEIGHT: CHILDREN AND ADOLESCENTS

Ventilatory values of Stewart conform to ATPS conditions. All other ventilatory values are corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges; in data of Morse they conform to estimate "c" of the 95% range (cf Introduction); in data of Ferris, Shock, and Stewart, they conform to estimate " b, " unless otherwise indicated.

/1/ The maximal volume of gas expelled from the lungs by forceful effort, following maximal inspiration. /2/ Subjects seated; Benedict-Roth type spirometer (Collins ventilometer) with the soda lime container and valves removed. 13/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/ Position not stated; wet spirometer. /5/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W., (e) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished. [5] Shock, N. W., and Norris, A. H., Gcrontology Branch, National Institutes of Health, unpublished. [6] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.
34. VITAL CAPACITY VS SURFACE AREA: CHILDREN AND ADOLESCENTS

Ventilatory values are corrected to BTPS conditions (c£ Page 1). Values in parentheses are ranges and conform to estimate "b" of the 95% range in data of Ferris and to estimate "c" in data of Morse (cf Introduction).

Body Surface Area sq m		Vital Capacity, L^{1}	
		Ferris ${ }^{2}$	Morse ${ }^{3}$
	(A)	(B)	(C)
Males			
1	0.70-0.89	1.52(0.84-2.20)	1.15(0.92-1.38)
2	0.90-0.99	1.63(1.33-1.93)	1.834
3	1.00-1.09	1.99(1.47-2.51)	2.12(1.86-2.45)
4	1.10-1.19	2.10(1.74-2.46)	2.22(1.66-2.58)
5	1.20-1.29	2.47(1.63-3.31)	2.41(1.86-2.97)
6	1.30-1.39	2.57(1.75-3.39)	2.57(1.89-3.38)
7	1.40-1.49	3.36(2.68-4.04)	3.01(2.15-3.95)
8	1.50-1.59	3.53(2.31-4.75)	$3.33(2.88-3.75)$
9	1.60-1.69	4.08(3.10-5.06)	3.71 (2.66-4.72)
10	1.70-1.79	4.32(3.40-5.24)	4.12(3.32-4.76)
11	1.80-1.89	4.85(3.71-5.99)	$4.48(3.87-5.29)$
12	1.90-1.99	4.88(3.68-6.08)	$5.11(4.83-5.42)$
13	2.00-2.09	5.39(4.61-6.17)	4.78(4.01-5.55)
	Females		
14	0.60-0.79	1.12(0.72-1.52)	0.894
15	0.80-0.89	1.38(0.86-2.90)	1.38(1.13-1.56)
16	0.90-0.99	1.64(1.06-2.22)	1.31(1.17-1.45)
17	1.00-1.09	1.84(1.32-2.36)	1.80(1.73-2.06)
18	1.10-1.19	2.21(1.66-2.76)	$2.00(1.70-2.25)$
19	1.20-1.29	2.39(1.79-2.99)	$2.11(1.63-2.56)$
20	1.30-1.39	2.76(2.02-3.50)	2.25(2.16-2.34)
21	1.40-1.49	3.08(2.00-4.16)	2.65(1.83-3.26)
22	1.50-1.59	3.29(2.39-4.19)	2.87(2.29-4.06)
23	1.60-1.69	3.69(2.95-4.43)	3.18(2.72-3.59)
24	1.70-1.79	4.00(3.16-4.84)	
25	1.80-1.89	4.20(3.72-4.68)	3.49(3.26-3.72)

/1/ Maximal volume of gas expelled from lungs by forceful effort, following maximal inspiration. /2/Subjects seated; body surface area obtained from DuBois nomogram; Benedict-Roth type spirometer (Collins ventilometer). /3/ All measurements made in recumbent position; Sanborn closed-circuit wet spirometer. /4/ From single determination.

Contributors: (a) Ferris, B. G., Jr., (b) Morrow, P. E., (c) Morse, M., (d) Whittenberger, J. L.

References: [1] Ferris, B. G., Jr.. Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Ferris, B. G., and Smith, C. W., Pediatrics, Springf. 12:341, 1953. [3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Morse, M., Univ. of Chicago, unpublished.
35. VITAL CAPACITY VS STANDING HEIGHT: CHILDREN AND ADOLESCENTS

Data of Kelly and Stewart conform to ATPS conditions. All other data have been corrected to BTPS conditions (cf Page 1).

Part I: MALES

Contributors: (a) Morse, M.. (b) Shock, N. W.
References: [1] Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952. [2] Kelly, H. G., "Studies in Child Welfare," 7:No. 5, Univ. of lowa l'ress, 1933. [3] Ferris, 13. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics 9:659, 1952. [4] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [5] Robinson, S., Arbeitsphysiologie 10:251, 1938. [6] Stewart, C. A.. Am. J. Dis. Child. 24:451, 1922. [7] Abernethy, E. M., "Child Development," $1:$ No. 7. Nat. Res. Council, Wash., D. C., 1936. [8] Turner, J, A., McLean, R. L., Pediatrics 7:360, 1951. [9] Wilson, M. G., Edward, D. J., Am. J. Dis. Child. 22:443. 1921. [10] Metheny, E., "Studies in Child Welfare," 18:No. 2, Univ. of lowa l’ress, 1933. [11] Shock, N. W., and Norris, A. H., Gerontology 13ranch, National lnstitutes of llealth, unpublished.
35. VITAL CAPACITY VS STANDING HEIGHT: CHILDREN AND ADOLESCENTS (Concluded)

Data of Kelly and Stewart conform to ATPS conditions. All other data have been corrected to BTPS conditions (cf Page 1).

Contributors: (a) Morse, M., (b) Shock, N. W.

References: [1] Åstrand, P. -O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952. [2] Kelly, H. G., "Studies in Child Welfare," 7:No. 5, Univ. of lowa Press, 1933. [3] Stewart, C. A., Am. J. Dis. Child. 24:451, 1922. [4] Morse, M., and Cassels, D. E., unpublished. [5] Shock, N. W., and Norris, A. H., Gerontology Branch, National lnstitutes of Health, unpublished.
36. VITAL CAPACITY VS AGE AND STANDING HEIGHT: CHILDREN AND ADOLESCENTS

[^3]37. VITAL CAPACITY VS AGE AND SITTING HEIGHT: CHILDREN AND ADOLESCENTS
Volumes, measured in a wet spirometer, are in liters and conform to ATPS conditions (cf Page 1).

	$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$	51	53	55	57	59	61	63	65	67	69	Sitting	$\begin{gathered} \text { Heigh } \\ 73 \end{gathered}$	$\begin{gathered} \mathrm{t}, \mathrm{~cm} \\ 75 \end{gathered}$	77	79	81	83	85	87	89	91	93	95
Males																								
1	5		0.95	0.80	0.91	1.03	1.01	1.15																
2	6			1.13	1.06	1.17	1.18	1.33	1.20															
3	7		1.00	1.15	1.15	1.18	1.30	1.32	1.39	1.46	2.20													
4	8				1.20	1.30	1.29	1.42	1.56	1.63	1.83													
5	9					1.40	1.52	1.50	1.60	1.76	1.80	1.99	2.50	2.57										
6	10						1.53	1.82	1.68	1.73	1.92	1.99	2.03	2.20	2.65									
7	11							1.50	1.77	1.78	1.98	2.09	2.11	2.18	2.50	2.50								
8	12								1.70	1.85	1.95	2.05	2.14	2.24	2.41	2.65	2.79	2.80						
9	13									1.80	2.13	2.07	2.27	2.31	2.42	2.60	2.81	3.01	3.33		4.00			
10	14											2.16	2.10	2.40	2.51	2.66	2.81	3.02	3.22	3.39	3.85	3.45		4.25
11	15												2.40	2.31	2.69	2.79	2.93	3.27	3.29	3.67	3.85	3.77		
12	16													2.39	2.45	2.67	3.62	3.19	3.37	3.61	3.91	4.13	4.30	4.30
13	17																	2.55	2.90	3.85	4.00	4.17	4.06	4.30
13	Females																							
	5	0.75	0.95	0.87	0.86	1.07																		
15	6		1.15	0.98	1.07	1.10	1.10	1.25	1.27															
16	7			0.90	1.09	1.10	1.16	1.35	1.40	1.33	1.40													
17	8				1.00	1.19	1.25	1.41	1.47	1.48	1.69	1.75												
18	9					1.17	1.38	1.43	1.42	1.54	1.74	1.85	2.00											
19	10					0.90	1.32	1.40	1.51	1.64	1.75	1.88	2.01	2.17	2.30	2.75								
20	11						1.25	1.43	1.61	1.61	1.77	1.86	1.94	1.97	2.05	2.12								
21	12							1.45	1.45	1.87	1.84	1.87	1.92	2.10	2.26	2.28	2.56	2.70						
22	13								1.70	1.60	1.93	2.00	1.93	2.15	2.24	2.44	2.47	2.71	2.97	2.88				
23	14												2.25	2.23	2.31	2.47	2.59	2.72	2.92	2.96	3.23			
24	15											2.00	2.00	2.15	2.24	2.57	2.69	2.82	2.85	3.03	3.09			
25	16															2.76	2.51	2.55	2.89	3.01				
26	17																2.25	2.70	3.02			3.10		
27	18																		3.10					

Contributor: Morrow, P. E.
Reference: Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

Ventilatory values have been corrected to BTPS conditions (cf Page 1). Data of Morse, Robinson, and Kaltreider are ranges and, except for data of Shock, conform to estimate " c " of the 95% range (cf Introduction). Data of Shock

	$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$	Height cm	$\begin{gathered} \text { Weight } \\ \mathrm{kg} \end{gathered}$	Surface Area sq m	Inspiratory Capacity ${ }^{1}$ L	Expiratory Reserve Volume ${ }^{2}$ L
	(A)	(B)	(C)	(D)	(E)	(F)
Males						
1	6.0(5.8-6.5)	115(107-126)	20.1(17.6-29.0)	0.81(0.72-0.97)	0.99	0.27(0.12-0.41)
2	9.6(9.5-9.7)	139.2(127.1-148.4)	34.3(25.7-41.6)	1.15(0.95-1.31)	1.70(1.42-1.86)	$0.39(0.36-0.41)$
3	10.5(10.0-10.9)	145.4(138.7-153.4)	38.4(29.9-47.4)	1.25(1.09-1.39)	1.82(1.44-2.05)	0.46(0.42-0.52)
4	10.8(8.2-12.6)	139(131-149)	32.3(25.3-39.0)	1.12(0.98-1.39)	1.70	0.50(0.27-0.86)
5	11.5(11.2-11.9)	145.7(137.8-162.5)	35.3(28.8-50.7)	1.20(1.07-1.49)	1.77(1.49-2.07)	0.53(0.33-0.76)
6	12.5(12.0-12.9)	151.7(136.0-161.9)	42.6(32.0-77.3)	1.34(1.11-1.71)	2.13(1.55-2.87)	0.52(0.26-0.84)
7	13.4(13.0-13.9)	155.6(140.4-171.7)	45.9(33.9-71.6)	1.41(1.15-1.84)	2.17(1.32-3.69)	0.56(0.32-1.05)
8	14(13-15)	165(156-177)	55.8(41.7-67.4)	1.62(1.39-1.83)	2.89	0.82(0.49-1.28)
9	14.5(14.0-14.9)	163.8(143.4-183.7)	53.2(34.7-101.1)	1.57(1.18-2.11)	2.72(1.56-4.12)	0.72(0.48-1.08)
10	15.4(15.0-15.9)	170.5(151.7-185.4)	55.5(39.0-68.3)	1.64(1.30-1.90)	3.05(1.83-4.52)	0.80(0.52-1.16)
11	16.3(16.0-16.7)	173.9(156.4-190.0)	61.7(51.8-75.7)	1.74(1.57-2.02)	3.34(2.52-4.34)	0.85(0.55-1.25)
12	17.5(16.0-19.0)	179(163-190)	70.3(55.1-88.0)	1.91(1.58-2.15)	3.77	1.18(0.89-1.54)
13	22.9(16.3-29.5)	176.2(166.0-186.4)	72.5(50.1-94.9)	1.88(1.52-2.20)	3.79(2.75-4.83)	0.98(0.46-1.50)
14	24(20-29)	177(170-188)	72.9(63.4-84.4)	1.89(1.71-2.11)	3.86	1.39(0.96-1.83)
15	25.5(13.5-37.5)	173.8(156.6-191.0)	66.0(49.4-82.6)	1.79(1.46-2.11)		
16	26(24-29)	174.3(164.7-183.9)	77.5(39.1-115.9)	1.92(1.53-2.31)	3.42(1.95-4.89)	0.91(0.50-1.32)
17	27(17-37)					
18	33.9(4.7-63.1)	169.4(163.2-175.6)	62.1(19.9-104.3)	1.72(1.02-2.18)	2.99(1.65-4.33)	0.98(0.36-1.29)
19	34(30-39)	176.6(166.2-187.0)	74.2(52.4-96.0)	1.90(1.65-2.15)	3.19(1.58-4.79)	0.85(0.14-1.56)
20	35(31-38)	175(169-185)	77.5(60.7-85.2)	1.93(1.69-2.09)	3.78	0.98(0.37-1.87)
21	42.7(34.5-50.9)	171.7(157.8-185.6)	64.9(42.5-87.3)	1.78(1.38-2.10)		
22	44(40-48)	177(163-183)	75.6(63.5-86.2)	1.93(1.68-2.09)	3.59	0.69(0.23-2.20)
23	44(41-48)	173.2(162.8-183.6)	67.8(45.3-90.3)	1.81(1.57-2.05)	2.52(1.16-3.87)	0.82(0.23-1.40)
24	48.2(35.4-61.0)	170.5(156.1-184.7)	70.8(46.6-95.0)	1.82(1.40-2.18)	3.37(2.23-4.51)	$0.69(0.07-1.31)$
25	$51(48-55)$	172(156-180)	68.6(62.6-81.7)	1.82(1.60-2.01)	3.33	0.83(0.00-1.61)
26	53(47-62)					
27	54(50-59)	171.3(158.4-184.2)	63.0(46.2-79.8)	1.74(1.49-1.99)	2.53(1.33-3.73)	0.63(0.16-1.10)
28	54.3				2.89(1.25-4.53)	1.39(0.23-2.55)
29	58.0(33.2-82.8)	168.7(148.5-188.9)	63.6(38.8-88.4)	1.72(1.28-2.14)	2.47(1.59-3.35)	0.84(0.12-1.56)
30	59.6(48.8-70.4)	169.6(153.0-186.2)	66.3(49.1-83.5)	1.78(1.43-2.09)		
31	61.5(47.9-75.1)	169.0(159.4-178.6)	65.9(41.1-90.7)	1.77(1.38-2.08)	2.61(1.39-3.83)	1.01(0.23-1.79)
32	62(59-66)	173(166-180)	68.9(54.3-79.0)	1.83(1.58-1.99)	3.37	0.68(0.38-1.19)
33	64(60-68)	167.8(158.6-177.0)	63.5(44.9-82.1)	1.72(1.48-1.96)	2.21(0.93-3.48)	0.48(0.00-1.01)
34	73(70-77)	166.9(154.9-178.9)	63.2(36.7-89.7)	1.71(1.36-2.06)	1.90(1.09-2.71)	0.37(0.00-0.75)
35	77(71-91)	171(164-184)	66.9(57.6-75.6)	1.78(1.58-1.98)	2.73	0.47(0.18-0.87)
36	83(80-87)	163.9(147.8-180.0)	59.7(39.9-79.5)	1.65(1.34-1.96)	1.82(0.83-2.82)	0.45(0.00-1.09)
	Females					
37	7.1(6.4-7.9)	126(121-129)	25.2(21.2-31.5)	0.94(0.88-1.05)	1.20(1.04-1.41)	$0.28(0.21-0.40)$
38	8.2(8.0-8.4)	133(127-145)	29.5(23.2-37.4)	1.04(0.91-1.23)	1.24(1.01-1.54)	0.27(0.17-0.36)
39	9.6(9.0-9.9)	139(135-142)	34.6(26.0-44.9)	1.15(1.01-1.30)	1.53(1.30-1.95)	0.38(0.21-0.52)
40	10.2(10.1-10.6)	148(146-150)	46.7(36.6-63.2)	1.37(1.23-1.58)	1.95(1.81-2.15)	0.45(0.35-0.63)
41	11.6(11.1-11.9)	149(132-167)	37.2(27.7-46.6)	1.25(1.06-1.44)	1.71(1.36-1.92)	0.44(0.27-0.68)
42	12.6(12.2-12.9)	156(137-172)	45.3(31.6-54.0)	1.41(1.10-1.62)	2.05(1.55-2.51)	0.53(0.28-0.66)
43	13.3(13.0-13.7)	160(148-169)	51.2(39.2-59.0)	1.51(1.40-1.60)	2.45(1.94-3.27)	$0.55(0.34-0.79)$
44	14.5(14.3-14.8)	165(162-169)	52.4(49.6-54.3)	1.57(1.52-1.60)	2.42(2.06-2.80)	$0.63(0.50-0.79)$
45	15.4(15.1-15.8)	166(160-172)	63.7(53.2-74.4)	1.70(1.54-1.85)	2.43(1.93-2.87)	$0.59(0.42-0.85)$
46	21.5(18.0-23.7)	165.8(148.8-176.5)	62.0(42.4-88.4)	1.68(1.34-1.98)	2.69(1.50-3.85)	0.63(0.33-1.17)
47	23.1(16.3-29.9)	163.4(155.0-171.8)	57.2(38.4-76.0)	1.62(1.34-1.87)	$2.42(1.70-3.14)$	0.73(0.35-1.11)
48	25.1(12.7-37.5)	161.8(149.4-174.2)	59.2(37.0-81.4)			
49	25.2(24.3-28.5)	165.7(158.4-173.2)	58.9(47.6-70.4)	1.65(1.53-1.81)	2.62(1.92-3.31)	$0.64(0.36-0.88)$
50	33(30-37)	164.2(152.2-175.0)	60.5(50.2-79.5)	1.64(1.47-1.96)	$2.72(2.06-3.35)$	$0.69(0.50-0.84)$
51	43.3(36.1-50.5)	164.0(150.4-177.6)	62.6(32.0-93.2)	1.68(1.22-2.10)		
52	48.4(21.6-75.2)	163.6(153.4-173.8)	61.9(45.9-77.9)	1.67(1.41-1.89)	$2.38(1.56-3.20)$	0.59(0.00-1.19)
53	59.8(41.8-77.8)	158.4(145.0-171.8)	67.2(45.2-89.2)	1.68(1.35-1.98)		
54	60.9				1.96(1.06-2.86)	0.44(0.00-0.94)

II/Inspiratory capacity = maximal volume of air that can be taken into the lungs beyond the normal expiratorylevel. expiration. /3/Vital capacity = inspiratory capacity + expiratory reserve volume. /4/ Residual volume = volume of residual capacity. $/ 6 /$ Functional residual capacity = volume of air left in lungs after normal expiration.
Contributors: (a) Galdston, M., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W.
References: [1] Robinson, S., Arbeilsphysiologie 10:251, 1938. [2] Morse, M., Univ. of Chicago, unpublished. and Hyde, 11., Am. Rev. Tuberc. 37:622, 1938. [5] Baldwin, E. de F., Cournand, A., and Richards, D. W., Jr., 1956. [7] Bates, D. V., and Christie, R. V., Clin. Sc. 9:17, 1950. [8] Whitfield, A. G., Waterhouse, J. A., and [10] Galdston, M., Wolfe, W. H., and Steele, J. M., J. Appl. Physiol. 5:17, 1952. [11] Greifenstein, F. E.,

VOLUMES: MAN
were obtained using closed-circuit wet spirometer method (modification of Christie method). Values in parentheses conform to estimate "b."

12/ Expiratory reserve volume = maximal volume of air that can be voluntarily expelled from the lungs after a normal air left in lungs after reserve volume has been expelled. $/ 5 /$ Total lung capacity $=$ inspiratory capacity + functional
[3] Morse, M., Schlutz, F. W., and Cassels, D. E., J. Clin. Invest. 31:380, 1952. [4] Kaltreider, N., Fray, W. W., Medicine 27:243, 1948. [6] Norris, A. H., Shock, N. W., Landowne, M., and Falzone, J. A., Jr., J. Geront. 11:379, Arnott, W. M., Brit. J. Social M. 4:113, 1950. [9] Gilson, J. C., and Hugh-Jones, P., Clin. Sc. 7:185, 1948 . King, R. M., Latch, S. S., and Comroe, J. H., Jr., ibid 4:641, 1952.
39. EFFECT OF POSTURAL CHANGE OF LUNG VOLUMES: MAN

Values for supine and sitting positions are expressed as per cent of total lung capacity. The tidal volume is variable and can be assumed to be $10-15 \%$. Values are for adult males less than 30 years of age, and for healthy females 18-34 years.

Characteristic		Male		Female		Variation with Change of Posture ${ }^{2}$ \%	Reference
		$\underset{\%}{\text { Supine }}$	$\begin{gathered} \text { Sitting } \\ \% \end{gathered}$	$\underset{\%}{\substack{\text { Supine }}}$	$\underset{\%}{\text { Sitting }}$		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Residual volume	21.8	$23.9{ }^{1}$	25.9	28.21	-20.9	$\begin{aligned} & \text { B, } 1,2, a ; C, 3-9, a ; \\ & D, 1, a ; E, 3-5, a ; \\ & F, 1,10, a \end{aligned}$
2	Expiratory reserve volume	18.5	$27.9{ }^{1}$	17.0		-42.5	C, 7, 8, a;B, 1, 2, a; F, $1,10,11, a ; D, 1, a$
3	Inspiratory capacity ${ }^{3}$	59.7	48.24	57.1		11.2	$\begin{aligned} & \mathrm{B}, 1,2, a ; F, 1,10, a \mathrm{a} \\ & \mathrm{D}, 1, \mathrm{a} \end{aligned}$
4	Vital capacity	78.2	$76.1{ }^{4}$	74.1	71.8	-4.8	$\begin{aligned} & \mathrm{B}, 1,2, \mathrm{a} ; \mathrm{D}, 1, \mathrm{a}: \\ & \mathrm{E}, 10-14 \end{aligned}$
5	Total capacity	100.0	$100.0{ }^{4}$	100.0	100.0	-9.8	$\begin{aligned} & \mathrm{B}, 1,2, \mathrm{a} ; \mathrm{D}, 1, \mathrm{a} ; \\ & \mathrm{F}, 1,10 \end{aligned}$

/1/ Mean of averages. /2/ Mean values. /3/ Tidal volume + inspiratory reserve volume. /4/Computed.
Contributor: (a) Rahn, H.
References: [1] Kaltreider, N. L., Fray, W. W., and Hyde, H. W., Am. Rev. Tuberc. 37:662, 1938. [2] Robinson, S., Arbeitsphysiologie 10:251, 1938. [3] Lundsgaard, C., and Van Slyke, D., J. Exp. M. 27:65, 1918. [4] Lundsgaard, C., and Schierbeck, K., Acta med. scand. 58: 541, 1923. [5] Binger, C. A., J. Exp. M. 38:445, 1923. [6] Anthony, A. J., Deut. Arch. klin. Med. 167:129, 1930. [7] Rotta, A., and Guerrero, F., Ann. Fac. cienc. méd. 19: , 1936. [8] Rahn, H., Fenn, W. O., and Otis, A. B., J. Appl. Physiol. $1: 725,1949$.
[9] Dejours, P., and Rahn, H., ibid 5:445, 1953. [10] Hurtado, A., and Fray, W. W., J. Clin. Invest. 12:825, 1933. [11] Osher, W. J., Am. J. Physiol. 161:352, 1950. [12] Bahnson, H. T., J. Appl. Physiol. 5:445, 1953. [13] Dow, P., ibid 127:793, 1939. [14] Christie, C., and Beams, A. J., Arch. Int. M. 30:34, $192 \overline{2}$.
40. EFFECT OF PREGNANCY ON LUNG VOLUMES AND OTHER VENTILATORY VARIABLES: MAN Ranges in parentheses are estimate "b" of the 95% range (cf Introduction).

Variable		Pregnancy, Lunar Month							Postpartum, Month		Method
		IV	V	VI	VII	VIII	IX	X	I	VI	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
1	Respiratory rate, breaths/min	16	15	16	16	16	16	16(12-20)	17	15(11-19)	Spirometer.
2	Tidal volume, L	0.56	0.59	0.61	0.61	0.65	0.70	0.7(0.4-1.0)	0.55	0.5(0.2-0.8)	Spirometer.
3	Minute volume, L/min	8.7	9.1	10.0	9.7	10.3	11.0	10.3(7.3-13.6)	9.5	7.3(4.3-10.3)	Spirometer.
4	Ventilatory equivalent, mlair/ $\mathrm{ml} \mathrm{O}_{2}$	3.3	3.5	3.6	3.5	3.6	3.7	3.3(1.3-5.3)	3.4	3.0(1.0-5.0)	Minute volume $/ \mathrm{O}_{2}$ consumption.
5	Maximal breathing capacity, L/min	197	99	97	96	97	97	96(74-118)	92	102(80-124)	Douglas bag.
6	Total lung capacity, L	4.2	4.2	4.2	4.1	4.3	4.1	4.1(3.5-4.7)	4.1	4.2(3.6-4.8)	Residual volume + vital capacity.
7	Vital capacity, L	3.2	3.2	3.2	3.2	3.3	3.3	3.3(2.9-3.7)	3.1	3.3(2.8-3.8)	Spirometer.
8	Inspiratory capacity, L	2.6	2.7	2.7	2.7	2.7	2.7	2.7(2.3-3.1)	2.5	2.6(2.2-3.0)	Spirometer.
9	Expiratory reserve volume, L	0.65	0.65	0.65	0.61	0.63	0.56	0.55(0.3-0.8)	0.56	0.65(0.4-0.9)	Spirometer.
	capacity, L	1.6	1.6	1.6	1.5	1.5	1.4	1.3(1.0-1.6)	1.5	1.6(1.3-1.9)	Open-circuit method.
11	Residual volume, L	1.0	1.0	1.0	0.9	0.9	0.8	0.8(0.6-1.0)	1.0	1.0(0.8-1.2)	Functional residual capacity-expiratory reserve.

Contributors: (a) Assali, N. S., (b) Jensen, A., (c) Larks, S.
Reference: Adapted from Cugell, D. W., et al, Am. Rev. Tuberc. 67:568, 1953.

Values, unless otherwise specified, are for the resting state.

/1/ Air inspired or expired in one respiration. /2/ Measurements made after $30-\mathrm{min}$ rest in hammock, at $24^{\circ} \mathrm{C}$; values corrected to BTPS conditions. $/ 3 /$ Percheron gelding. $/ 4 /$ Rectal temperature $=37.8{ }^{\circ} \mathrm{C} . / 5 /$ Rectal temperature $=5-6{ }^{\circ} \mathrm{C} . / 6 /$ Captive animal. $/ 7 /$ Cheyne-Stokes respiration.

Values, unless otherwise specified, are for the resting state.

	Animal	Body Weight kg	Condition	Respiratory Rate breaths/min	Tidal Volume ${ }^{1}$ ml	Minute Volume $\mathrm{L} / \mathrm{min}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
	Birds (Concluded)						
47	$\begin{gathered} \text { Duck, of } \\ \text { of } \end{gathered}$			$\begin{aligned} & 42 \\ & 110 \end{aligned}$	$36.5(35-38) 8$		14
$\begin{aligned} & 49 \\ & 50 \end{aligned}$	$\underset{\text { Goose, ó }}{\text { on }}$			$\begin{aligned} & 20 \\ & 40 \end{aligned}$			14
51	Pigeon			27.5(25-30)	$4.8(4.5-5.2)^{9}$		14
52	Turkey			13.410			14
				eptile			
53	Turtle (Malaclemys centrata) ${ }^{11}$	(0.65-0.72)		3.7	14	0.051	15

/1/ Air inspired or expired in one respiration. /8/Standing; supine, 30. /9/Standing; supine, 4.7. /10/Also reported, ơ 28, 949 . /11/ Diamondback terrapin: periodic cycles at $(24-29)^{\circ} \mathrm{C}$.

Contributors: (a) Stroud, R., and Forster, R. E., (b) Hemingway, A., (c) Elisberg, E. I., (d) McCutcheon, F. H.
References: [1] Taylor, C., Am. J. Physiol. 135:27, 1941. [2] Irving, L., and Orr, N. D., Science 82:569, 1935. [3] Wang, S. C., and Nims, L. F., J. Pharm. Exp. Ther. 92:187, 1948. [4] Hall, W. C., and Brody, S., Missouri Agr. Exp. Sta. Res. Bull. 180:11, 1933. [5] Guyton, A. C., Am. J. Physiol. $150: 70$, 1947. [6] Brody, S., "Bioenergetics and Growth," $\overline{\text { New }}$ York: Reinhold, 1945. [7] Scholander, P. F., J. Cellul. Physiol. 17:169, 1941. [8] Endres, G., and Taylor, H., Proc. Roy. Soc., Lond. 107:231, 1930. [9] Irving, L., Scholander, P. F., and Grinnell, S. W., J. Cellul. Physiol. 17:145, 1941. [10] Hurtado, A., and Buller, C., J. Clin. Invest. 12:793, 1933. [11] Smith, R. M., "Physiology of Domestic Animals," Philadelphia: Davis, 1889. [12] Irving, L., Solandt, O. M., Solandt, D. Y., and Fisher, K. C., J. Cellul. Physiol. 7:137, 1936. [13] lrving, L., Scholander, P. F., and Grinnell, S. W., ibid $20: 189,1942$. [14] Sturkie, P. D., "Avian Physiology," New York: Comstock, 1954. [15] McCutcheon, F. H., Physiol. Zool. 16:255, 1943.

42. RESPIRATORY RATE, TIDAL AND MINUTE VOLUMES: INFANTS

Data are from individual resting infants as measured by body plethysmograph. Ranges, in parentheses, are estimate " c " of the 95% range (cf introduction).

	$\begin{aligned} & \text { Age } \\ & \text { da } \end{aligned}$	Weight	Respiratory Rate breaths/min	Minute Volume $\mathrm{cc} / \mathrm{min}$	Tidal Volume, Mean cc
	(A)	(B)	(C)	(D)	(E)
1	0.2	3.12	19.0(14-21)	349(313-375)	18.4
2	0.3	3.52	22.7(20-25)	539(501-585)	23.7
3	0.5	3.57	26.0(23-30)	542(444-598)	20.8
4	0.5	3.83	31.0129-34)	651(591-696)	21.0
5	0.51	3.74	28.3(25-33)	$557(479-646)$	19.8
6	Average	3.6	25.4	$5 \overline{2} 7.6$	20.7
7	6	3.91	26.6(18-33)	754(646-813)	28.3
8	6	3.18	28.8(25-36)	535(479-563)	18.5
9	6	3.66	29.1(22-33)	466(438-485)	16.0
10	7	5.0	28.9(20-34)	795(708-855)	27.5
11	71	3.74	28.4(25-32)	526(480-563)	18.5
12	7	3.06	36.0(32-40)	598(543-668)	16.6
13	?	3.29	22.4(22-24)	384(354-459)	17.1
14	Average	3.69	28.6	579.7	20.5

/1/ Lines 5 and 11 are for the same infant.
Contributor: Smith, C. A.
Reference: Cross, K. W., J. Physiol., Lond. 109:459, 1949.

Values in parentheses are ranges. Letter superscript identifies type of range (cf lntroduction)

	Age yr	Sex	Position	Tidal Volume ${ }^{1}$ ml	Minute Volume ${ }^{2}$ L/min	Method	Gaseous Conditions ${ }^{3}$	Refer3 ence
	(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)
1	Infant, premature ${ }^{4}$	ơ?	Supine	$11.5(6.1-17)^{\text {d }}$	0.396(0.160-0.646)c	Plethysmograph	Amb	1
2		-0\%	Supine	13.3(8.4-17.3) c	0.430(0.281-0.581) C	Plethysmograph	ATPS	2
3		o'?	Supine	12.3(4.5-17.2) c	0.698(0.304-1.225) ${ }^{\text {c }}$	Plethysmograph	ATPS	3
4	Newborn, full-term ${ }^{4}$	of?	Supine	16.5(6.9-26.8) C	0.731(0.413-1.18) ${ }^{\text {c }}$	Pneumograph	ATPS	4
5		ơ?	Supine	27.0(9.7-53.1) C	1.08(0.354-2.01) C	Plethysmograph	Amb	5
6		ơp	Supine	19.8(9.7-30.5) ${ }^{\text {c }}$	$0.851(0.225-1.83)^{\text {d }}$	Plethysmograph	Amb	6
7		of?	Prone	$16.7(10-27)^{\text {d }}$	0.721(0.433-1.41)c	Plethysmograph	BTPS	7
8		ơp	Supine	$\begin{aligned} & 16.8 \\ & \quad(13.3-21.8)^{c} \end{aligned}$	0.642(0.365-0.894) C	Plethysmograph	ATPS	2
9		of	Supine	21.5(15-32) ${ }^{\text {d }}$	0.59(0.35-0.83) ${ }^{\text {d }}$	Plethysmograph	BTPS	8
10	5.7-14	of	Upright	$388(195-581) \mathrm{b}$		Spirometer	BTPS	9
11	11.7-12.2	\%	Supine	$305(185-425)^{\text {b }}$	4.79(3.74-5.84) ${ }^{\text {b }}$	Spirometer	STPD	10
12		\%	Supine	289(189-389)b	4.54(3.07-6.01) ${ }^{\text {b }}$	Spirometer	STPD	10
13	13.7-14.2	σ	Supine	$316(196-436) b$	$5.27(3.80-6.74)^{\text {b }}$	Spirometer	STPD	10
14		9	Supine	$315(235-395) \mathrm{b}$	$4.86(3.60-6.12)^{\text {b }}$	Spirometer	STPD	10
15	15.7-16.2	σ	Supine	344(184-504) ${ }^{\text {b }}$	5.13(3.45-6.81) ${ }^{\text {b }}$	Spirometer	STPD	10
16		¢	Supine	282(162-402) ${ }^{\text {b }}$	$4.21(2.53-5.89)^{\text {b }}$	Spirometer	STPD	10
17	18-27	of	Supine	$372(192-552) \mathrm{b}$	$5.04(2.94-7.14)^{\text {b }}$	Spirometer	STPD	10
18		\%	Supine	319(139-499) ${ }^{\text {b }}$	4.45(2.14-6.76) ${ }^{\text {b }}$	Spirometer	STPD	10
19	27-43	O	Supine	$390(250-530)^{\text {b }}$	$5.25(3.45-7.05)^{\text {b }}$	Spirometer	STPD	10
20		9	Supine	338(205-471) ${ }^{\text {b }}$	4.63(3.11-6.15) ${ }^{\text {b }}$	Spirometer	STPD	10
21	40-49	σ	Supine	422(259-585) ${ }^{\text {b }}$	$6.90(4.37-9.43)^{\text {b }}$	Spirometer	STPD	11
22	50-59	\bigcirc	Supine	427(284-569)b	$6.95(4.96-8.93){ }^{\text {b }}$	Spirometer	STPD	11
23	60-69	σ	Supine	408(263-554) ${ }^{\text {b }}$	$6.70(4.76-8.65)^{\text {b }}$	Spirometer	STPD	11
24	70-79	-	Supine	$377(231-523)^{\text {b }}$	$6.87(4.41-9.32)^{\text {b }}$	Spirometer	STPD	11
25	80-89	σ	Supine	$366(240-493){ }^{\text {b }}$	$6.57(4.00-9.14)^{\text {b }}$	Spirometer	STPD	11
26	17-36	σ	Upright	773(520-1130) C	14.86(9.6-25.8) c	Pneumotachograph	BTPS	12
27	18-34	$\%$	Upright	480(300-980) ${ }^{\text {c }}$	6.86(4.24-13.1) C	Spirometer	BTPS	13
28	21-27	of	Upright	508(398-685) ${ }^{\text {c }}$	7.61(7.34-7.90) ${ }^{\text {c }}$	Pneumotachograph	ATPS	14
29	20-32	0×9	Upright	597(218-1307) ${ }^{\text {c }}$	9.0(4.1-14.0) C	Preumotachograph	ATPS	15
30	22-28	9	Semirecumbent	481(453-510)c	6.09(5.89-6.25) C	Spirometer	BTPS	16
31	18-38	σ	Semirecumbent	$654(416-1131) \mathrm{c}$	9.33(7.07-11.3) ${ }^{\text {c }}$	Spirometer	BTPS	17
32	21-35	σ	Upright	504(387-583) ${ }^{\text {c }}$	5.39(4.54-7.60) ${ }^{\text {c }}$	Pneumotachograph	BTPS	18
33	26-35	σ	Semirecumbent	594(514-740) C	7.94(5.14-11.1) ${ }^{\text {c }}$	Spirometer	BTPS	16
34	22-40	9	Semirecumbent	639(503-675)c	8.12(6.57-10.6) ${ }^{\text {c }}$	Spirometer	BTPS	17
35	35-61	0	Upright	764(704-824) ${ }^{\text {b }}$	$10.5(9.9-11.1)^{\text {b }}$	Spirometer	BTPS	19
36	Adult	ơq	Upright	522(468-555)c	¢.27(6.10-11.4) ${ }^{\text {c }}$	Spirometer	ATPS	20
37	Adult	of	Upright	$616(315-745)^{c}$	8.73(4.9-12.2) ${ }^{\text {c }}$	Respirograph	ATPS	21
38	Adult	of	Upright	$651(350-975)^{\text {c }}$	11.1(6.7-14.3) ${ }^{\text {C }}$	Pneumotachograph	ATPS	22
39	Adult	σ of	Upright	738(399-1107) C	8.37(4.56-14.3) ${ }^{\text {c }}$	Spirometer	ATPS	23
40	50-75	σ	Semirecumbent	343(111-575) ${ }^{\text {b }}$	10.6(5.92-14.2) ${ }^{\text {d }}$	Spirometer	BTPS	24
41	50-77	$\%$	Semirecumbent	281(30-533) ${ }^{\text {b }}$	9.18(4.68-13.1) ${ }^{\text {d }}$	Spirometer	BTPS	24
42	53-81	0	Semirecumbent	$521(330-643) \mathrm{c}$	$8.61(6.05-12.1)^{c}$	Spirometer	BTPS	16

/1/ Air inspired or expired per breath. /2/ Respiration frequency xtalvolume. /3/Amb = ambient conditions.
i.e., plethysmograph was not at saturation. For conversion among respective categories of gaseous conditions, see Page 1. /4/ Within first 14 da of life.
Contributors: (a) Morrow, P. E., (b) Cohn, J. E., (c) Shock, N. W.
References: [1] Cross, K. W., and Oppe, T. E., J. Physiol., Lond. 116:168, 1952. [2] Boutourline-Young, H. J., and Smith, C. A., Am. J. Dis. Child, $80: 753,1950$, /3/ Shaw, L. A., and Hopkins, F. R., ibid 42:335, 1931.
[4] Howard, P. J., and Bauer, A. R., ibid 77:592, 1949. [5] Deming, J., and Washburn, A. H., ibid 49:108, 1935. [6] Deming, J., and Hanner, J. P., ibid 51:823, 1736. [7] Murphy, D. P., and Thorpe, E. S.. J. Clin. Invest. 10:545, 1931. [8] Cross, K. W., J. Physiol., Lond. 109:459, 1949. [9] Turner, J. A., and McLean, R. L., Pediatrics, Springf. 7:360, 1951. [10] Shock, N. W., and Soley, N. H., J. Nutrit. 18:143, 1939. [11] Shock, N. W., and Yiengst, M. J., J. Geront. $10: 31,1955$. [12] Specht, H., Marshall, L., and Hoffmaster, B., Am. J. Physiol. 157:265, 1949. [13] Hurtado, A., et al, J. Clin. Invest. 13:169, 1934. [14] Fleisch, A., Pflugers Arch. 214:595, 1926. [15] Bretschger, J. J., ibid 210:134, 1925. [16] Fowler, W. S., Cornish, E. R., Jr., and Kety, S. S., J. Clin. Invest. 31:40, 1952. [17] Bateman, J. B., J. Appl. Physiol. 3:143, 1950. [18] Morrow, P. E., and Vosteen, R. E., ibid 5:348, 1953. [19] Kaltreider, N., Fray, W. W., and Hyde, H. van Z., Am. Rev. Tuberc. 37:662, 1938. [20] Killick, E. M., J. Physiol., Lond. 84:162, 1935. [21] Guyton, A. C., Am. J. Physiol. 150:70, 1947. [22] Rumpf, K., Zschr. ges. exp. Med. 101:493, 1937. [23] Lippelt, H., Beitr. Klin. Tuberk. $81: 520,1932$. [24] Greifenstein, F. E., King, R. M., Latch, S. S., and Comroe, J. H., Jr., J. Appl. Physiol. 4:641, 1952.

Respiratory values are corrected to STPD conditions (cf Page 1). Determinations were made on fasting subjects compute frequency distributions. Ranges in parentheses conform to estimate " b " of the 95% range (cf introduction). gasometer method; O_{2} and CO_{2} concentrations by Boothby-Sanford modification of Haldane technique; samples of DuBois nomogram.

$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$		Sex	Respiratory Rate breaths/min	Ventilation Volume		Tidal Volume ${ }^{1}$		Expired Air		
		$\mathrm{L} / \mathrm{min}$		$\mathrm{L} / \mathrm{sq} \mathrm{m} / \mathrm{min}$	cc/breath	$\begin{gathered} \mathrm{cc} / \mathrm{sq} \\ \mathrm{~m} / \mathrm{breath} \end{gathered}$	$\% \mathrm{O}_{2}$	$\% \mathrm{CO}_{2}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	11.75-12.24	0°	$\begin{gathered} 16.3 \\ (7.9-24.7) \end{gathered}$	$\begin{gathered} 4.79 \\ (3.74-5.84) \end{gathered}$	$\begin{gathered} 3.81 \\ (2.76-4.86) \end{gathered}$	$\begin{gathered} 305 \\ (185-425) \end{gathered}$	$\begin{gathered} 242 \\ (158-326) \end{gathered}$	$\begin{gathered} 16.99 \\ (16.36-17.62) \end{gathered}$	$\begin{gathered} 3.49 \\ (2.86-4.12) \end{gathered}$	
2		q	$\begin{gathered} 16.1 \\ (9.8-22.4) \end{gathered}$	$\begin{gathered} 4.54 \\ (3.07-6.01) \end{gathered}$	$\begin{gathered} 4.41 \\ (2.57-4.25) \end{gathered}$	$\begin{gathered} 289 \\ (189-389) \end{gathered}$	$\begin{gathered} 216 \\ (132-300) \end{gathered}$	$\begin{gathered} 16.90 \\ (16.27-17.53) \end{gathered}$	$\begin{gathered} 3.57 \\ (2.94-4.20) \end{gathered}$	
3	13.75-14.24	$0 \times$	$\begin{gathered} 17.0 \\ (12.8-21.2) \end{gathered}$	$\begin{gathered} 5.27 \\ (3.80-6.74) \end{gathered}$	$\begin{gathered} 3.55 \\ (2.92-4.18) \end{gathered}$	$\begin{gathered} 316 \\ (196-436) \end{gathered}$	$\begin{gathered} 212 \\ (149-275) \end{gathered}$	$\begin{gathered} 16.84 \\ (16.21-17.47) \end{gathered}$	$\begin{gathered} 3.58 \\ (3.16-4.00) \end{gathered}$	
4		¢	$\begin{gathered} 15.6 \\ (11.4-19.8) \end{gathered}$	$\begin{gathered} 4.86 \\ (3.60-6.12) \end{gathered}$	$\begin{gathered} 3.24 \\ (2.40-4.08) \end{gathered}$	$\begin{gathered} 315 \\ (235-395) \end{gathered}$	$\begin{gathered} 208 \\ (145-271) \end{gathered}$	$\begin{gathered} 16.97 \\ (16.34-17.60) \end{gathered}$	$\begin{gathered} 3.51 \\ (2.88-4.14) \end{gathered}$	
5	15.75-16.24	σ	$\begin{gathered} 15.6 \\ (9.3-21.9) \end{gathered}$	$\begin{gathered} 5.13 \\ (3.45-6.81) \end{gathered}$	$\begin{gathered} 2.98 \\ (2.14-3.82) \end{gathered}$	$\begin{gathered} 344 \\ (184-504) \end{gathered}$	$\begin{gathered} 200 \\ (137-263) \end{gathered}$	$\begin{gathered} 16.35 \\ (15.30-17.40) \end{gathered}$	$\begin{gathered} 4.01 \\ (3.17-4.85) \end{gathered}$	
6		$\%$	$\begin{gathered} 15.2 \\ (8.9-21.5) \end{gathered}$	$\begin{gathered} 4.21 \\ (2.53-5.89) \end{gathered}$	$\begin{gathered} 2.67 \\ (1.83-3.51) \end{gathered}$	$\begin{gathered} 282 \\ (162-402) \end{gathered}$	$\begin{gathered} 177 \\ (193-240) \end{gathered}$	$\begin{gathered} 16.59 \\ (15.12-18.06) \end{gathered}$	$\begin{gathered} 3.81 \\ (2.97-4.65) \end{gathered}$	
7	18.00-26.99	0	$\begin{gathered} 14.0 \\ (7.7-20.3) \end{gathered}$	$\begin{gathered} 5.04 \\ (2.94-7.14) \end{gathered}$	$\begin{gathered} 2.76 \\ (1.71-3.81) \end{gathered}$	$\begin{gathered} 372 \\ (192-552) \end{gathered}$	$\begin{gathered} 203 \\ (198-308) \end{gathered}$	$\begin{gathered} 16.48 \\ (15.43-17.53) \end{gathered}$	$\begin{gathered} 3.80 \\ (2.75-4.85) \end{gathered}$	
8		\%	$\begin{gathered} 14.7 \\ (4.2-25.2) \end{gathered}$	$\begin{gathered} 4.45 \\ (2.14-6.76) \end{gathered}$	$\begin{gathered} 2.91 \\ (1.86-3.96) \end{gathered}$	$\begin{gathered} 319 \\ (139-499) \end{gathered}$	$\begin{gathered} 202 \\ (176-328) \end{gathered}$	$\begin{gathered} 16.98 \\ (15.72-18.24) \end{gathered}$	$\begin{gathered} 3.41 \\ (2.36-4.46) \end{gathered}$	
9	27.00-43.00	σ	$\begin{gathered} 13.7 \\ (7.7-19.7) \end{gathered}$	$\begin{gathered} 5.25 \\ (3.45-7.05) \end{gathered}$	$\begin{gathered} 2.93 \\ (2.13-3.73) \end{gathered}$	$\begin{gathered} 390 \\ (250-530) \end{gathered}$	$\begin{gathered} 218 \\ (138-298) \end{gathered}$	$\begin{gathered} 16.90 \\ (15.90-17.90) \end{gathered}$	$\begin{gathered} 3.53 \\ (2.73-4.33) \end{gathered}$	
10		q	$\begin{gathered} 14.4 \\ (6.8-22.0) \end{gathered}$	$\begin{gathered} 4.63 \\ (3.11-6.15) \end{gathered}$	$\begin{gathered} 2.84 \\ (1.70-3.98) \end{gathered}$	$\begin{gathered} 338 \\ (205-471) \end{gathered}$	$\begin{gathered} 202 \\ (126-278) \end{gathered}$	$\begin{gathered} 17.08 \\ (16.32-17.84) \end{gathered}$	$\begin{gathered} 3.32 \\ (2.56-4.08) \end{gathered}$	
11	40-49	σ	$\begin{gathered} 16.8 \\ (11.4-22.2) \end{gathered}$	$\begin{gathered} 6.90 \\ (4.37-9.43) \end{gathered}$	$\begin{gathered} 3.97 \\ (2.61-5.33) \end{gathered}$	$\begin{gathered} 422 \\ (259-585) \end{gathered}$	$\begin{gathered} 243 \\ (151-334) \end{gathered}$	$\begin{gathered} 17.03 \\ (17.03-18.75) \end{gathered}$	$\begin{gathered} 2.58 \\ (1.95-3.21) \end{gathered}$	
12	50-59	0	$\begin{gathered} 16.7 \\ (11.3-22.1) \end{gathered}$	$\begin{gathered} 6.95 \\ (4.96-8.93) \end{gathered}$	$\begin{gathered} 4.03 \\ (2.69-5.37) \end{gathered}$	$\begin{gathered} 427 \\ (284-569) \end{gathered}$	$\begin{gathered} 247 \\ (165-328) \end{gathered}$	$\begin{gathered} 18.04 \\ (17.16-18.92) \end{gathered}$	$\begin{gathered} 2.52 \\ (1.79-3.25) \end{gathered}$	
13	60-69	0°	$\begin{gathered} 16.9 \\ (11.1-22.7) \end{gathered}$	$\begin{gathered} 6.70 \\ (4.76-8.65) \end{gathered}$	$\begin{gathered} 3.93 \\ (2.25-5.61) \end{gathered}$	$\begin{gathered} 408 \\ (263-554) \end{gathered}$	$\begin{gathered} 239 \\ (153-324) \end{gathered}$	$\begin{gathered} 18.12 \\ (17.52-18.72) \end{gathered}$	$\begin{gathered} 2.44 \\ (1.93-2.95) \end{gathered}$	
14	70-79	σ	$\begin{gathered} 18.8 \\ (11.6-25.9) \end{gathered}$	$\begin{gathered} 6.87 \\ (4.41-9.32) \end{gathered}$	$\begin{gathered} 4.13 \\ (2.78-5.48) \end{gathered}$	$\begin{gathered} 377 \\ (231-523) \end{gathered}$	$\begin{gathered} 226 \\ (153-299) \end{gathered}$	$\begin{gathered} 18.28 \\ (17.60-18.96) \end{gathered}$	$\begin{gathered} 2.26 \\ (1.64-2.88) \end{gathered}$	
15	80-90	σ	$\begin{gathered} 18.2 \\ (12.5-23.9) \end{gathered}$	$\begin{gathered} 6.57 \\ (3.95-9.14) \end{gathered}$	$\begin{gathered} 4.03 \\ (2.47-5.59) \end{gathered}$	$\begin{gathered} 366 \\ (240-493) \end{gathered}$	$\begin{gathered} 223 \\ (169-277) \end{gathered}$	$\begin{gathered} 18.43 \\ (17.75-19.11) \end{gathered}$	$\begin{gathered} 2.14 \\ (1.61-2.67) \end{gathered}$	

/1/ Volume of gas entering or leaving respiratory tract with each breath.

Contributor: Shock, N. W.

References: [1] Lines 1-10: Shock, N. W., and Soley, M. H., J. Nutrit. 18:143, 1939. [2] Lines 11-15:

45. O_{2} AND CO_{2} PRESSURES IN ALVEOLAR AJR AND SUBCUTANEOUS TISSUE: MAN

All values for males, under resting conditions. Methods: $A=a l v e o l a r ~ a i r ~ d r a w n ~ b y ~ m e t h o d ~ o f ~ H a l d a n e ~ a n d ~ P r i e s t l e y, ~$ $T=$ microanalysis of gas bubble in tissue by method of Krogh. Values in parentheses are ranges, estimate " c " of the 95% range (cf introduction).

Gas	Alveolar Air			Subcutaneous Tissue			Reference
	Subjects no.	Method	Pressure mm Hg	Subjects no.	Method	Pressure mm Hg	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)
1 Oxygen	54	A	97.8(87-107)	5	T	22(15-24)	B-D, 1;E-G. 2
2 Carbon dioxide	54	A	40.9(36.4-47.0)	5	T	45(41-50)	B-D. 1; E-G, 2

Contributors: Bartels, H., and Opitz, E.
References: [1] Bartels, H., and Rodewald, G., Pflügers Arch. 256:113, 1952. [2] Seevers, M. H., Am. J. Physiol. 115:38, 1936.
in recumbent position after 20 -minute rest period. Averages of six determinations for each subject were used to Techniques and apparatus: Siebe-Gorman half mask; 8 minute tests of basal O_{2} consumption by Tissot open-circuit respiratory alveolar air by Haldane-Priestley technique; CO_{2} analyses by Haldane apparatus; surface areas by

CO_{2} Tension, Alveolar Air mm Hg	CO_{2} Elimination			O_{2} Consumption			Heat Production $\mathrm{cal} / \mathrm{sq} \mathrm{m} / \mathrm{hr}$	
	$\mathrm{cc} / \mathrm{min}$	$\mathrm{cc} / \mathrm{kg} / \mathrm{min}$	cc/sq m/min	$\mathrm{cc} / \mathrm{min}$	$\mathrm{cc} / \mathrm{kg} / \mathrm{min}$	$\mathrm{cc} / \mathrm{sq} \mathrm{m} / \mathrm{min}$		
(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	
41.0				195	5.15	154.5	45.03	1
(34.7-47.3)				(153-237)	(3.89-6.41)	(120.9-188.1)	(35.37-54.69)	
40.1				189	4.46	140.8	40.99	2
(35.9-44.3)				(126-252)	(3.20-5.72)	(117.7-163.9)	(34.27-47.71)	
42.2				223	4.65	149.7	(33.46	
(38.0-46.4)				(160-286)	(3.60-5.70)	(122.4-177.0)	(36.11-50.81)	
39.4				198	3.90	130.1	37.96	
(33.1-45.7)				(156-240)	(3.06-4.74)	(109.1-151.1)	(31.87-44.05)	
42.1				244	4.13	141.8	41.13	5
(33.7-50.5)				(181-307)	(3.29-4.97)	(112.4-171.2)	(33.15-49.11)	
38.8				187	3.43	117.9	34.29	6
(32.5-45.1)				(124-250)	(2.59-4.27)	(92.7-143.1)	(27.15-41.43)	
43.0				232	3.43	125.9	36.57	7
(32.5-53.5)				(169-295)	(2.38-4.48)	(100.7-151.1)	(28.59-44.55)	
(31.6				187	3.38	118.3	34.28	8
(29.0-54.2)				(124-250)	(2,33-4.43)	(86.8-149.8)	(25.88-42.68)	
42.7				218	3.39	122.1	35.44	9
(30.7-54.7)				(158-278)	(2.39-4.39)	(102.1-142.1)	(29.84-41.04)	
40.0				186	3.13	112.5	32.63	10
(30.5-49.5)				(148-224)	(1.80-4.46)	(78.3-146.7)	(23.13-42.13)	
	173.0	2.72	99.7	215	3.37	123.5	35.73	11
	(132.0-215.0)	(2.08-3.36)	(81.1-118.2)	(152-278)	(2.55-4.19)	(94.9-152.0)	(27.99-43.47)	
	171.0	2.72	98.9	211	3.35	121.9	34.50	12
	(131.0-211.0)	(1.84-3.60)	(75.0-122.9)	(146-276)	(2.23-4.47)	(86.2-157.6)	(25.74-43.26)	
	160.0	2.51	93.4	193	3.03	112.9	33.00	13
	(119.0-201.0)	(1.78-3.24)	(72.2-114.7)	(141-245)	(2.18-3.88)	(87.4-138.4)	(25.95-40.05)	
	150.9	2.49	90.5	188	3.12	113.1	32.60	14
	(99.9-202.0)	(1.91-3.07)	(08.2-112.7)	(131-245)	(2.27-3.97)	(87.6-138.6)	(25.31-39.89)	
	138.9	2.34	84.6	172	2.89	104.7	30.05	15
	(89.0-189.5)	(1.66-3.02)	(02.9-106.3)	(106-238)	(1.99-3.79)	(73.1-136.2)	(20.94-39.16)	

Shock, N. W., and Yiengst, M. J., J. Geront. 10:31, 1955.
46. VENTILATION AND O_{2} UPTAKE, RIGHT VS LEFT LUNG: MAN

	Variable	Supine Position		Right Lateral Position	
		Right	Left	Right	Left
	(A)	(B)	(C)	(D)	(E)
1	Ventilation, \% Oxygen uptake, \%	$\begin{aligned} & 52 \\ & 49-50 \end{aligned}$	$\begin{aligned} & 48 \\ & 50-51 \end{aligned}$	$\begin{aligned} & 53-54 \\ & 61-63 \end{aligned}$	$\begin{aligned} & 46-47 \\ & 37-39 \end{aligned}$

Contributor: Rahn, H.
References: [1] Inada, K., Kishimoto, S., Sato, A., and Watanabe, T., J. Thorac. Surg. 27:173, 1954.
[2] Rothstein, E., Landis, F. B., and Navodick, B. G., ibid 19:821, 1950.

47. RESPIRATORY DEAD SPACE: MAN

For purposes of defining dead space, expiratory air is arbitrarily divided into two components: that which is like alveolar air, and that--called dead space--which is like the inspired ais. Dead space can be considered for any inspired or expired gas, CO_{2} being most often studied. There are many methods for measuring dead space, differing primarily with the way alveolar air is measured or computed. It has not been shown that any two methods give identical results, nor is it known exactly which geometric portion of the lung they measure. Until identical results can be shown, it is best that different methods be identified by different names. For CO_{2} and O_{2}, dead space is subdivided by some into two parts: one, the conducting airway from nares to terminal bronchioles, the other, a porlion of the tidal volume going to alveoli but wasted because of uneven distribution of blood and gas in the lung. The terms in most common use are: (1) Anatomic Dead Space. Strictly, this is the geometric volume of the conducting airway. The term is used both by those making plaster or other casts of the dead lung airway; and by many whose methods are thought to approximate this volume in vivo, the most widely used of which methods is Fowler's singlebreath analysis of gas flow and concentration [1]. Other terms and methods believed to approximate this anatomic space are grouped in this section under the heading Anatomic. (2) Physiologic Dead Space. This term includes both anatomic and distribution dead space, and indicates the value of alveolar CO_{2} tension obtained by measuring arterial CO_{2} lension. Other methods also attempt to include distribution dead space; these are all grouped with the arterial CO_{2} tension methods under the heading Physiologic. Those marked "Haldane-Priestley" are now felt by most investigators to be too large, because the alveolar tensinn obtained by a forced lung expiration is too high. Regarding other methods, it is not possible to be certain whether they belong in the Anatomic or Physiologic group. "Alveolar" dead space [2] is the difference between the physiologic dead space and the anatomic dead space (Fowler); it is one measure of the distribution dead space, "Parallel" dead space also refers to the distribution dead space, as determined by the isosaturation technique [3].

Contribulor: Severinghaus, J. W.
References: [1] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [2] Severinghaus, J. W., and Stufpel, M., J. Appl. Physiol. 10:335, 1957. [3] Pappenheimer, J. R., Fishman, A. P., and Borrero. L. M., ibid 4:855, 1952.

Part I: AT REST
Values in parentheses conform to estimate "c" of the 95% range (cf Introduction).

	$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$	Subjects no.	Sex	Dead Space L	Method	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
Anatomic						
1	Young	5	0	0.130(0.100-0.160)	Fractional sampling, analysis of expiratory CO_{2}.	1
2	19-38	45	ס	0.156(0.106-0.219)	Nitrogen (Lilly nitrogen meter).	2
3	20-25	2	9	0.108(0.093-0.124)	Foreign gas (hydrogen).	3
4	24	1	9	0.133		4
5	25-32	5	σ	0.144(0.098-0.164)		3
6	27-29	3	0	0.122(0.089-0.143)		4
7	29-36	7	σ	0.164(0.145-0.215)	1sosaturation.	5
8	68-89	18	$\stackrel{\circ}{\circ}$	0.235(0.127-0.370)	Continuous recording of expiratory CO_{2} infrared gas analyzer.	6
9		7	$\stackrel{\sim}{\circ}$	0.177(0.154-0.214)		7
10		1	0°	0.176	lsosaturation.	8
11		4	σ	0.155(0.109-0.181)	Foreign gas (hydrogen).	9
12		1	O'	0.144	Plaster cast.	10
13		1	\%	0.090	Isosaturation.	5
	Physiologic					
14	18-34	50	\%	0.144(0.041-0.449)	Alveolar CO_{2} tension (Haldane-Priestley).	11
15	18-38	5	σ	0.189(0.128-0.259)	N_{2} clearance.	12
16	18-39	8	σ	0.180(0.130-0.260)	H_{2} clearance.	13
17	21-32	10	O*	0.173(0.052-0.223)	Arterial CO_{2} tension.	14
18	21-32	4	\%	0.110(0.090-0.140)	H_{2} clearance.	13
19	22	1	σ	0.151	Arterial CO_{2} tension.	15
20	29-36	7	σ	0.174(0.140-0.208)	1sosaturation.	5
21		2	σ°	0.165(0.142-0.189)	Alveolar CO_{2} tension (Haldane-Priestley).	16
22		4	σ	0.194(0.158-0.228)	Arterial CO_{2} tension.	17

Contributors: (a) Rossier, P. H., (b) Bateman, J. B., (c) Fishman, A. P., (d) Kaltreider, N. L., (e) Severinghaus, J. W.

References: [1] Hatch, T., Cook, K. M., and Palm, P. E.. J. Appl. Physiol. 5:341, 1953. [2] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [3] Siebeck, R., Deut. Arch. klin. Med. 102:390, 1911. [4] Siebeck, R., Scand. Arch. Physiol. 25:86. 1911. [5] Fishman, A. P., J. Clin. Invest. 33:469, 1954. [6] Tenney, S. M., and Miller, R. M., J. Appl. Physiol. 9:321, 1956. [7] DuBois, A. B., Fowler, R. C., Soffer, A., and Fenn, W. O., ibid 4:526, 1952. [8] Pappenheimer, J. R., Fishman, A. P., and Borrero, L. M.. ibid 4:855, 1952. [9] Krogh, A.. and Lindhard, J., J. Physiol. 47:30, 1913-14. [10] Loewy, A., Pflūgers Arch. 58:416, 1894. [11] Hurlado, A., Fray, W. W., Kaltreider, N. L., and Brooks, W. D., J. Clin. Invest. 13:169, 1934. [12] Bateman, J. B., J. Appl. Physiol. 3:143, 1950. [13] Birath, G., Acta med. scand., suppl., 154, 1944. [14] Blickenstorfer, E., Schweiz. Zschr. Tuberk., 4:suppl. 1, 1947. [15] Enghoff, H., Upsala läk. fören. [örh. 44:191, 1938. [16] Haldane, J. S., and Priestley, J. G., J. Physiol. 32:240, 1905. [17] De Coster, A., and Denolin, H., Acta clin. belg. 9:135, 1954.

Values in parentheses conform to estimate " c " of the 95% range (cf Introduction). $V_{D}=$ volume of dead space gas, $\mathrm{V}_{\mathrm{T}}=$ tidal volume.

	$\begin{gathered} \text { Subjects } \\ \text { no. } \end{gathered}$	Sex	Activity	O_{2} Consumption $\mathrm{L} / \mathrm{min}$	$\begin{gathered} \mathrm{V}_{\mathrm{T}} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{D}} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \frac{\mathrm{V}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{T}}} \times 100 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Refer- } \\ \text { ence } \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Anatomic								
1	2	0	Moderately			0.172		1
2	2	σ	severe work			0.211		1
3	2	0°	$750 \mathrm{~kg} / \mathrm{min}$,			0.142		2
4	2	0	bicycle ergometer			0.093		2
5	1	σ°	Quiet breathing		0.580	0.168	29	3
6	1	안			0.895	0.105	12	3
7	1	σ	Post-exercise		0.810	0.188	23	3
8	1	¢	hyperpnea		1.310	0.158	12	3
Physiologic								
9	I	σ	At rest ${ }^{1}$		0.403	0.198	49	4
10	1	σ	Fast walking		1.373	0.650	47	4
11	1	σ°	Bed rest	0.237	0.457	0.160	35	5
12	1	\bigcirc	Standing rest	0.328	0.612	0.222	36	5
13	1	\bigcirc	Walking	1.436(0.668-2.543)	2.014(1.271-3.145)	0.463(0.293-0.622)	23.5(20-27.5)	5
14	4	0	Severe work		$2.400(1.500-3.300)^{2}$	0.303(0.245-0.365) ${ }^{2}$	$13.3(11-16)^{2}$	6
15	4	0	(bicycle	2.500^{2}	\|3.304(3.030-3.500) ${ }^{2}$	0.310(0.292-0.362) ${ }^{2}$	$10(9-11)^{2}$	6
16	30	${ }^{\circ}$	ergometer)	1.200(0.400-2.000) ${ }^{2}$	$1.348(0.570-2.020)^{2}$	0.315(0.155-0.470) ${ }^{2}$	$24(22-27)^{2}$	7
17	2	${ }^{\circ}$		0.8622	1.276^{2}	0.2812	22^{2}	8
18	2	σ		1.5382	1.7062	0.3602	212	8
19	1	0°		$1.740(1.410-2.050)^{3}$	$2.562(1.890-3.520)^{3}$	$0.322(0.280-0.392)^{3}$	12.8(1)-15) ${ }^{3}$	9
20	2	0	Treadmill		$0.450{ }^{1}$ (at rest)	0.1201	26.51	10
21	2	0°			2.950^{1} (at work)	0.555^{1}	191	10
22	3	σ		$1.667(1.255-2.425)^{2}$	2.298(1.705-3.582) ${ }^{2}$	$0.227(0.131-0.296)^{2}$	$10.8(8-17)^{2}$	11
23	3	${ }^{\circ}$		2.042^{2}	2.8092	0.3772	13.52	11
24	3	0°		0.690^{2}	0.762^{2}	0.2582	332	11
25	34	0°		$1.080(0.810-1.350)^{2}$			$15.1(0-31)^{2}$	12

/1/ Alveolar CO_{2} tension method (Haldane-Priestley). /2/ Arterial CO_{2} tension method. /3/Fractional sampling of expiratory gas, CO_{2} analysis.
Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.
References: [1] Siebeck, R., Scand. Arch. Physiol. 25:81, 1911. [2] Krogh, A., and Lindhard, K., J. Physiol. 47:30, 1913-1914. [3] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [4] Henderson, Y., Chillingworth, F. P., and Whitney, J. L., ibid 38:1, 1915. [5] Douglas, C. G., and Haldane, J. S., J. Physiol. 45:235, 1912.
[6] Asmussen, E., and Nielsen, M., Acta physiol. scand. 38:1, 1956. [7] Rossier. P. H.. and Buhlmann, A.. unpublished. [8] Houston, C. S., and Riley, R. L., Am. J. Physiol. 149:565, 1947. [9] Aitken, R. S., and
Clark-Kennedy, A. E., J. Physiol. 65:389, 1928. [10] Bannister, R. G., Cunningham, D. J., and Douglas, C. G., ibid 125:90, 1954. [11] Riley, R. L., Shepard, R. H., Cohn, J. E., Carroll, D. G., and Armstrong, B. W., J. Appl. Physiol. 6:673, 1954. [12] Filley, G. F., Gregoire, F., and Wright, G. W., J. Clin. Invest. 33:517, 1954.

Part 111: DURING CO_{2} HYPERPNEA
Male subjects at rest. Except where otherwise indicated, measurements are for alveolar CO_{2} tension by Haldane-
Priestley method. $V_{D}=$ volume of dead space gas, $V_{T}=$ tidal volume.

/1/Arterial CO_{2} tension method. /2/Foreign gas method (hydrogen).
Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.
References: [1] Campbell, J. M., Douglas, C. G., and Hobson, F. G., J. Physiol. 48:303, 1914. [2] Bannister, R. G.,
Cunningham, D. J., and Douglas, C. G., ibid 125:90, 1954. [3] Cooper, D. Y., Emmel, G. L., Kough, R. H., and
Lambertsen, C. J., Fed. Proc. 12:28, 1953. [4] Siebeck, R., Scand. Arch. Physiol. 25:31, 1911.
48. RESPIRA TORY DEAD SPACE AND CHANGE IN FUNCTIONAL RESIDUAL CAPACITY: DOG

Determinations made on 11 dogs; tidal volume was held constant at 200 ml and rate at 10 or 12 respirations per min. Anatomic dead space is proportional to end inspiratory lung volume, while physiologic dead space is approximately constant over range of lung volumes studied. For definitions and clarifying information on various dead space concepts, see Page 46.

Contributor: Severinghaus, J. W.
Reference: Severinghaus, J. W., and Stupfel, M.. J. Appl. Physiol. 10:335, 1957.
49. SOME FACTORS AFFECTING RESPIRATORY DEAD SPACE: MAN

Part I: EFFECT OF BREATHHOLDING
Male subjects. $V_{D}=$ volume of dead space gas. For definitions and clarifying information on various dead space concepts, see Page 46.

/1/ Foreign gas method (hydrogen). /2/ Nitrogen method (Lilly nitrogen meter). /3/Recording mass spectrometer method (Lilly nitrogen meter).
49. SOME FACTORS AFFECTING RESPIRATORY DEAD SPACE: MAN (Concluded)

Part 1: EFFECT OF BREATHHOLDING (Concluded)
Male subjects. $V_{D}=$ volume of dead space gas.

Subjects no.			Quiet Breathing		Breathholding		Reference
		Space Gas	Inspiration Time sec	$\begin{aligned} & \mathrm{V}_{\mathrm{D}} \\ & \mathrm{ml} \end{aligned}$	Inspiration Time sec	$\begin{gathered} \mathrm{VD}_{\mathrm{D}} \\ \mathrm{ml} \end{gathered}$	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
26	13	N_{2}		190	3	170	3
27					5	150	
28					10	140	
29					20	120	
30					30	105	
31					60	118	
32		O_{2}		210	3	180	
33					5	155	
34					10	140	
35					20	165	
36					30	130	
37					60	115	

/3/ Recording mass spectrometer method (Lilly nitrogen meter).
Contributor: Rossier, P. H.
References: [1] Siebeck, R., Deut. Arch. klin. med. 102:390, 1911. [2] Fowler, W. S., Am. J. Physiol. 154:405, 1948. [3] Bartels, J., Severinghaus, J. W., Forster, R. E., Briscoe, W. A., and Bates, D. V., J. Clin. Invest. 33:41. 1954.

Part 11: EFFECT OF BREATHING LEVEL
Each set of values is for a single subject. UnIess otherwise indicated, measurements are by foreign gas (H_{2}) method.

Sex		Deep Expiratory Level ml	Normal Expiratory Level ml	High Inspiratory Level ml	Reference

/1/ Alveolar CO_{2} tension method (Haldane-Priestley). /2/ Nitrogen method.
Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.
References: [1] Siebeck, R., Scand. Arch. Physiol. 25:91, 1911. [2] Henderson, Y., Chillingworth, F. P., and Whitney, J. L., Am. J. Physiol. 38:1, 1915. [3] Krogh, A., and Lindhard, J., J. Physiol. 51:59, 1917. [4] Mundt, E., Schoedel, W., and Schwarz, H., Pflügers Arch. 244:107, 1941. [5] Fowler, W. S., Am. J. Physiol. 154:405, 1948.

Part 1ll: DEAD SPACE FOR $\mathrm{O}_{2}, \mathrm{CO}_{2}$, He, AND N_{2}
Values are for single subjects at rest. All inspirations were $80 \% \mathrm{He}-20 \% \mathrm{O}_{2}$ and followed a period of breathing air. All breathholding times were about $2 \frac{1}{2} \mathrm{sec}$. Recording mass spectrometer method (Lilly nitrogen meter). Ranges in parentheses conform to estimate "b" of the 95% range (cf Introduction).

Sex		$\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{ml} \end{aligned}$	$\begin{gathered} \mathrm{CO}_{2} \\ \mathrm{ml} \end{gathered}$	$\begin{aligned} & \mathrm{He} \\ & \mathrm{ml} \end{aligned}$	$\begin{aligned} & \mathrm{N}_{2} \\ & \mathrm{ml} \end{aligned}$
	(A)	(B)	(C)	(D)	(E)
1	of	149(141-157)	145(137-153)	141(131-151)	128(122-134)
2	${ }^{\prime}$	169(151-187)	161(149-173)	152(144-160)	165(159-171)
3	o'	165(155-175)	160(150-170)	155(143-167)	169(163-175)
4	O	195(185-205)	207(193-221)	198(180-216)	189(179-199)
5	9	161(145-177)	144(136-152)	134(122-146)	124(114-134)

Contributor: Rossier, P. H.
Reference: Bartels, J., Severinghaus, J. W., Forster, R. E., Briscoe, W. A., and Bates, D. V., J. Clin. Invest. 33:41, 1954.

Resting subjects. $V_{D}=$ volume of dead space gas in $m l . V_{T}=$ tidal volume in $m l$. For definitions and clarifying information on various dead space concepts, see Page 46.

	No. and Sex	Mean Value	Range	Method	Reference
	(A)	(B)	(C)	(D)	(E)
1	10	$\mathrm{V}_{\mathrm{D}}=0.31 \times \mathrm{V}_{T}$		Alveolar CO_{2} (Haldane-Priestley).	1
2		$V_{D}=0.275 \times \mathrm{V}$		Statistical data.	2
3	50\%	$V_{D}=0.4949 \times V_{T}-89.9$	$\begin{aligned} & V_{D}=0.4949 \times V_{T}-30 \\ & V_{D}=0.4949 \times V_{T}-160 \end{aligned}$	Alveolar CO_{2} tension (HaldanePriestley).	3
4	420°	$\mathrm{V}_{\mathrm{D}}=0.41 \times \mathrm{V}_{\mathrm{T}}-55$	$\begin{aligned} & V_{D}=0.41 \times V_{T}+30 \\ & V_{D}=0.41 \times V_{T}-150 \end{aligned}$	Alveolar CO_{2} tension (HaldanePriestley).	4
5	10	$\mathrm{V}_{\mathrm{D}}=0.24 \times \mathrm{V}_{\text {T }}$		Arterial CO_{2} tension.	5
6	80	$\mathrm{V}_{\mathrm{D}}=0.34 \times \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & V_{D}=0.448 \times V_{T} \\ & V_{D}=0.186 \times V_{T} \end{aligned}$	Hydrogen clearance.	6
7	49	$\mathrm{V}_{\mathrm{D}}=0.254 \times \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=0.305 \times \mathrm{V}_{\mathrm{T}} \\ & \mathrm{~V}_{\mathrm{D}}=0.225 \times \mathrm{V}_{\mathrm{T}} \end{aligned}$	Hydrogen clearance.	6
8	80	$\mathrm{V}_{\mathrm{D}}=0.199 \times \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=0.29 \times \mathrm{V}_{\mathrm{T}} \\ & \mathrm{~V}_{\mathrm{D}}=0.13 \times \mathrm{V}_{\mathrm{T}} \end{aligned}$	Arterial CO_{2} tension.	7
9	50\%, 3i?	$V_{D}=0.30 \times V_{T}-4.9$		Nitrogen clearance.	8
10	40°	$\mathrm{V}_{\mathrm{D}}=0.31 \times \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & V_{D}=0.25 \times V_{T} \\ & V_{D}=0.38 \times V_{T} \end{aligned}$	Arterial CO_{2} tension.	9
11	90゙, 49	$\mathrm{V}_{\mathrm{D}}=0.36 \times \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & V_{D}=0.36 \times V_{T}-25 \\ & V_{D}=0.36 \times V_{T}+25 \end{aligned}$	Arterial CO_{2} tension.	10
12	$350^{\circ}, 159$	$\mathrm{V}_{\mathrm{D}}=0.35 \times \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=0.35 \times \mathrm{V}_{\mathrm{T}}-25 \\ & \mathrm{~V}_{\mathrm{D}}=0.35 \times \mathrm{V}_{\mathrm{T}}+25 \end{aligned}$	Arterial CO_{2} tension.	11

Contributors: (a) Rossier, P. H., (b) Fishman, A. P., (c) Kaltreider, N. L., (d) Severinghaus, J. W.
References: [1] Campbell, J. M.. Douglas, C. G., and Hobson, F. G., J. Physiol. 48:303, 1914. [2] Enghoff, H., Scand. Arch. Physiol. 63:15, 1931. [3] Hurtado, A., Fray, W. W., Kaltreider, N. L., and Brooks, W. D., J. Clin. Invest. 13:169. 1934. [4] Kaltreider, N. L., Fray, W. W., and Hyde, H. van Z., Am. Rev. Tuberc. $37: 662$, 1938. [5] Enghoff, H., Upsala läk. fören. förh. 44:191, 1938. [6] Birath, G., Acta med. scand. suppl., $154,1944$.
[7] Riley, R. L., and Cournand, A., J. Appl. Physiol. 1:825, 1949. [8] Bateman, J. B., ibid 3:143, 1950.
[9] De Coster, A., and Denolin, H., Acta clin. belg. $9: 135$, 1954. [10] Bartels. H., Beer, R., Koepchen, H. P., Wenner, J., and Witt, I., Pflügers Arch. 261:133, 1955. [11] Rossier, P. H., and Buhlmann, A., unpublished.

51. RESPIRATORY DEAD SPACE AND TIDAL VOLUME: DOG

Male subjects. $V_{D}=$ volume of dead space gas. For definitions and clarifying information on various dead space concepts, see Page 46.

Contributor: Severinghaus, J. W.
Reference: Severinghaus, J. W., and Stupfel, M., J. Appl. Physiol. 10:335, 1957.
52. RESPIRATORY DEAD SPACE IN PATHOLOGICAL CONDITIONS: MAN

Ranges are estimate " c " of the 95% range (cf Introduction). $V_{D}=$ volume of dead space gas, $V_{T}=$ tidal volurne. For definitions and clarifying information on various dead space concepts, see Page 46.

	Condition	Subjects no.	Sex	$\begin{aligned} & V_{D} \\ & \mathrm{ml} \end{aligned}$	$\begin{gathered} \frac{\mathrm{V}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{T}}} \times 100 \\ \% \\ \hline \end{gathered}$	Method	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Emphysema	8	0	189-253		Foreign gas (hydrogen)	1
2		2	0	490-570	59-76	Hydrogen clearance	2
3		6	$0^{\prime \prime}$		23-52	Arterial CO_{2} tension	3
4		5	σ°		35-53	Arterial CO_{2} tension	4
5		5	0	142-231	36-47	Arterial CO_{2} tension	5
6		100		190-320	38-60	Arterial CO_{2} tension	6
7	Sarcoidosis	22	$0^{\prime \prime}$		11-48	Arterial CO_{2} tension	7
8	Pulmonary fibrosis, including sarcoidosis	8		190-310	36-60	Arterial CO_{2} tension	6
9	Pneumonectomy, recently	15		120-160	471	Arterial CO_{2} tension	8
10	operated	5	\bigcirc	160-340	36-57	Hydrogen clearance	2
11		1	\%	300	50	Hydrogen clearance	2
12	Pneumonectomy with thoracoplasty	15		80-120	261	Arterial CO_{2} tension	8
13	Pneumothorax, unilateral	9	σ	190-450	38-60	Hydrogen clearance	2
14		2	\%	90-140	29	Hydrogen clearance	2
15	Pneumothorax, bilateral	2	σ°	180-270	35-59	Hydrogen clearance	2
16	Thoracoplasty	8	0	140-400	44-57	Hydrogen clearance	2
17		2	\%	150-190	37-39	Hydrogen clearance	2
18	Renal and diabetic acidosis	5		To 400		Arterial CO_{2} tension	6
	Acute asthmatic attacks						
19	Before attack	5	d	190-320	28-44	Arterial CO_{2} tension	9
20	During attack	5	σ	254-686	40-65	Arterial CO_{2} tension	9
21	Before attack	3	\%	230-310	37-51	Arterial CO_{2} tension	9
22	During attack	3	\%	167-294	42-63	Arterial CO_{2} tension	9

/1/ Mean value.

Contributors: (a) Rossier, P. H., (b) Severinghaus, J. W.

References: [1] Siebeck, R., Deut. Arch. klin. Med. 102:380, 1911. [2] Birath, G., Acta med. scand., suppl., 154, 1944. [3] Riley, R. L., and Cournand, A., J. Appl. Physiol. 1:825, 1949. [4] West. J. R., Baldwin, E. de F., Cournand, A., and Richards, D. W., Am. J. M. 10:481, 19̄51. [5] De Coster, A., and Denolin, H., Acta clin. belg. $9: 135,1954$. [6] Rossier, P. H., and Buhlmann, A., unpublished. [7] Stone, D. J., Schwartz, A., Feltman, J. A., and Lovelock, F. J., Am. J. M. $15: 468,1953$. [8] Rossier. P. H., and Buhlmann, A., Schweiz. Zschr. Tuberk. $7: 1,1950$. [9] Scherrer, M., Kostyal, A., Wierzejewski, H., Schmidt, F., and Von Geuns, H. A., Internat. Ā̄ch. Allergy, Basel 9:65, 1956.

53. DIFFUSION CAPACITY OF THE LUNGS: MAN

D_{x} is the amount of gas in ml (STPD) per min which diffuses through the whole lung, when a mean partial pressure difference of one mm Hg exists between alveolar air and capillary blood of the lung ($\Delta \bar{p}$). $\mathrm{D}=\frac{\mathrm{ml} \text { gas }}{\mathrm{min} \times \Delta \bar{p}}$; therefore, the total oxygen consumption of the lungs (Q) is as follows: $Q=\mathrm{DO}_{2} \times \Delta \bar{p}$. Calculation of DO_{2} from $\mathrm{D}_{\mathrm{CO}}: \mathrm{D}_{\mathrm{O}_{2}}=$ $\mathrm{D}_{\mathrm{CO}} \times 1.23$. Calculation of DCO_{2} from $\mathrm{DCO}_{\mathrm{CO}} \mathrm{DCO}_{2}=\mathrm{D}_{\mathrm{CO}} \times 24.6$. Methods: $\mathrm{A}=$ single breath CO method of Krogh [1], or modification [2]; $\mathrm{B}=$ oxygen method with graphical integration of mean oxygen pressure gradient [3]; $\mathrm{C}=$ steady state CO method based on arterial CO_{2} tension; $\mathrm{D}=$ steady state CO method based on end tidal gas sampling or assumed dead space value; $\mathbf{E}=$ radioactive C ${ }^{140}$ method of Kruhoffer. Values are in most cases corrected for lung volume at mid-capacity (sum of residual reserve and half the resting tidal volume) or for the volume at functional residual capacity (sum of residual and reserve volume). Values in parentheses are ranges, estimate " c " of the 95% range (cfintroduction).

Part I: AT REST AND DURING ACTIVITY

Age		No. and Sex	Method	${ }^{\mathrm{D}} \mathrm{O}_{2}$		Work Load	Reference	
		Rest		Work				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	10-15 yr	5, of?	A	23.1(20.6-27.3)			1	
2	Adult	140	A	36.7(27.8-43.3)			1	
3		58	A	28.0(21.9-30.5)			1,4	
4		100	E	27(21-31)1			5	
5		59	E	22(20-24) ${ }^{1}$			5	
6		90°	B	$24.4(16-36)^{2}$			6	
7	25-28 yr	50°	A		51.3(41.7-60.2)	$450 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$	4	
8		60	A	35.6(24.7-42.9)	55.7(43.0-68.8)	$670-900 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$	4	
9		50	A		63.5(60.4-66.8)	$1130 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$	4	
10		40°	A		57.5(49.0-68.6)	$1300 \mathrm{kg-m} / \mathrm{min}$	4	
11		30°	A		63.7(57.3-73.4)	$1590 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$	4	
12	Adult	60°	B	21(12-36) ${ }^{3}$	62(50-76) ${ }^{2}$		7	
13		$60^{\circ}, 19$	C	20.7(12.9-34.5)	44.6(28.5-67.6)4	2-16\% grade at $2.5-3.5 \mathrm{mi} / \mathrm{hr}$	8	
14		1400.49	D	21.6(13.0-35.3)	37.9(25.5-53.4)	0 grade at $3 \mathrm{mi} / \mathrm{hr}$	9	
15		12,0¢\%	D		39.2(29.6-57.8)	9\% grade at $3 \mathrm{mi} / \mathrm{hr}$	9	

$/ 1 / 15 \% \mathrm{O}_{2}$ in inspired air. /2/ $12 \% \mathrm{O}_{2}$ in inspired air. /3/10\% O_{2} in inspired air. /4/ 10 males, 1 female.
Contributors: (a) Bartels, H., and Opitz, E., (b) Bates, D. V.
References: [1] Krogh, M., J. Physiol., Lond. 49:271, 1914-15. [2] Forster, R. E., Cohn, J. E., Briscoe, W. A., Blakemore, W. S., and Riley, R. L., J. Clin. Invest. 33:1417, 1955. [3] Bohr, C., Skand. Arch. Physiol., Berl. 22:221, 1909. [4] B $\downarrow \mathrm{je}, \mathrm{O} .$, Arbeitsphysiologie 7:157, 1934. [5] Kruhoffer, P., Acta physiol. scand. 32:106, 1954. T6] Bartels, H., et al, Pflūgers Arch. 261:99, 1955. [7] Lilienthal, J. L., Jr., Riley, R. L., Proemmel. D. D., and Franke, R. E., Am. J. Physiol. 147: $\overline{199}, 1946$. [8] Filley, G. F., MacIntosh, D. J., and Wright, G. W., J. Clin. Invest. 33:530, 1954. [9] Bates, D. V., Boucot, N. G., and Dormer, A. E., J. Physiol., Lond. 129:237. 1955.

Part H: EFFECT OF ACCLIMATIZATION TO ALTITUDE

No. and Sex		Method	D_{2}			Reference	
		Sea Level	Acclimatized	Residents			
	(A)		(B)	(C)	(D)	(E)	(F)
1	50	A	35.2(25.3-46.8)	36.5(25.4-43.8) ${ }^{1}$	$48.0(41.5-65.3)^{1}$	1	
2	60	B	(20-30)	$70^{2,3}$		2	

/1/ Altitude 13,000 feet at Cerro di Pasco. Peru. /2/At 20,000 feet after 22 days in low-pressure chamber following gradual ascent. /3/ One subject.

Contributors: Bartels, 11., and Opitz, E.

References: [1] Barcroft, J.. "The Respiratory Function of the Blood," vol I, London: Cambridge University Press, 1925. [2] Houston, C. S., and Riley, R. L.. Am. J. Physiol. 149:565, 1947.

54. ALVEOLAR-CAPILLARY DIFFUSION: MAN

Part I: PULMONARY CAPILLARY O 2 PRESSURE
Mixed venous blood enters the pulmonary capillaries with pO_{2} of 40 mm Hg . Blood normally requires about 0.75 seconds to pass through the capillaries, at the end of which time its pO_{2} has risen to almost 100 mm Hg . $\mathrm{The} \mathrm{pO}_{2}$ of arterial blood is lower because of venous-to-arterial shunts.

Rěference: Comroe, J. H., Jr., Forster, R. E., 11, DuBois, A. B., Briscoe, W. A., and Carlsen, E., "The Lung," Chicago: The Year Book Publishers, Inc., 1956.

Part II: END- AND MEAN CAPILLARY O 2 PRESSURE

The graphic and tabular presentation illustrates different rates at which venous blood may be oxygenated in pulmonary caplllaries, depending upon the diffusing capacity of the lung. Alveolar pO_{2} in each case is 100 mm Hg .

Reference: Comroe, J. H., Jr., Forster, R. E., II, DuBois, A. B., Briscoe, W. A., and Carlsen, E., "The Lung." Chicago: The Year Book Publishers, Inc., 1956.

/1/Zero point $=10 \mathrm{~cm}$ anterior to back in man; zero point = back in dog. /2/Pulmonary "capillary" mean pressure used except where indicated. /3/ Pressure approximately corrected to 10 cm zero point. /4/ Pulmonary venous or left atrial mean pressure. /5/ Anesthetized.

Contributor: (a) Gorlin, R.

References: [1] Riley, R. L., Himmelstein, A., Motley, H. L., Weiner, H. M., and Cournand, A., Am. J. Physiol. 152:372, 1948. [2] Hickam, J. B., and Cargill, W. H., J. Clin. Invest. 27:10, 1948. [3] Cournand, A., Circulation 2:641, 1950. [4] Dexter, L., Dow, J. W., Haynes, F. W., Whittenberger, J. L., Ferris, B. G., Goodale, W.T., and Hellems, H. K., J. Clin. Invest. 29:602, 1950. [5] Westcott, R. N., Fowler, N. O., Scott, R. C., Hauenstein, V. D., and McGuire, J., ibid 30:957, 1951. [6] Dexter, L., Whittenberger, J. L.,

Haynes, F. W., Goodale, W. T., Gorlin, R., and Sawyer, C. G., J. Appl. Physiol. 3:439, 1951. [7] Doyle, J. T., Wilson, J. S., and Warren, J. V., Circulatlon 5:263, 1952. [8] Doyle, J. T., Wilson, J. S., Estes, E. H., and Warren, J. V., J. Clin. Invest. $30: 345,1951$. [9] Witham, A. C., and Fleming, J. W., ibid 30:707, 1951.
[10] Fowler, N. O., Westcott, R. N., Scott, R. C., and McGuire, J., ibld 30:517, 1951. [11] Fowler, N. O. Westcott, R. N., Hauenstein, V. D., Scott, R. C., and McGuire, J., ibid 29:1387, 1950. [12] Harvey, R. M., Ferrer, M. I., Richards, D. W., Jr., and Cournand, A., Am. J. Med. 10:719, 1951. [13] Dexter, L., Whittenberger, J. L., Gorlin, R., Lewis, B. M., Haynes, F. W., and Spiege, R. J., Trans. Ass. Am. Physicians 64:226, 1951. [14] Dresdale, D. T., Schultz, M., and Michtom, R. J., Am. J. M. 11:686, 1951. [15] Gorlin, R., Haynes, F. W., Goodale, W. T., Sawyer, C. G., Dow, J. W., and Dexter, L., Arn. Heart J. 41:30, 1950. [16] Lukas, D. S., and Dotter, C. T., Am. J. M. 12:639, 1952. [17] Gorlin, R., Lewis, B. M., Haynes, F. W., and Dexter, L., Am. Heart J. 43:357. 1952. [18] Gorlin, R., Matthew, M. B., MacMillen, I. K., Daley, R., and Medd, W. E., Ann. Mtg. Brit. Cardiac Soc., May 21, 1953. [19] Sawyer, C. G., Burwell, C. S., Dexter, L., Eppinger, E. C., Goodale, W. T., Gorlln, R., Harken, D. E., and Haynes, F. W., Am. Heart J. 44:207, 1952. [20] Hickam, J. B., ibid $38: 801,1949 .[21]$ Handelsman, J. C., Bing, R. J., Campbell, J. A., and Greswold, H. E., Johns Hopkins Hosp. Bull. 82:615, 1948. [22] Taylor, B. E.. Pollack, A. A., Burchell, H. B., Clagett, O. T., and Wood, E. H., J. Clin. Invest. 29:745, 1950. [23] Cournand, A., Baldwin, J. S., and Himmelstein, A., "Cardiac Catheterization in Congenital Heart Disease," Commonwealth Fund, New York. [24] Wood, P., Brit. M. J. 2:639, 1950. [25] Bing, R. J., Vandam, L. D., and Gray, F. D., Jr., Johns Hopkins Hosp. Bull. 80:323, 1947. [26] Lewis, B. M., and Gorlin, R., Am. J. Physiol. 170:574, 1952.
[27] Stroud, B. C., and Rahn, H., ibid 172:211, 1953.
56. BLOOD GASES, VARJABLES, FACTORS, AND CONSTANTS: MAN

The values from which thls lable has been synthesized are in many instances derived by calculatlon from basic assumpllons, factors, and constants, and do nol have the same valldity as measured values. Those for females are in general less well-founded than those for males. $A=$ arterial blood, $V=$ mixed venous blood.

$/ 1 / 100 \mathrm{ml}$ RBC in contact with plasma, and 100 ml plasma in contact with RBC. $/ 2 / \mathrm{O}_{2}$ capacity $=\mathrm{g} \mathrm{Hb} \times 1.36$. This factor based on hemoglobin Fe content of 0.339%. $/ 3 /$ Assumed to be equal to the value for $\mathrm{males} . / 4 / \mathrm{ml} \mathrm{O}_{2}$ dissolved in 100 ml human $\mathrm{RBC}=100 \times 0.0258 \times \mathrm{O}_{2}$ pressure $/ 760 ; \mathrm{ml} \mathrm{O}_{2}$ dissolved in 100 ml horse plasma $=100 \times$ $0.02089 \times \mathrm{O}_{2}$ pressure/760. / $5 / \mathrm{Plasma} \mathrm{CO}_{2}=$ "f' x blood CO_{2}; "f" depends upon $\mathrm{pH}, \mathrm{O}_{2}$ capacily, and $\mathrm{HbO} \mathrm{O}_{2}$ saturation per cent. /6/ Arterio-venous CO_{2} difference calculated as $\mathrm{A}-\mathrm{V} \mathrm{O}_{2}$ difference x standard resting respiratory quotient of $0.82 .17 / \mathrm{ml} \mathrm{CO}_{2}$ (including $\mathrm{H}_{2} \mathrm{CO}_{3}$) dissolved in $100 \mathrm{ml} \mathrm{RBC}=0.4399 \times 100 \times \mathrm{CO}_{2}$ pressure/760. For plasma, substitute 0.5311 instead of 0.4399 . /8/ The values of the factor "c" are provisional, as other factors underlying it have not in every instance been determined for human blood. Combined $\mathrm{CO}_{2} \times$ " $\mathrm{c}^{\prime \prime}=$ carbamino CO_{2} in 100 ml of red blood corpuscles or plasma. For cells, "c' is calculated from $\mathrm{K}^{\prime} / \mathrm{K}_{\text {carbamino }}\left(=0.315\right.$ for $\mathrm{HbO} \mathrm{O}_{2}$, 0.11 for reduced Hb$)$ and the mEq of $1 \mathrm{lb}(=2.05 \times 20.0 \mathrm{mM} \mathrm{Hb}$ for male arterial cells, 2.08×20.0 for female arterial cells. 1.99×14.7 and 1.55×5.3 for male venous cells, 2.02×14.9 and 1.57×5.1 for female venous cells), and for plasma, "c" is calculated from K'/K carbamino $(=1.2)$ and the $m E q$ of plasma proteinate $(=17.0) . / 9 / \mathrm{ml} \mathrm{N}_{2}$ dissolved in $100 \mathrm{ml} \mathrm{RBC}=0.0146 \times 100 \times \mathrm{N}_{2}$ pressure/760. For plasma, substitute 0.0117 for 0.0146.
Contributors: (a) Barron, D. H., (b) Bing, R. J., (c) Comroe, J. H., Jr. (d) Cournand, A., (e) Drabkin, D. L.,
(f) Hickam, J. B., (g) Kirk, J. E., (h) Lambertsen, C. J., and Kough, R. H., (i) Olis, A. B., (j) Penrod, K. E., (k) Singer, R. A., (l) Singer, R. B., and llastings, A. B.. (m) Van Slyke, D. D., (n) Wood, E.

Reference: Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (adapted from Table 94).

In the adult, $\mathrm{A}=$ arterial blood from femoral or brachial artery; $\mathrm{V}=$ venous blood from internal jugular vein, unless otherwise indicated; all values for males, under resting conditions. In the newborn (before first breath), where the oxygenated blood goes from the placenta to the fetus via the umbilical vein, $A=$ arterial blood from vena umbilicalis, $\mathrm{V}=$ venous blood from arteria umbilicalis. Methods: $\mathrm{A}-\mathrm{R}=$ calculated from alkali reserve, Henderson nomogram, and CO_{2} content; $\mathrm{D}-\mathrm{M}=$ potentiometric measurement with the dropping-mercury electrode; $\mathrm{G}-\mathrm{E}=$ measurement with glass electrode; $\mathrm{H}-\mathrm{H}=$ calculated from the Henderson-Hasselbalch equation, using 6.10 for pK ' $\mathrm{P}-\mathrm{A}=$ calculated from pH and arterial CO_{2} content converted to plasma CO_{2} content by use of the Henderson-Hasselbalch equation; $\mathrm{R}-\mathrm{C}=\mathrm{Van}$ Slyke-Neill manometric method with Roughton corrections for O_{2} capacity; $\mathrm{V}-\mathrm{N}=$ Van Slyke-Neill manometric method. Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).

Measurement		Blood	Adult			Newborn			Reference	
		Subjects no.	Method	Value	Subjects no.	Method	Value			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	$\begin{gathered} \mathrm{O}_{2} \text { pressure, } \\ \mathrm{mm} \mathrm{Hg} \end{gathered}$	A	59	D-M	93.0(80.0-104.0)	50	D-M	24.4(13.5-34.0)	C-E, 1;F-H, 2	
2		V1	9	D-M	39.4(29.5-48.5)	47	D-M	10.4(1.2-19.0)	C-E, 3; F-H, 2	
3	$\begin{gathered} \mathrm{O}_{2} \text { content, } \\ \text { vol } \% \end{gathered}$	A	50	V-N	19.6(17.3-22.3)	24	$\mathrm{V}-\mathrm{N}$	10.6(5.6-17.9)	C-E, 4; F-H, 2	
4		V	50	$\mathrm{V}-\mathrm{N}$	12.9(11.0-16.1)	19	$\mathrm{V}-\mathrm{N}$	2.9(0.4-8.4)	C-E, 4; F-H, 2	
5	$\begin{gathered} \mathrm{O}_{2} \text { capacity, } \\ \text { vol } \% \end{gathered}$	A	46	R-C	20.2(16.8-22.9)	24	V -N	22.2(17.2-26.2)	C-E, 5;F-H, 2	
6		V1	9	V - N	4.2(3.2-5.8) ${ }^{2}$	18	$\mathrm{V}-\mathrm{N}$	7.2(2.1-12.5) ${ }^{2}$	C-E, 3; F-H, 2	
7	$\begin{gathered} \mathrm{O}_{2} \text { satura- } \\ \text { tion, } \% \end{gathered}$	A	46	$\mathrm{R}-\mathrm{C}$	96.2(93.5-97.5)	24	$\mathrm{V}-\mathrm{N}$	47.7(25.7-73.8)	C-E, 5; F-H, 2	
8		V	50	$\mathrm{V}-\mathrm{N}$	61.8(55.3-70.7)	18	$\mathrm{V}-\mathrm{N}$	13.9(2.4-37.6)	C-E, 4; F-H, 2	
9	$\begin{aligned} & \mathrm{CO}_{2} \text { pres- } \\ & \text { sure, } \mathrm{mmHg} \end{aligned}$	A	50	P-A	39.9(36.2-44.9)	11	A-R	44.9(35.0-60.0)	C-E, 4; F-H, 2	
10		V	50	P-A	49.9(46.9-54.3)	9	A-R	59.2(43.5-68.0)	$\mathrm{C}-\mathrm{E}, 4 ; \mathrm{F}-\mathrm{H}, 2$	
11	$\begin{gathered} \mathrm{CO}_{2} \text { content, } \\ \text { vol } \% \end{gathered}$	A	50	$\mathrm{V}-\mathrm{N}$	48.2(44.6-50.2)	23	V -N	40.9(31.2-51.8)	$\mathrm{C}-\mathrm{E}, 4 ; \mathrm{F}-\mathrm{H}, 2$	
12		V	50	$\mathrm{V}-\mathrm{N}$	54.8(51.0-57.7)	19	$\mathrm{V}-\mathrm{N}$	48.0(37.4-55.2)	$\mathrm{C}-\mathrm{E}, 4 ; \mathrm{F}-\mathrm{H}, 2$	
13	pH	A	50	G-E	7.424(7.374-7.455)	11	$\mathrm{H}-\mathrm{H}$	7.32(7.23-7.41)	$\mathrm{C}-\mathrm{E}, 4 ; \mathrm{F}-\mathrm{H}, 2$	
14		V	50	G-E	7.37(7.32-7.40)	9	H-H	7.25(7.14-7.37)	$\mathrm{C}-\mathrm{E}, 4 ; \mathrm{F}-\mathrm{H}, 2$	

/1/ Mixed venous blood from pulmonary artery. /2/Arterio-venous O2 difference.

Contributors: Bartels, H., and Opitz, E.

References: [1] Bartels, H., and Rodewald, G., Pflügers Arch. 256:113, 1952. [2] Beer, R., Bartels, H., and Raczkowski, H. A., ibid 260:306, 1955. [3] Bartels, H., Beer, R., Fleischer, E., Hoffheinz, H. J., Krall, J., Rodewald, G., Wenner, J., and Witt, 1., ibid 261:99, 1955. [4] Gibbs, E. L., Lennox, W. G., Nims, L. F.., and Gibbs, F. A., J. Biol. Chem. 144:325, 1942. [5] Douglas, J. C., and Edholm, O. G., J. Appl. Physiol. 2:307. 1949.

Single observation on each subject, unless otherwise specified. All blood gases measured by manometric method of Van Slyke and Niell [1], with the exception of Line 6, Column D (measured by method of Roughton and Scholander [2]). Values in parentheses are ranges, estimate " c " of the 95% range, unless otherwise specified (cf Introduction).

/1/ Venous samples: Lines 1 and 2, right auricle or ventricle via catheter; Lines 3-7, pulmonary artery via catheter. Arterial samples: all from brachial or femoral artery. /2/Thirteen normal males and 11 male patients with normal cardiovascular function. /3/ Female patients with normal cardiovascular function. /4/ Intensity of exercise indicated by corresponding metabolic rates. /5/ Represents only 10 observations. /6/Venous samples: Lines 8 and 9 , jugular bulb via needle puncture; Line 10, cannulation of both internal jugulars; Line 11, sagittal sinus via cannula. /7/ Thirty-four observations. /8/ Measured by method of Kety and Schmidt [11]. /9/Venous samples: Lines 12 and 13, catheterization of coronary sinus. / $10 /$ Measured by an adaptation of the nitrous oxide method of Kety and Schmidt [11].

Contributor: Hegnauer, A. H.

References: [1] Van Slyke, D. D., and Niell, J. M., J. Biol. Chem. 61:523, 1924. [2] Roughton, F. J., and Scholander, P. F., ibid 148:541, 1943. [3] Cournand, A., Riley, R. L., Breed, E. S., Baldwin, E. de F., and Richards, D. W., Jr., J. Clin. Invest. 24:106, 1945. [4] Riley, R. L., Himmelstein, A., Motley, H. L., Weiner, H. M., and Cournand, A., Am. J. Physiol. 152:372, 1948. [5] Goodale, W. T., Lubin, M., Eckenhoff, J. E., Hafkenschiel, J. H., and Banfield, W. G., Jr., ibld 152:340, 1948. [6] Eckenhoff, J. E., Hafkenschiel, J. H., Foltz, E. L., and Driver, R. L., ibid 152:545, 1948. [7] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:476, 1948. [8] Kety, S. S., Woodford, R. B., Harmel, M. H., Freyhan, F. A., Appel, K. E., and Schmidt, C. F., Am. J. Psychiat. 104:765, 1947-48. [9] Schmidt, C. F., Kety, S. S., and Pennes, H. H., Am. J. Physiol. 143:33, 1945. [10] Lougheed, W. M., and Kahn, D. S., J. Neurosurg. 12:226, 1955. [11] Kety, S. S., and Schmidt, C. F., Am. J. Physiol. 143:53, 1945.
59. ARTERIO- VENOUS LACTATE AND PYRUVATE DIFFERENCES IN VARIOUS STRUCTURES: MAN Methods: $\mathrm{C}=$ colorimetric, highly specific, greatly delayed collection technique [1]: $\mathrm{D}=$ distillation, relatively high (non-specific), delayed collection technique $[2,3] ; E=$ colorimetric, extremely rapid collection [1,4]; $F=$ colorimetric, fairly rapid collection [1.5]; $M=$ colorimetric, not arterio-venous but arm vein minus hepatic vein, directional value only $[1,6] ; R=$ fairly specific, extremely rapid collection; $S=$ specific, moderately rapid collection $[5,6]$; $\mathrm{U}=$ unknown collection technique, analysis completely specific (chromatographic): $Y=$ very specific, extremely rapid collection [4]. All values taken in state of complete rest. Values in parentheses are ranges, estimate " b " of the 95% range (cf introduction).

Structure		Lactate		Pyruvate		Lactate-Pyruvate		Reference
		m M / L	Method	mM / L	Method	Ratio	Method	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Concentrations								
1	Artery	1.100	D					7
2		0.887	C					8
3		0.667	F					9
4		0.670	F					5
5		0.618(0.464-0.772)	E	$0.142(0.044-0.240)$	Y	4.24(3.36-5.12)	E, Y	10
6				0.144	S			11
7	Vein, arm	1.110	D					12
8		1.450	D					13
9		1.540	D					14
10		1.222(0.514-1.930)	F	$0.119(0.021-0.217)$	S	10.12(8.18-12.06)	F, S	10
11		1.130	D	0.088	S	13.20	D, S	15
12				0.116	R	9.30	R	16
13				$0.073(0.04 \mathrm{I}-0.105)$	U			17
14						11.3	D, S	15
	A-V Differences							
15	Forearm	-0.110(-0.154 to -0.066)	F					18
16		-0.164(-0.238 to -0.090$)$	E	-0.025 (-0.139 to +0.089$)$	Y	-0.44(-0.74 to -0.14)	E, Y	19
17	Leg	-0.237(-0.405 to -0.069)	E	-0.030(-0.158 to +0.098)	Y	$-0.49(-1.01$ to +0.03)	E, Y	19
18	Brain	-0.178(-0.288 to -0.068$)$	D	-0.025(-0.063 to +0.013)	S			7
19	Heart	+0.300	F	+0.045	S			20
20		+0.574(-0.406 to +1.554$)$	E	$+0.054(-0.020$ to +0.128$)$	Y	+0.54(+0.32 to +0.76$)$	E, Y	19
21	Splanchnic	-0.280	M	+0.050	M	-6.51	M	21
22	Uterus, pregnant	+0.350	E	+0.072	Y	+2.40	E, Y	19

/I/ Venous concentration algebraically subtracted from arterial concentration, i.e., negative values indicate output by the various structures.
Contributor: Huckabee, W. E.
References: [1] Barker, S. B., and Summerson, W. H., J. Biol. Chem. 138:535, 1941. [2] Edwards, H. T., ibid 125:571, 1938. [3] Friedemann, T. E., Cotonio, M., and Shaffer, P. A., ibid 73:335, 1927. [4] Huckabee, W. E., J. Appl. Physiol. $2: 163,1956$. [5] Friedemann, T. E., and Haugen, G. E., J. Biol. Chem. 144:67, 1942.
[6] Friedemann, T. E., and Haugen, G. E., ibid $147: 415$, 1943. [7] Gibbs, E. L., Lennox, W. G., Nimms, L. F., and Gibbs, F. A., ibid 144:325, 1942. [8] Bay, E., Barron, E. S., Adams, W., Gase, T., Halstead, W. C.,
Ricketts, H. T., Committee on Medical Research, Office of Scientific Research and Development, Rept. No. 344, 1944. [9] Decker, D. G., and Rosenbaum, J. D., Am. J. Physiol. 138:7, 1942. [10] Huckabee, W. E., J. Clin. Invest. $37: 255,1958$. [11] Himwich, W. A., and Himwich, H. E., J. Neurophysiol. 9:133, 1946. [12] Bock, A. V., Dill, D. B., and Edwards, H. T., J. Clin. Invest. $11: 775$, 1932. [13] Welss, S., and Ellis, L. B., Arch. Int. M. 55:665, 1935. [14] Hallock, P., J. Clin. Invest. 18:385, 1939. [15] Friedemann, T. E., Haugen, G. E., and Kmieciak, T. C., J. Biol. Chem. 157:673, 1945. [16] Bueding, E., and Goldfarb, W. J., ibid 141:539, 1940. [17] Seligson, D., McCormick, G. J., and Sborov, V., J. Clin. Invest. 31:661, 1952. [18] Andres, R., Cader, G., and Zierler, K. L., ibid 35:671, 1956. [19] Huckabee, W. E., unpublished. [20] Goodale, W. T., Olson, R. E., and Hackel, D. B., Fed. Proc. 9:49. 1950. [21] Mendeloff, A. I., J. Clin. Invest. 33:1298, 1954.
60. ARTERIO-VENOUS POSTABSORPTIVE GLUCOSE DIFFERENCES: MAN

Values are $\mathrm{mg} / 100 \mathrm{ml}$. Those in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Observations		Arterial Blood	Venous Blood	A-V Difference	Reference
(A)		(B)	(C)	(D)	(E)
I	1001	$88.4(78-97)^{2}$	$83.9(74-95)$	$4.5(1-13)$	2
2	63	$91.5(72-121)^{4}$	$89.0(67-121)$	$2.5(0-4)$	2
3	103	$85.0(68-108)^{4}$	$77.0(66-89)$	$9.0(-1$ to +34$)$	2
4	165	$99.0(93-105)^{4}$	$98.0(87-105)$	$1.0(-2$ to +7)	

/I/ Copper iodometric analysis on zinc sulfate-barium hydroxide filtrate; anticoagulant = potassium oxalatesodium fluoride; accuracy $=1 \mathrm{mg} / 100 \mathrm{ml}$. $/ 2 /$ Finger-tip blood, demonstrated to be arterial in character. /3/ Analytical method and accuracy not stated. /4/ Radial artery. /5/ Analytical method of Folin and Wu (1920). Contributor: Hegnauer, A. H.
References: [1] Somogyi, M., J. Biol. Chem. 174:189, 1948. [2] Rabinowitch, 1. M., Brit. J. Exp. Path. 8:76, 1927. [3] Foster, G. L., J. Biol. Chem. 55:291, 1923.

61. BLOOD LACTATE VENOUS LEVELS IN CONDITIONS OF REST, EXERCISE, AND HYPERVENTILATION: MAN

Data, except for Lines 4 and 7, were obtained on tungstic-acid flltrate via KMnO_{4} oxidation to aldehyde, and titration of bound aldehyde by iodine. Data for Line 4: through conversion to aldehyde by concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, and color formation with para-phenyl phenol. Data for Line 7: by oxidation with KMnO_{4} and measured as CO_{2} manometrically in Van Slyke apparatus. Values are expressed in $\mathrm{mg} / 100 \mathrm{ml}$. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Observations	Rest ${ }^{1}$	Exercise	Hyperventilation	Altitude ${ }^{2}$	Reference
(A)	(B)	(C)	(D)	(E)	(F)
$1{ }^{1} 263$	12.0(8.4-16.6)				1
2114	11.7(9.0-16.0)	$12.6(8.6-25.4)^{5}$			2
36	12.5(10.0-16.9)	17.8(11.8-22.0) ${ }^{6}$			1
46	19.0(5.0-45.0)	$77.0(53.0-86.0)^{7}$			3
51	10.7	38.78			4
61	10.7	139.59			4
76	13.2(5.2-21.6)	$157.0(145.0-174.0)^{10}$			5
86	10.1(8.1-13.6)		$27.6(21.3-35.7)^{11}$		2
911	8.2			16.212	4

/1/ At sea level. /2/ At $22,000 \mathrm{ft}$. /3/ On 9 subjects on different days; day-to-day variations may reach $\pm 25 \%$ of mean. $/ 4 /$ On 3 subjects in good physical condition, walking $3.5-8.6 \mathrm{mph}$. $/ 5 /$ Only the subject walking at 8.6 mph showed rise in blood lactate (to $25.4 \mathrm{mg} \%$). /6/Increases in 3 subjects, walking $4.5-5.25 \mathrm{mph} . / 7 /$ Severity of exercise not stated. $/ 8 /$ Jogging at 6.48 mph . $/ 9 /$ Running at 8.8 mph . $/ 10 /$ Samples taken $4-10 \mathrm{~min}$ after $440-\mathrm{yd}$ run by untrained subjects. Samples at $1-2 \mathrm{~min}$ show only $124 \mathrm{mg} \%$, indicating that following strenuous exercise blood lactate continues to rise for $3-6 \mathrm{~min}$. / $11 /$ Hyperventilation to alveolar pCO_{2} of $11-15 \mathrm{~mm} \mathrm{Hg}$. / $12 / \mathrm{Simu}$ lated altitude reached without supplementary O_{2} in 1 hr (no acclimatization); approximately linear rise in blood lactate starting at $10,000 \mathrm{ft}$.

Contributor: Hegnauer, A. H.

References: [1] Cook, L. C., and Hurst, R. H., J. Biol. Chem. 79:443, 1933. [2] Bock, A. V., Dill, D. B., and Edwards, H. T., J. Clin. Invest. 11:775, 1932. [3] Hummel, J. P., J. Biol. Chem. 180:1225, 1945.
[4] Friedemann, T. E., Haugen, G. E., and Kmieciak, T. C., ibid 157:673, 1945. [5] Laug, E. P., Am. J. Physiol. 107:687, 1934.

62. ARTERIO-VENOUS LACTATE DIFFERENCES IN CONDITIONS OF REST, EXERCISE, AND HYPERVENTILATION: MAN

Values are expressed in $\mathrm{mg} / 100 \mathrm{ml}$. Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).

	Observations	Arterial Blood	Venols Blood	A-V Difference ${ }^{1}$	Reference
	(A)	(B)	(C)	(D)	(E)
Rest ${ }^{\text {² }}$					
1	7	12.6(9.7-16.3) ${ }^{3}$	12.5(9.0-14.7) ${ }^{4}$	0	1
2	6	14.1(11.7-16.2) ${ }^{3}$	14.4(10.2-18.0) ${ }^{5}$	0	1
			Exercise ${ }^{6}$		
3	27	65.2(58.6-71.8) ${ }^{3}$	$68.5(62.1-74.8) 4$	-3.3	1
4	18	75.83	74.84	09	1
Hyperventilation 10					
5	6	21.5(11.9-27.7)11	27.6(21.3-35.7) ${ }^{12}$	-6.1(0 to -15.7)	2

/1/ A-V differences given as zero unless statistically significant, or greater than analytical error. /2/Day-to-day variations in resting venous level may range from $7-25 \%$ of mean. /3/ Femoral artery. /4/ Femoral vein.
/5/Jugular bulb. /6/Standing-running at full speed for 1 min . /7/ Blood samples taken within 3 min after exercise. $18 /$ Blood samples taken 5 min after exercise. $/ 9 / 1 \mathrm{mg}$ difference may be real and indicate that removal rate at 5 min exceeds production rate. /10/ Hyperventilation to alveolar pCO_{2} of $11-15 \mathrm{~mm} \mathrm{Hg}$. /11/ Radial artery. 112/ Arm vein.

Contributor: llegnauer, A. 11.
References: [1] Cook, L. C., and Hurst, R. H., J. Biol. Chem. 79:443, 1933. [2] Bock, A. V., Dill, D. B., and Edwards, H. T., J. Clin. Invest. 11:775, 1932.

```
63. ARTERIO-VENOUS GLUCOSE DIFFERENCES AS INFLUENCED BY ALIMENTARY HYPERGLYCEMIA: MAN
```

Non-glucose reducing substances are reported as glucose with the exception of Lines 7-12 where the analytical method employed excludes non-glucose reducing substances. The values presented in Lines 7-12 are, therefore, accurate reflections of true blood glucose and A-V differences.

	Subjects	Observation ${ }^{1}$ hr	Arterial Blood	Venous Blood	A-V Difference	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
25 g Glucose						
1	62	0	91.5(72-121)	89(67-121)	2.5(0-5)	1
2		0.5	218(188-258)	165(149-180)	53(32-80)	1
	50 g Glucose					
3	10^{3}	0	85(68-108)	77(66-89)	$9(-1$ to +34$)$	2
4		0.5	126(98-158)	106(78-128)	21(8-50)	2
5		1	101(74-144)	88(63-128)	13(-1 to +30$)$	2
6		2	86(68-124)	79(62-125)	$7(-7$ to +17$)$	2
	100 g Glucose					
7	16^{4}	0	$91(83-102)^{5}$	86(75-98)	5(1-13)	3
8		0.5	$160(133-189)^{5}$	126(96-150)	34(20-53)	3
9		1	142(95-190) ${ }^{5}$	108(71-140)	34(18-55)	3
10		2	$122(100-165)^{5}$	96(70-142)	26(11-34)	3
11		3	102(64-144) ${ }^{5}$	85(50-131)	17(3-35)	3
12		4	82(57-119) ${ }^{5}$	73(53-94)	9(1-25)	3
13	76	0	101(94-105)	101(93-105)	$0(-1$ to +4)	4
14		0.5	183(147-214)	140(110-163)	43(27-81)	4
15		1	158(118-190)	109(81-134)	49(28-81)	4
16		2	120(106-144)	86(61-107)	$34(26-45)$	4
17		3	103(94-108)	87(80-98)	16(10-28)	4
	100 g Galactose					
18	3^{6}	0	96(95-96)	95(93-97)	1(-1 to +2)	4
19		0.5	148(126-174)	133(117-153)	15(9-21)	4
20		1	182(152-218)	162(142-182)	20(12-36)	4
21		2	238(212-278)	221(195-261)	17(16-17)	4
22		3	186(180-197)	187(173-215)	$-2(-18$ to +9)	4
23		4	110	109	1	4
	100 g Fructose					
24	4^{6}	0	99(93-103)	98(87-105)	1.1(-2 to +6)	4
25		0.5	122(107-139)	101(76-130)	22(9-45)	4
26		1	118(112-125)	97(79-116)	21(9-33)	4
27		2	112(109-114)	103(96-109)	9(5-13)	4
28		2.5	105(98-109)	90(84-100)	15(8-25)	4
	70-100 g Starch					
29	2^{6}	0	98(95-100)	95(93-96)	$3(-1$ to +7)	4
30		0.5	158(151-166)	119(118-120)	35(23-46)	4
31		1	146(140-152)	102(98-107)	44(42-45)	4
32		2	105(91-119)	81(76-86)	24(15-33)	4

/1/After ingestion. /2/Glycosuric subjects, but without clinical signs or symptoms of diabetes; method not stated. /3/ Modification of method of Benedict (1925). /4/Copper iodometric analysis of zinc sulfate-barium hydroxide precipitates of whole blood; anticoagulant = potassium oxalate-sodium fluoride; accuracy $=1 \mathrm{mg} / 100 \mathrm{ml}$. Normal subjects. Rated abnormal and therefore excluded: subjects with arterial peaks exceeding $190 \mathrm{mg} / 100 \mathrm{ml}$, with venous peaks exceeding $150 \mathrm{mg} / \mathrm{ml}$, and in whom use continued into second hr . $/ \mathrm{s} /$ Finger-tip blood, demonstrated to be arterial with respect to glucose content. /6/Method of Folin and Wu (1920). Since "time" coordinates of original data did not correspond, in all cases, to those employed in this table, data of individual experiments were plotted and curves drawn. Values for desired times after sugar ingestion were taken from the plotted curves; tabulated data are means and ranges of these values.

Contributor: Hegnauer, A. H.
References: [1] Rabinowitch, I. M., Brit. J. Exp. Path. 8:76, 1927. [2] Friedenson, M., Rosenbaum, M. K., Thalheimer, E. J., and Peters, J. P., J. Biol. Chem. 80:269, 1928. [3] Somogyi, M. J., ibid 174:189, 1948. [4] Foster, G. L., ibid 55:291, 1923.

These line charts illustrate the effect of changes in temperature on CO_{2} and O_{2} tensions in human or dog blood sealed in an anaerobic environment. The values are applicable to either in vitro or in vivo conditions. Error increases progressively as pH and temperature deviate from standard values of 7.4 and $37^{\circ} \mathrm{C}$ respectively.
$\Delta T=$ temperature change in ${ }^{\circ} \mathrm{C}$.

[^4]This nomogram allows for calculation of serum pK^{\prime} for carbonic acid in man and dog when pH and temperature are known. Mean pK^{\prime} at $37.5^{\circ} \mathrm{C}$ and $\mathrm{pH} 7.40=6.090$.

Contributor: Severinghaus, J. W.
Reference: Severinghaus, J. W., Stupfel, M., and Bradley. A. F., J. Appl. Physiol. 9:197, 1956.
66. $\mathrm{H}_{2} \mathrm{CO}_{3}$ DISSOCIA TION CONSTA NTS: MAN, DOG, OX

The first apparent dissociation constants of $\mathrm{H}_{2} \mathrm{CO}_{3}$ are the same for man, dog, and ox. Methods used were gasometric or glass electrode. Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).

Medium		Temp, ${ }^{\circ} \mathrm{C}$	Dissociation Constant	Reference
	(A)	(B)	(C)	(D)
1	Plasma, pH 7.4	37	$6.09(6.088-6.098)$ I	1
2 3 4	Serum Normal Normal Nephritis	$\begin{aligned} & 20 \\ & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 6.183(6.163-6.208) \\ & 6.11(6.097-6.122) \\ & (6.108-6.134) \end{aligned}$	$\begin{aligned} & 2 \\ & 2-4 \\ & 2-4 \end{aligned}$
5 6	RBC Reduced Oxidized	37 37	$\begin{aligned} & 5.982 \\ & 6.04^{3} \end{aligned}$	3 3

$/ 1 /$ Range varies with $\mathrm{pH}(7.6-7.1)$. / $2 /$ Variation with $\mathrm{pH}_{;} \mathrm{pK}^{\prime}=7.275-0.18 \mathrm{pH} . / 3 /$ Variation with pH ; $\mathrm{pK}^{\prime}=7.120-0.18 \mathrm{pH}$.
Contributors: Bartels, H., and Opitz, E.
References: [1] Wiesinger, K., Rossier, P. H., Saboz, E., and Sampholo, G., Helvet. physiol. pharm. acta 7:(suppl.C) 28, 1949. [2] Cullen, G. E., Keeler, H. R., and Robinson, H. W., J. Biol. Chem. 66:301, 1925. [3] Dill, D. B., Daly, C., and Forbes, W. H., ibid 117:569, 1937. [4] Hastings, A. B., Sendroy, J., Jr., and Van Slyke, D. D., ibid 79:183, 1928.

Data are for normal blood at temperatures corrected to $37^{\circ} \mathrm{C}$. [1] Values for oxygenated blood are means of values in the literature, the 100% range being approximately $\pm 5 \mathrm{ml}$ gas per 100 ml blood; other data are calculations based upon these means. $\{2-11]$ Major factors which influence CO_{2} absorption include state of oxygenation, temperature, hemoglobin concentration, and alkali reserve. (1,6-9, 11-13]

$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \mathrm{Hg} \end{gathered}$		Reduced (R) Oxygenated (O)	$\begin{gathered} \text { Total } \mathrm{CO}_{2} \\ \text { vol } \% \end{gathered}$			$\begin{gathered} \text { Free } \mathrm{CO}_{2}{ }^{1} \\ \text { voll } \% \end{gathered}$			Total Combined $\mathrm{CO}_{2}{ }^{2}$			$\begin{gathered} \text { Plasma }{ }^{6} \\ \mathrm{pH} \end{gathered}$	
		Whole ${ }^{3}$ Blood	RBC ${ }^{4}$	Plasma ${ }^{5}$	Whole Blood	RBC	Plasma	Whole Blood	RBC	Plasma			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)
1		R	32.9	24.0	39.8	0.64	0.58	0.70	32.3	23.4	39.1	7.86	
2	10	0	27.6	17.8	35.1	0.64	0.58	0.70	27.0	17.2	34.4	7.80	
3	20	R	42.3	31.5	50.8	1.29	1.16	1.40	41.0	30.3	49.4	7.66	
4		0	36.8	25.3	46.0	1.29	1.16	1.40	35.5	24.1	44.6	7.61	
5	30	R	48.8	37.2	58.1	1.94	1.74	2.10	46.9	35.5	56.0	7.54	
6		0	43.2	30.1	53.6	1.94	1.74	2.10	41.3	28.4	51.5	7.50	
7	40	R	54.1	42.4	63.8	2.58	2.32	2.80	51.5	40.1	61.0	7.45	
8		0	48.5	35.5	59.1	2.58	2.32	2.80	45.9	33.2	56.3	7.41	
9	50	R	58.6	46.7	68.6	3.22	2.90	3.50	55.4	43.8	65.1	7.38	
10		0	52.8	39.3	63.9	3.22	2.90	3.50	49.6	36.4	60.4	7.35	
11	60		62.6	50.7	72.6	3.87	3.47	4.20	58.7	47.2	68.4	7.32	
12		0	56.7	42.8	68.1	3.87	3.47	4.20	52.8	39.3	63.9	7.29	
13	70	R	66.6	54.7	76.6	4.52	4.05	4.90	62.1	50.7	71.7	7.27	
14		0	60.5	46.8	72.0	4.52	4.05	4.90	56.0	42.7	67.1	7.25	
15	80	R	70.2	58.6	80.1	5.16	4.63	5.60	65.0	54.0	74.5	7.23	
16		0	63.9	50.1	75.5	5.16	4.63	5.60	58.7	45.5	69.9	7.21	

/1/Calculated by equation: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=100 \mathrm{apCO} / 760$, where $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\mathrm{vol} \%$ of free CO_{2}, and alpha is the solubility coefficient for CO_{2} with the values at $37^{\circ} \mathrm{C}$ of 0.490 for whole blood, 0.440 for cells, and 0.531 for plasma. [13-15] /2/ Includes both HCO_{3}^{-}and NHCOO^{-}as the rounded difference between total and free CO_{2}. /3/ Reduced blood values calculated from: $\left[\mathrm{CO}_{2}\right] \mathrm{O}+\left[\mathrm{CO}_{2}\right] \mathrm{b}=\left[\mathrm{CO}_{2}\right] \mathrm{R}$, where $\left[\mathrm{CO}_{2}\right] \mathrm{O}=$ total CO_{2} of oxygenated blood at a given CO_{2} pressure, $\left[\mathrm{CO}_{2}\right] \mathrm{b}=$ average increase in bound CO_{2} with complete reduction, and $\left[\mathrm{CO}_{2}\right] \mathrm{R}=$ total CO_{2} of reduced blood. [2-12] /4/ For cells in contact with plasma at equilibration. Calculations based upon assumed mean cell volume of $45 \mathrm{ml} / 100 \mathrm{ml}$ arterial blood (corrected for pH and oxygenation), and derived by equation:
$\left[\mathrm{CO}_{2}\right]_{\mathrm{c}}=\left(\left[\mathrm{CO}_{2}\right] \mathrm{b}-\left[\mathrm{CO}_{2}\right]_{\mathrm{p}} \times[1-\mathrm{h}]\right) 1 / \mathrm{h}$, where CO_{2} is in $\mathrm{ml} / 100 \mathrm{ml}$ of cells (c), blood (b), or plasma (p), and h is the cell volume as a decimal fraction of blood volume for any given pH and oxygenation. $[13,16-18] / 5$ / For plasma in contact with cells at equilibration. Calculations are based upon CO_{2} of whole blood using " f " values of Van Slyke, Sendroy, and Liu, and an estimated O_{2} capacity, pH , and state of oxygenation. O_{2} capacity estimated from CO_{2} absorption curve of oxygenated whole blood using Cartesian nomogram of Henderson, Bock, Dill and Edwards.
Plasma $\mathrm{CO}_{2}=\left[\mathrm{CO}_{2}\right] \mathrm{b} \times$ "f". $[18,19] / 6 /$ Calculated from equation: $\mathrm{pH}=\mathrm{pK} \mathrm{K}_{1}+\log \frac{\left[\mathrm{CO}_{2}\right] \mathrm{p}-0.0699 \mathrm{pCO}_{2}}{0.0699 \mathrm{pCO}}$, where
[CO_{2} lp is total vol $\%$ of plasma CO_{2}, and 0.0699 (the factor, ap/7.6) expresses dissolved CO_{2} in vol \% of plasma. $\mathrm{pK} \mathrm{K}_{1}$, taken as equal to 6.11 at $37^{\circ} \mathrm{C}$, is the Hastings, Sendroy, and Van Slyke average for human serum at $38^{\circ} \mathrm{C}$ plus a temperature correction of 0.005 at $37^{\circ} \mathrm{C}$. $[13,15,20]$
Contributor: Root, R. W.
References: [1] Eisenmann, A. J., J. Biol. Chem. 99:359, 1932. [2] Means, J. H., Bock, A. V., and Woodwell, M. N., J. Exp. M. 33:201, 1921. [3] Liljestrand, G., and Linhard, J., J. Physiol., Lond. 53:420, 1919-20.
[4] Davies, H. W., Haldane, J. S., and Kennaway, E. L., ibid 54:32, 1920-21. [5] Peters, J. P., Barr, D. P., and Rule, F. D., J. Biol. Chem. 45:489, 1920-21. [6] Dill, D. B., Vancaulaert, C., Hurxthal, L. M., Stoddard, J. L., Bock, A. V., and Henderson, L. J., ibid 73:251, 1927. [7] Parsons, T. R., J. Physiol., Lond. 51:440, 1917. [8] Christiansen, J., Douglas, C. G.. and Haldane, J. S., ibid 48:244, 1914. [9] Joffe, J., and Poulton, E. P., ibid 54:129, 1920-21. [10] Dill, D. B., Wilson, J. W., Hall, F. G., and Robinson, S., J. Biol. Chem. 136:449, 1940. [11] Henderson, L. J., "Blood: A Study in General Physiology." New Haven: Yale Univ. Press, 1928. [12] Bock, A. V., Field, H., and Adair, G. S., J. Biol. Chem. 59:353, 1924. [13] Peters, J. P., and Van Slyke, D. D., "Quantitative Clinical Chemistry," vol 11, Baltimore: Williams and Wilkins, 1931. [14] Van Slyke, D. D., Sendroy, J., Jr., Hastings, A. B., and Neill, J. M., J. Biol. Chem. 78:765, 1928. [15] Dill. D. B., Edwards, H. T., and Consolazio, W. V., ibid $118: 635,1937$. [16] Dill, D. B., ibid $76: 543,1928$. [17] Albritton, E. C., "Standard Values in Blood." Philadelphia: W. B. Saunders Co., 1952 (value from Table 94). [18] Henderson, L. J., Bock, A. V., Dill, D. B., and Edwards, H. T., J. Biol. Chem. 87:181, 1930. [19] Van Slyke, D. D., Sendroy, J., Jr., and Liu. S. H., ibid 95:547, 1932. [20] Hastings, A. B., Sendroy, J., Jr., and Van Slyke, D. D., ibid 79:183, 1928.
Values for CO_{2} are volumes absorbed gas per 100 ml whole blood or serum, obtained by interpolation from smoothed

	Animal	10 mm	20 mm	$\left\lvert\, \begin{gathered} \text { Tot } \\ \\ 30 \mathrm{~mm} \mid \end{gathered}\right.$	$\begin{aligned} & t a l \mathrm{CO}_{2} \\ & \|40 \mathrm{~mm}\| \end{aligned}$	$\begin{aligned} & \text { at } \mathrm{pCO}_{2} \\ & \|50 \mathrm{~mm}\| \end{aligned}$	$\begin{aligned} & \text { of: } \\ & \|60 \mathrm{~mm}\| \end{aligned}$	$70 \mathrm{~mm}$	$80 \mathrm{~mm}$	$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\left[\frac{-\Delta \mathrm{BHC}}{\Delta \mathrm{O}_{2}}\right.$	$]_{3}{ }^{1}$ at pCO_{2}	$\frac{\text { Physiolog }}{\text { Arterial }}$	$\frac{\text { venous }}{}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)
1	Man	27.6	36.8	43.2	48.5	52.8	56.7	60.5	63.9	37	0.27	40	41	46.5	B-L, a; M, N, 1
2	Horse (Equus caballus)	19.3	27.3	33.2	37.9	42.2	46.2	50.2		38	0.35	40	41.6	49.2	B-L, 2; M, N, 3
3	Goose (Anser a. domesticus)	28.8	38.5	45.8	51.5	55.5	58.2	60.2	61.6	40	0.32	40	42-44	53-55	B-N, 4
4	Crocodile (Crocodilus acutus)	11.2	17.5	22.2	26.0	28.8	31.5	34.0	36.2	29	0.52	30			B-L, 5
5	Turtle ${ }^{2}$ (Pseudemys troosti)	64.0	70.9	76.0	80.3	83.9	87.1	89.8	92.3	25	0.44	30	~ 28		B-N, 6, 7
6	Frog (Rana catesbeiana)	42.5	51.7	58.4	63.0	65.8	68.5	70.0		15	0.46	25	aortic b	ood ~ 25	B-N, 8
7	Congo snake ${ }^{3}$ (Amphiuma tridactyla)	41.7	47.1	50.9	53.9	56.4	58.7	60.8	63.2	24	$0.45{ }^{4}$	25			B-L, 9
8	Blackfish (Tautoga onitis)	14.2	19.5	23.5	27.3	30.5	32.8	35.0	37.0	15	$\begin{aligned} & 0.43- \\ & 0.955 \end{aligned}$	10	$\sim 2^{6}$	$\sim 10^{6}$	$\underset{12}{\mathrm{~B}-\mathrm{L}, 10,11 ; \mathrm{M}, \mathrm{~N},}$
9	Carp (Cyprinus carpio)	22.3	29.6	33.7	36.7	39.3	41.4	43.6		15-16	$0.54{ }^{7}$	10	3-5	5-10	$\underset{14,16}{\mathrm{~B}-\mathrm{L}, 13-15, \mathrm{M}, \mathrm{~N},}$
10	Mackerel (Scomber scombrus)	21.0	28.5	33.9	37.8	41.0	43.8	46.2	48.9	20	0.40	10	$\sim 2^{6}$	$\sim 10^{6}$	B-N, 12
11	Skate (Raia oscillata)	14.2	20.5							25	0.0^{8}		1.4		B-C, J-M, 17
2	Echiuroid worm ${ }^{9}$ (Urechis caupo)	10.5	14.0	16.0	18.0	20.0				18.5	$0.0{ }^{10}$		celomic	fluid ~ 7	B-F, J-N, 18
13	Horsehoe crabl${ }^{12}$ (Limulus polyphemus)	6.7	8.9	10.2	11.4	12.6				22	0.011			侕	B-F, J-L, 19
4	Squid ${ }^{2} 2$ (Loligo pealei)	11.7	17.0	19.3	21.2	22.2	23.0	23.9	24.8	23	0.69	10	2.2	6.0	B-L, 19; M, N, 20
15	Whelk ${ }^{12}$ (Busycon canaliculatum)	24.6	32.2	36.5	39.6	42.2	44.2	46.5	48.7	24	-0.6413	10			B-L, 19

1952 (values from Table 94). [2] Van Slyke, D. D.,

โz: Study in General Physiology," New Haven: Yale Uni [13] Wast1, H., Biochem. Zschr. 197:363, 1928. 1940. [16] Hoar, W. S., Black, V. S., and Black, 69:475, 1926. Blood: A A. C.,
 1932. [18] Redfield, A. C., and Florkin, M., ibid 61:185, 1931. [19] Redfield, A. C., Coolidge,

69. DATA FOR CONSTRUCTING BLOOD O O_{2} DISSOCLA TION CURVES

Lowest oxygen tension, in mm Hg , at which respiratory blood pigment (hemoglobin, unless otherwise indicated) is 95% or more saturated, is referred to as tension of saturation; that at which the pigment is 50% saturated (i.e., when unoxygenated pigment equals oxygenated pigment) is called the tension of half-saturation and indicated as "t. $\frac{1}{2}$ sat." The tension of half-saturation for a specific pigment establishes the upper limit of tissue oxygen tension and the lower limit of environmental oxygen for the function of that pigment. When per cent saturation is plotted as ordinate against oxygen pressure as abscissa, the "position" (O_{2} pressure required to produce 50% saturation) of the resultant dissociation curves differs from species to species, and varies greatly within the same species with changes in pH , temperature, and dilution. The "shape" is not affected by these factors, in that the curves may be superimposed upon each other by multiplying pO_{2} (t . $\frac{1}{2}$ sat.) of standard curve for man by a suitable factor " f^{\prime} " [1]. This is true only as a first approximation, for certain fish show some change in shape with changes in pCO_{2}, and sheep hemoglobin at low O_{2} pressures has definite changes in shape as pH is varied [2]. The figure below illustrates dissociation curves for two animals whose blood has a low affinity for oxygen, i.e., a high t. $\frac{1}{2}$ sat. (pigeon, crocodile), and for two others (arenicola, eel) showing a high affinity and low t. $\frac{1}{2}$ sat. In the tables below, values in brackets are calculated "f" factors.

Part I: MAN

	$\begin{gathered} \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	\% Saturation	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	3.7	5.0	7.40	37.0	47.4	A-E 3; F 4, 5
2	8.2	10.0	7.40	37.0	47.0	A-E 3; F 4, 5
3	10.9	15.0	7.40	37.0	46.6	A-E 3; F 4, 5
4	13.4	20.0	7.40	37.0	46.2	A-E 3; F 4, 5
5	17.9	30.0	7.40	37.0	45.3	A-E 3; F 4, 5
6	22.0	40.0	7.40	37.0	44.6	A-E 3; F 4, 5
7	26.31	50.01	7.401	37.01	43.81	A-E 3; F 4, 5
8	31.1	60.0	7.40	37.0	43.0	A-E 3; F 4, 5
9	36.1	70.0	7.40	37.0	42.2	A-E 3; F 4, 5
10	45.7	80.0	7.40	37.0	41.5	A-E 3; F 4, 5
11	51.7	85.0	7.40	37.0	41.1	A-E 3; F 4, 5
12	61.4	90.0	7.40	37.0	40.7	A-E 3; F 4, 5
13	80.0	95.0	7.40	37.0	40.3	$A-E 3 ; F 4,5$
14	113.0	98.0	7.40	37.0	40.0	A-E 3; F 4, 5

/1/ Standard reference condition with an " f " factor taken as (1.00].
Part 1I: MAMMALS

Animal			2. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$	Reference
(A)			(B)	(C)	(D)	(E)	(F)
1	Man [1.48)		$(39.0)^{1}$	7.00	37.0	142	A-D 3; E 4, 5
2	Man [1.35]		$(35.5)^{1}$	7.10	37.0	110	A-D 3; E 4, 5
3	Man [1.22]		32.2	7.20	37.0	84	A-D 3; E 4, 5
4	Man [1.11]		29.2	7.30	37.0	60	A-D 3; E 4, 5

$/ 1 /$ Values in parentheses are calculated. In calculations at $37{ }^{\circ} \mathrm{C}, \mathrm{pH}=6.15+\log \frac{\left(\text { total } \mathrm{CO}_{2}\right)-0.0290 \mathrm{pCO}_{2}}{0.0290 \mathrm{pCO}_{2}}$,
where 6.15 and 0.0290 are the pK^{\prime} and CO_{2} factors, respectively, for whole blood.

Values in brackets are calculated " f " factors.
Part Il: MAMMALS (Continued)

	Animal	t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
5	Man [1.00]	26.3	7.40	37.0	44	A-D 3; E 4, 5
6	$\operatorname{Man}[0.90$]	23.5	7.50	37.0	31	A-D 3; E 4, 5
7	Man [0.80]	21.0	7.60	37.0	22	A-D 3; E 4, 5
8	$\operatorname{Man}[0.71]$	$(18.5)^{1}$	7.70	37.0	15	A-D 3; E 4, 5
9	Man [0.29]	7.4	7.40	10.0		6
10	Man [0.47]	12.4	7.40	20.0		6
11	$\operatorname{Man}[0.74]$	19.6	7.40	30.0	$(48)^{1}$	A-D 6; E 6, 7, 8
12	$\operatorname{Man}[1.00]$	26.3	7.40	37.0	(44) ${ }^{1}$	A-D 6; E 6, 7, 8
13	Man [1.14]	30.0	7.40	40.0	(42) ${ }^{1}$	A-D 6; E 6, 7, 8
14	Man, at work [1.00]	26.5	7.40	37.5	34	9
15	Man, at altitude, 5400 m [0.97]	29.0	7.40	37.5	29	10,11, 12
16	Man, terminal nephritis [1.14]	30.0	7.11	37.5	7	13
17	Man, terminal nephritis [1.79]	47.0	6.83	37.5	40	13
18	Man, pernicious anemia [1.18]	31.0	7.40	37.5	48	14
19	Man, diabetic coma [1.03]	27.0	7.40	37.5	2	15
20	Man, diabetic coma [1.25]	33.0	6.86	37.5	40	15
21	Man, diabetic coma [1.33]	35.0	7.40	37.5	3	15
22	Man, diabetic coma [1.52]	40.0	6.92	37.5	40	15
23	Cat [1.44]	38.0	7.40	37.0		16
24	Cat [1.33]	35.0	7.40	37.0	44	17
25	Cat	50.0	6.80			18
26	Dog [1.06]	28.0	7.40	37.5	38	19
27	Dog (Canis familiaris)	29.4	7.10	37.0		18
28	Dog2	0.6	7.00	20.0		20
29	Dog ${ }^{2}$	0.5	9.20	20.0		20
30	Fox	(21) ${ }^{1}$			10	18
31	Fox (Vulpes fulva)	37.0		37.5	40	18
32	Goat (Capra hircus), adult	28-33		38.0	50	21
33	Goat, fetal	25.0		38.0	50	21
34	Goat, maternal	40		38.0	50	21
35	Horse [1.03]	27.0	7.40	37.5	50	22
36	Horse2	3.7	7.00	37.0		23
37	Horse ${ }^{2}$	3.4	7.200	37.0		23
38	Horse ${ }^{2}$	3.2	7.40	37.0		23
39	Horse ${ }^{2}$	1.5	7.40	30.0		23
40	Horse ${ }^{2}$	1.1	7.40	27.0		23
41	Horse ${ }^{2}$	0.5	7.40	20.0		23
42	Horse ${ }^{2}$	0.3	7.40	17.0		23
43	Llama (Lama huanachus glama) [0.76]	20.0	7.40	39.0		24
44	Llama (L. peruana)	22.0		38.0	43	18
45	Marmot	23.8		38.0	40	18
46	Mouse (Mus musculus)	72.0		38.0	40	18
47	Ox [1.13]	29.8	$(7.40)^{1}$	37.0	29.8	25
48	$0 x^{2}$	0.6	7.00	19.0		20
49	Ox^{2}	0.5	9.20	19.0		20
50	Peccary [1.10]	29.0	7.40	37.0		25
51	Porpoise (Phocaena phocaena) [1.14]	30.0		38.0	46	26
52	Rabbit [1.20]	31.6	7.40	38.6	32	24
53	Rat [1.52]	40.0	7.40	37.0		16
54	```Rat, kangaroo (Dipodomys spectabilis) [1.93]```	51.0		37.0	40	27
55	Rat, white (Rattus norvegicus) [2.13]	56.0		37.0	40	27
56	Sea lion (Eumetopiaes stelleri) [1.52]	40.0		38.0	44	28
57	Seal	25			10	18
58	Seal (Phoca vitulina)	31		38.0	40	18
59	Seal, harbor (P. vitulina) [1.06]	28.0		37.0	40	29

$/ 1 /$ Values in parentheses are calculated. In calculations at $37^{\circ} \mathrm{C}, \mathrm{pH}=6.15+\log \frac{\left(\text { total } \mathrm{CO}_{2}\right)-0.0290 \mathrm{pCO}_{2}}{0.0290 \mathrm{pCO}_{2}}$.
where 6.15 and 0.0290 are the pK^{\prime} and CO_{2} factors, respectively, for whole blood. /2/ Myoglobin (myohemoglobin, muscle hemoglobin). Oxygen dissociation curves of myoglobin are rectangular hyperbolas and are defined by giving pO_{2} for 50% saturation.

Values in brackets are calculated "f" factors.
Part II: MAMMALS (Concluded)

Animal	t. $\frac{1}{2}$ sat. $\mathrm{mm} \mathrm{Hg}$	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
(A)	(B)	(C)	(D)	(E)	(F)
60 Sheep [1.48]	39.0	$(7.40)^{1}$	37.0		25
61 Sheep (Ovis aries)	37.0		39.0	40	18
62 Sheep, diluted blood and Hb	3.0	9.30	19.0	0.015	17
63 Sheep ${ }^{2}$	0.5	9.20	20.0		20
64 Swine [1.28]	33.7	(7.40) ${ }^{1}$	37.0		25
65 Vicuna (Lama vicugna) [0.69]	18.0	7.40	39.0		24
66 Viscacha (Lagostomus sp) [0.99]	26.0	7.40	38.6	28	24

$/ 1 /$ Values in parentheses are calculated. In calculations at $37^{\circ} \mathrm{C}, \mathrm{pH}=6.15+\log \frac{\left(\text { total } \mathrm{CO}_{2}\right)-0.0290 \mathrm{pCO}_{2}}{0.0290 \mathrm{pCO}_{2}}$, where 6.15 and 0.0290 are the pK^{\prime} and CO_{2} factors, respectively, for whole blood. /2/ Myoglobin (myohemoglobin, muscle hemoglobin). Oxygen dissociation curves of myoglobin are rectangular hyperbolas and are defined by giving pO_{2} for 50% saturation.

Part Ill: BlRDS

	Animal	t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Chicken [1.98]	51	7.14	40.0	37	30
2	Chicken	58		38.0	31	31
3	Chicken (Gallus domesticus)	52	7.10	37.5		32
4	Chicken, Hb solution [2.35]	62.0	7.10	37.0		32
5	Chicken, Hb solution [1.58]	41.7	7.40	37.0		32
6	Chicken, Hb solution [1.12]	29.5	7.70	37.0		32
7	Crow	53.0		42.0	40	33
8	Duck	45	7.10	37.5		31,32
9	Duck (Anas sp)	42.0		37.5	40	18,33
10	Duck, domestic [1.71]	45		37.0		32
11	Duck, muscovy [1.48]	39.0		37.0		32
12	Duck, muscovy, Hb solution [2.20]	58.0	7.10	37.0		32
13	Goose	37.5		42.0	50	33
14	Goose	45.0	7.10	37.5		18
15	Goose	(24) ${ }^{1}$			10	18
16	Goose	35.7			40	18
17	Goose, domestic [1.64]	43.0		37.0		32
18	Goose ${ }^{2}$	0.7	9.20	20.0		20
19	Huallata (Chloephaga melanoptera)	33.0	7.35	40.0		24
20	Ostrich (Rhea americana)	26.0	7.35	40.0		24
21	Pheasant	50.0	7.10	37.5		18
22	Pheasant, ringnecked [1.82]	48.0		37.0		32
23	Pigeon	35.0		37.5	40	17,34
24	Pigeon	40.0	7.10	37.5		18
25	Pigeon, domestic [1.48]	39.0		37.0		32
26	Pigeon, domestic	44.0		40.0		32

$/ 1 /$ Values in parentheses are calculated. In calculations at $37{ }^{\circ} \mathrm{C}, \mathrm{pH}=6.15+\log \frac{\left(\text { total } \mathrm{CO}_{2}\right)-0.0290 \mathrm{pCO}_{2}}{0.0290 \mathrm{pCO}_{2}}$, where 6.15 and 0.0290 are the pK^{\prime} and CO_{2} factors, respectively, for whole blood. / / / Myoglobin (myohemoglobin, muscle hemoglobin). Oxygen dissociation curves of myoglobin are rectangular hyperbolas and are defined by giving pO_{2} for 50% saturation.

Part IV: REPTILES

Animal		t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Alligator	11			10	18
2	Alligator	28			40	18
3	```Alligator (Alligator mississippiensis) [1.06]```	28.0	7.60	29.0	42.0	35
4	Chuckwalla (Sauromalus obesus) $[0.91]$	24.0	7.60	20.0	37.0	36

Values in brackets are calculated "f" factors.
Part IV: REPTILES (Concluded)

Animal		t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
5	Chuckwalla (S. obesus) [2.36]	62.0		37.0	$(55)^{1}$	36
6	Crocodile (Crocodilus acutus) [1.0]	26.0	(7.40) ${ }^{1}$	29.0	(50) ${ }^{1}$	37
7	Crocodile (C. acutus) [2.0]	53.0	(7.40) ${ }^{1}$	37.0	(45) ${ }^{1}$	37
8	Crocodile (C. acutus)	38.0	7.20	29.0		37
9	Gila monster (Heloderma suspectum) [1.22]	32.0	7.40	20.0	36.0	38
10	Gila monster (H. suspectum) [2.24]	59.0	7.40	37.0	(32) ${ }^{1}$	38
11	Gila monster (H. suspectum)	31.0	7.32	20.0	37.0	b
12	Tortoise (Terrapene carolina) ${ }^{2}$	12.0	7.40	25.5		18
13	Turtle (Caretta caretta) ${ }^{2}$	28.5	7.40	25.5		18
14	Turtle (Chelonis mydras) ${ }^{2}$	19.0	7.40	25.5		18
15	Turtle (Chelydra serpentina) ${ }^{2}$	14.0	7.40	25.5		39.40
16	Turtle (Pseudemya concinna) [0.77]	20.0		25.0	40.0	41
17	Turtle (P. elegans)	28.0		25.0	27.0	18
18	Turtle (P. scripta) ${ }^{2}$	15.8	7.40	25.5		18
19	Turtle (P. troostii)	26.0		25.0	34.0	18,42
20	Turtle, painted (Chrysemis picta) ${ }^{2}$	15.0	7.40	25.5		18

$/ 1 /$ Values in parentheses are calculated. In calculations at $37^{\circ} \mathrm{C}, \mathrm{pH}=6.15+\log \frac{\left(\operatorname{total} \mathrm{CO}_{2}\right)-0.0290 \mathrm{pCO}_{2}}{0.0290 \mathrm{pCO}_{2}}$, where 6.15 and 0.0290 are the pK^{\prime} and CO_{2} factors, respectively, for whole blood. /2/Hemoglobin solutions.

Part V: AMPHIBLANS

	Animal	t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	$\begin{aligned} & \text { Congo eel (Amphiuma tridactyla) } \\ & {[1.14]} \end{aligned}$	30.0		26.0	43.0	43
2	Frog (Rana esculenta)	11.0			1-2	18
3	Frog (R. esculenta)	17.0			10.0	18
4	Frog (R. esculenta)	49.0			10.0	18
5	Frog (R. catesbiana), adult ${ }^{\text {a }}$	26.0	7.38	25.4		44
6	Frog (R. catesbiana), adult 1	13.5	7.40	20.0		45
7	Frog (R. catesbiana), larval	6.0	7.38	25.4		44
8	Frog (R. catesbiana), larval	4.6	7.32	20.0		45
9	Frog (R. catesbiana), tadpole ${ }^{1}$	5.0	6.80			44
10	Toad (Bufo sp) ${ }^{1}$	30.0	7.38	25.4		18,46
11	(Amphiuma sp) ${ }^{1}$	15.0	7.38	25.4		43,46
12	(Cryptobranchus sp)1	18.0	7.38	25.4		18,46
13	(Desmognathus sp)1	5.0	7.38	25.4		18,46
14	(Triturus sp)1	7.5	7.38	25.4		18,46

/1/ Hemoglobin solutions.
Part Vl: FISH

Animal		t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Baiara	8.0		28.0	0	18
2	Baiara	22.0			25.0	18
3	Bom-bom	11.0		28.0	0	18
4	Bom-bom	13.0			25.0	18
5	Bowfin	4.0		15.0	1-2	18
6	Bowfin	9.0			10.0	18
7	Carp	8.0			10.0	18
8	Carp	13.0		18.0	30.0	47
9	Carp (Cyprinus carpio)	5.0		15.0	1-2	18
10	Catfish	1.4			1-2	18
11	Catfish	5.0			10.0	18
12	Catfish	1.4		15.0	0-1	18
13	Cod	15.0		14.0	<0.3	18
14	Eel, electric	12.0		28.0	0	18

Part VI: FISH (Concluded)

Animal		t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
15	Eel, electric	18.0			25.0	18
16	Eel, salt water (Anguilla bostoniensis)	4.0		17.0	0.3	18
17	Haimara	8.0		28.0	0	18
18	Hassa	11.0		28.0	0	18
19	Hassa	20.0			25.0	18
20	Mackerel (Scomber scombrus)	52.0			10.0	18,48
21	Mackerel (S. scombrus)	17.0	8.0	20.0	1.0	48
22	Mackerel (S. scombrus), dilute Hb solution	18.0	7.38	25.0		18
23	Paku	12.0		28.0	0	18
24	Paku	55.0			25.0	18
25	Plaice	12.0		16.5	0.3	18
26	Ray (Raja sp) ${ }^{\text {l }}$	26.0	7.38	25.0		49
27	Ray (Raja sp)	45.0		25.0	1.0	49
28	Remora (Echeneis naucrates)l	11.0	7.38	25.0		49
29	Remora (E. naucrates) ${ }^{1}$	53.0	6.80	25.0		49
30	Salmon, Atlantic, brackish water	23.0		15.0	1-2	18
31	Salmon, Atlantic, fresh-water	21.0		15.0	1-2	50
32	Salmon, Atlantic, fresh-water	35.0		15.0	10.0	18,50
33	Scup (Stenotomus chrysops) ${ }^{1}$	6.4	7.38	25.0		49
34	Sea robin (Prionatus carolinas)1	21.0	7.38	25.0		49
35	Sea robin (P. carolinas)	17.0	7.70	20.0	1.0	48
36	Shark (Mustelus canis)l	7.0	7.40	25.0		49
37	Shark (M. canis) ${ }^{\text {l }}$	12.0	6.80	25.0		49
38	Shark (Hypoprion brevirostris) ${ }^{1}$	7.6	7.40	25.0		51
39	Skate (Raja oscillata)	20.0	7.80	10.4	1.0	52
40	Skate (R. oscillata)	45.0		25.0	1.0	52
41	Skate (R. oscillata)	98.0		37.0	1.0	52
42	Skate (R. oscillata)	11.0		0.2	1.0	52
43	Stingray (Dasyatus sp) ${ }^{\text {l }}$	13-15	7.40	25.0		51
44	Sucker	12.0		15.0	1-2	18
45	Sucker	43.0			10.0	18
46	Tautog (Tautoga onitus)l	6.0	7.38	25.0		49
47	Toadfish	14.0		20.0	1-2	18
48	Toadfish	33.0			10.0	18
49	Toadfish (Opsanus tau)!	3-4.4	7.38	25.0		49
50	Toadfish (O. :au)	13.0	7.70	20.0	1.0	48
51	Trout, brook	17.0		15.0	1-2	18
52	Trout, brook	42.0		15.0	10.0	18
53	Trout, brown	17.0		15.0	1-2	18
54	Trout, brown	39.0		15.0	10.0	18
55	Trout, rainbow	18.0		15.0	1-2	18
56	Trout, rainbow	35.0		15.0	10.0	18

/1/ Hemoglobin solutions.
Part Vll: invertebrates

Animal		t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Anadara	10.0				18
2	Arenicola	1.8	7.3			18
3	Arenicola	1.8		17.0	0	18
4	Busyconl	6.0		23.0	13.5	53
5	Cancer ${ }^{1}$	12.0		23.0	0	18
6	Ceriodaphnia	0.8		17.0	0	18
7	Chironomus	0.2		17.0	0	18
8	Chironomus	0.6		17.0	0	18
9	Daphnia	3.1		17.0	0	18
10	Gastrophilus, concentrated	4.9		39.0		18

/1/ Hemocyanin.

Part VII: INVERTEBRATES (Concluded)

Animal		t. $\frac{1}{2}$ sat. mm Hg	pH	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
11	Gastrophilus, dilute	0.02		39.0		18
12	Helix, summer ${ }^{1}$	12.0		20.0	0	18,53
13	Helix, winter ${ }^{1}$	11.0	8.20	20.0		18
14	Homarus ${ }^{1}$	90.0	7.20			18
15	Limulus ${ }^{1}$	11.0			0	18
16	Limulus ${ }^{\text {l }}$	13.0	7.70			18
17	Loligol	36.0		23.0	0	18,54,55
18	Nippostrongylus	<0.1		19.0		18
19	Octopus ${ }^{1}$	3.0		25.0	0.6	18,56-58
20	Phascolosoma ${ }^{2}$	8.0		19.0		18
21	Planorbis	1.9		17.0	0	18
22	Planorbis	7.0		20.0	0	18
23	Sipunculus ${ }^{2}$	8.0		19.0	0.07-80	18
24	Spirographis ${ }^{3}$	27.0	7.70	20.0		18
25	Tubifex	0.6		17.0	0	18
26	Urechis ${ }^{2}$	12.3		19.0	8.6	18

/1/ Hemocyanin. /2/ Hemerythrin. 13/ Chlorocruorin.
Contributors: (a) Forbes, W. H., (b) Lucas, M. S., (c) McCutcheon, F. H., (d) Oberholzer, R., (e) Root, R. W., References: [1] Allen, D. W., Guthe, K. F., and Wyman, J., J. Biol. Chem. 18F:393, 1950. [2] Paul, W., and Roughton, F. J., J. Physiol., Lond. 113:23, 1951. [3] Dill. D. B., in "Handbook of Respiratory Data in Aviation," Committee on Medical Research, Washington, 1944. [4] Dill, D. B., Edwards, H. T., and Consolazio, W. V., J. Biol. Chem. 118:635, 1937. [5] Singer, R. B., and Hastings, A. B., Medicine 27:223, 1948. [6] Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941. [7] Cullen, G. E., Keeler, H. R., and Robinson, H. W., J. Biol. Chem. 66:301, 1925. [8] Dill, D. B., Daly, C., and Forbes, W. H., ibid 117:569. 1937. [9] Christensen, E. H., and Dill, D. B., ibid 109:443, 1935. [10] Dill, D. B., Talbott, J. H., and Consolazio, W. V., ibid $118: 649,1937$. [11] Hurtado, A., Dunham Lecture, Harvard Medical School, Boston, 1953. [12] Keys, A., Hall, F. G., and Guzman Barron, E. S., Am. J. Physiol. 115:292, 1936. [13] Henderson, L. J., Bock, A. V., Dill, D. B., Hurxthal, L. M., Van Caulaert, C., J. Biol. Chem. $75: 305$, 1927. [14] Dill, D. B., Bock, A. V., Van Caulaert, C., Folling, A., Hurxthal, L. M., and Henderson, L. J., ibid 78:191, 1928. [15] Dill, D. B., Bock, A. V.. Lawrence, J. S., Talbott, J. H., and Henderson, L. J., ibid 81:551, 1929. [16] Dept. of Biochemistry, Harvard Medical School, unpublished, 1948-53. [17] Roughton, F. J., Symposium, "Haemoglobin," p 85, New York: Interscience
Publishers, Inc., 1949. [18] Prosser, C. L., "Comparative Animal Physiology," Philadelphla: W. B. Saunders Co., 1950. [19] Dill, D. B., Edwards, H. A., Florkin, M., and Campbell, R. W., J. Biol. Chem. 95:143. 1932.
[20] Hill, R., Proc. Roy. Soc., Lond. B 120:472, 1936. [21] Barcroft, J., Elliott, R. H., Flexner, L. B., Hall,
 Van Caulaert, C., Hurxthal, L. M., Stoddard, J. L., Bock, A. V., and Henderson, L. J., J. Biol. Chem. 73:251, 1927. [23] Theorell, H., Biochem. Zschr. 268:73, 1934. [24] Hall, F. G., Dill, D. B., and Guzman Barron, E. S., J. Cellul. Physiol. 8:301, 1936. [25] Dill, D. B., and Talbott, J. H., Am. J. Physiol. 90:328, 1929. [26] Green, A. A., and Redfield, A. C., Biol. Bull. 64:44, 1933. [27] Gjonnes, B., and Schmidt-Nielsen, K.. J. Cellul. Physiol. 39:147, 1952. [28] Florkin, M., and Redfield, A. C., Biol. Bull. 61:422, 1931. [29] lrving, L., Solandt, O. M., Solandt, D. Y., and Fisher, K. C., J. CeIlul. Physiol. 6:393, 1935. [30] Morgan, V. E., and Chichester, D. F., J. Biol. Chem. 110:285, 1935. [31] Rostorfer, H. H., and Rigdon, R. H., Biol. Bull. 92:23, 1947. [32] Christensen, E. H., and Dill, D. B., J. Biol. Chem. 109:443, 1935. [33] Wastl, H., and Leiner, G., Pflügers Arch. 227:367, 421, 1931. [34] Drastich, L., ibid 219:227, 1928. [35] Dill, D. B., and Edwards, H. T., J. Cellul. Physiol. 6:243, 1935. [36] Dill, D. B., Edwards, H. T., Bock, A. V., and Talbott, J. T., ibid 6:37, 1935. [37] Dill, D. B., and Edwards, H. T., J. Biol. Chem. 90:515, 1931. [38] Edwards, H. T., and Dill, D. B., J. Cellul. Physiol. 6:21, 1935.
[39] Henderson, L. J., "Blood: A Study in General Physiology, "New Haven: Yale Univ. Press, 1928.
[40] McCutcheon, F. H., J. Cellul. Physiol. 29:333, 1947. [41] Southworth, F. C., and Redfield, A. C., J. Gen. Physiol. 9:387, 1926. [42] Wilson, J. W., J. Cellul. Physiol. 13:315, 1939. [43] Scott, W. J.. Biol. Bull. 61:211, 1931. [44] McCutcheon, F. H., J. Cellul. Physiol. 8:63, 1936. [45] Riggs, A. F., J. Gen. Physiol. 35:23, 1951. [46] McCutcheon, F. H., and Hall, F. G., J. Cellul. Physiol. 9:191, 1937. [47] Wastl, H., Biochem. Zschr. 197:363, 1928. [48] Root, R. W., Biol. Bull. 61:427, 1931. [49] Hall, F. G., and McCutcheon, F. H., J. Cellul. Physiol. 11:205, 1938. [50] Redfield, A. C., Quart. Rev. Biol. 8:31, 1933. [51] McCutcheon, F. H., J. Cellul. Physiol. 29:333, 1947. [52] Dill, D. B., Edwards, H. T., and Florkin, M., Biol. Bull. 62:23, 1932. [53] Redfield, A. C., Biol. Rev. Cambridge Philos. Soc. $9: 175,1934$. [54] Redfield, A. C., Coolidge, T., and Hurd, A. C., J. Biol. Chem. 69:475, 1926. [55] Redfield, A. C., and Goodkind, R., J. Exp. Biol. 6:340, 1929. [56] Dhere, C., J. physiol., Par. $\frac{18}{25}: 221,1919 .[57]$ Winterstein, H., Biochem. Zschr. 19:384, 1909. [58] Wolvekamp, H. P., Zschr. vergl. Physiol. 25:541, 1938.

USE OF CHARTS:

Changes in temperature and pH (serum) alter the position but not the shape of the oxygen dissociation curve. Dissociation curves for various values of pHs and temperature for man may be computed from the one standard curve for normal human blood at 370 , pHs 7.4 , by multiplying all the pO_{2} values by factors for temperature and pHs . The left-hand line gives factors for temperature, the next line factors for pHs . The two right-hand line graphs give the standard oxygen dissociation curve in a form more easily read than the usual graph. The computation is given by

$$
P_{t, p H}=P \times f_{t} \times f_{p H}
$$

where $\mathrm{P}_{\mathrm{t}, \mathrm{pH}}$ is the pO_{2} at temperature t and pH, P is the pO_{2} at $37^{\circ}, \mathrm{pHs} 7.4$ for the same $\%$ saturation, given on the standard curve, and f_{t} and f_{pH} are the multipliers obtained from the line charts.

Examples of the use of these charts follow:

1) Problem: Prepare a complete oxygen dissociation curve for $30^{\circ}, \mathrm{pH} 7.6$.

Method: The factor for 30° is 0.74 , and for pH 7.6 is 0.80 . Their product is 0.59 . Multiply all pO_{2} values in the standard curve by 0.59 ; i.e., for 50% saturation, pO_{2} in the new curve is $26.4 \times 0.59=15.6 \mathrm{~mm} \mathrm{Hg}$.
2) Problem: Arterial blood taken during surgery had 88% saturation by Van Slyke manometric methods. pH was 7.56 at body temperature of $33.8^{\circ} \mathrm{C}$. What is the pO_{2} ?

Method: From the standard dissociation curve, right-hand line, at 88% saturation, $\mathrm{pO}_{2}=57 \mathrm{~mm} \mathrm{Hg}$. The factors are, for $\mathrm{pH}, 0.84$ and for temperature, $0.87 . \mathrm{pO}_{2}=57 \times 0.84 \times 0.87=41.6 \mathrm{~mm} \mathrm{Hg}$ in the patient.

To convert tension to saturation, factors are used as dividers:
3) Problem: Arterial blood from a febrile subject had a pO_{2} of 73 mm Hg , determined at body temperature, $40^{\circ} \mathrm{C}$, using a Roughton Scholander syringe. pHs, corrected to 40°, was 6.98 . What is the $\%$ saturation?
Method: Factors are 1.14 for temperature, and 1.52 for pHs . $\frac{73}{1.14 \times 1.52}=42.1 \mathrm{~mm} \mathrm{Hg}$. From the dis-
4) Problem: Blood taken from a heart-lung by-pass machine was found to have a pO_{2} by polarograph of 65 mm Hg and pHs of 7.72 , both having been measured at 37°. The blood in the machine was at 30°. What is the $\%$ saturation, and the pO_{2}, in the machine?

Method: Since the blood was warmed anaerobically to 37° for pHs and pO_{2} measurement, its saturation was unchanged, and the only correction needed to calculate saturation is that for pHs. This, for 7.72 is 0.70 . $\frac{65}{0.70}=93 \mathrm{~mm} \mathrm{Hg}$, which from the dissociation curve reads 96.4% saturation.

To find pO_{2} at 300 , first the pHs at 30° must be computed from the whole blood pHs factor, -0.0147 units per degree [1]. $-7^{\circ} x-0.0147=+0.103$. Inasmuch as pHs rises as temperature falls, 0.103 is added to $7.72(=7.82)$. The factor for pH 7.82 is 0.63 and for 30° is 0.74 . $93 \times 0.63 \times 0.74=43.3$ mm Hg pO 2 in the machine. A simpler method of correcting the pO_{2} from 37° to 30° is given in the line chart on page 62 (correction of pO_{2} and pCO_{2} of blood in vitro for temperature changes).

The standard dissociation curve, and the pHs and temperature factors are taken from curves published by Dill and Forbes [2,3]. Tensions at the high end of the curves were taken from Nahas, et al [4]. These are assumed to be average curves, subject to some variation in normals and perhaps great variation in disease, particularly diabetes and anemia. The chief reason for variation is failure of intracellular pllc, which actually determines the affinity of hemoglobin for oxygen, to be constantly related to serum pHs.

Contributor: Severinghaus, J. W.
References: [1] Rosenthal, T. B., J. Biol. Chem. 173:25, 1948. [2] Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941. [3] Dill, D. B., "Handbook of Respiratory Data in Aviation," Committee on Medical Research, Washington, 1944. [4] Nahas, C. G., Morgan, E. H1., and Wood, E. H., J. Appl. Physiol. 5:169, 1952.

Oxyhemoglobin Dissociation Curve $\mathrm{pH} 7.4,37^{\circ} \mathrm{C}$.

Contributor: Severinghaus, J. W.

Theory and method of development of straight line curves given in headnote and in Parts I and II of Table 72.

Contributors: Bartels, H., and Opitz, E.

[^5]71. BLOOD O O_{2} DISSOCIATION CURVES: MAN (Concluded)

Part II: AT VARIOUS TEMPERATURES

Contributors: Bartels, H., and Opitz, E.
Reference: Dill, D. B., and Forbes, W. H., Am. J. Physiol. 132:685, 1941.
Part l: METHODS OF OBSERVATION
 ture and pH . Blood is exposed to $\mathrm{O}_{2}, \mathrm{CO}_{2}$, and N_{2} in tonometers containing gas mixtures, and after sufficient time the O_{2} content is determined. The pressure ($\mathrm{pO}_{2} \mathrm{~mm} \mathrm{Hg}$), the proportion of Hb -bound $\mathrm{O}_{2}\left(\mathrm{HbO}_{2}\right)$ to the maximum binding capacity of Hb for $\mathrm{O}_{2}\left(\mathrm{O}_{2}\right.$ capacity) equals the per cent of O_{2} saturation of $\mathrm{Hb}\left(\mathrm{sO}_{2} \%\right.$ of Hb$)$: $\mathrm{HbO}_{2}(\mathrm{vol} \%) \times 100=\% \mathrm{O}_{2}$ saturation of Hb . If per cent O_{2} saturations are to be compared at different O_{2} pressures, the
pH for all O_{2} saturations must be the same. Therefore, the pH values of the individual blood tests must be determined, and the O_{2} pressure of the hlood calculated according to pH value. Conversion factor for blood of man: $\log \mathrm{pO}_{2}=-0.048 \mathrm{pHs}$.
A position to the left of the adult dissociation curve was found for new-born children [1], that shifts to the right during the first three months of llfe [2,3]. In adaptation to height for adults, there were no significant changes in the O_{2} dissociation curves except for a very small shift to right [4]. A definite shif
 $\mathrm{S}=$ Scholander [11], $\mathrm{Sp}=$ spectrophotometric [12], $\mathrm{V}-\mathrm{S}=$ Van Slyke and Stadie [13].

Species		Anticoagulant	Equilibration			Oxygen Capacity		pH or pCO_{2} Estimation	Reference	
		Temp, ${ }^{\circ} \mathrm{C}$	Technique	Method	pO_{2}	Method				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Man		37	$1-\mathrm{Vt}$			M	pHs 7.40	14	
2	Man	$\mathrm{P}-\mathrm{O}$	37.5	$\mathrm{I}-\mathrm{Vt}$	Bt	$\sim 150 \mathrm{~mm} \mathrm{Hg}$	V-S	$\mathrm{pCO}_{2} 40 \mathrm{~mm} \mathrm{Hg}$	15	
3	Man		37	$1-\mathrm{Vv}$			Spl	$\mathrm{pHs} 7.40^{2}$	16	
4	Cat ${ }^{3}$	P-O, S-F	37	$1-V_{t}$	K	$\sim 200 \mathrm{~mm} \mathrm{Hg}$	M	pHs 7.40	17	
5	Dog		37	$1-\mathrm{Vt}^{\text {t }}$			M	pHs 7.40	18	
6	Sea lion	$\mathrm{P}-\mathrm{O}$	38	$\mathrm{I}-\mathrm{Vt}_{t}$			M	$\mathrm{pCO}_{2} \sim 44 \mathrm{~mm} \mathrm{Hg}$	19	
7	Guinea pig	H, P-O, S-F	37	$1-V_{t}$	K	$\sim 200 \mathrm{~mm} \mathrm{Hg}$	M	pHs 7.40	20	
8	Rabbit	H, P-O, S-F	37	$1-V_{t}$	K	$\sim 200 \mathrm{~mm} \mathrm{Hg}$	M	pHs 7.40	20	
9	Rabbit	H	38.6	$\mathrm{I}-\mathrm{Vt}, \mathrm{I}-\mathrm{VV}$	Bt		M	pHs 7.40	4,21	
10	Rat, albino		38	$\mathrm{I}-\mathrm{Vt}$	Bt		F	pHs 7.40	22	
11	Rat, kangaroo		37	$\mathrm{I}-\mathrm{Vt}$	Glass syringes		S	$\mathrm{pCO}_{2} \sim 40 \mathrm{~mm} \mathrm{Hg}$	23	
12	Cow		38	$1-\mathrm{Vt}$	Bt		Barcroft's ${ }^{4}$	$\mathrm{pCO}_{2} 40-42 \mathrm{~mm} \mathrm{Hg}$	24	
13	Goat ${ }^{5}$	P-O, S-F	38	$\mathrm{I}-\mathrm{Vt}$	Bt		M	$\mathrm{pCO}_{2} \sim 50 \mathrm{~mm} \mathrm{Hg}$	25	
14	Horse		38	$\mathrm{I}-\mathrm{Vt}$				pHs 7.40	26	
15	Llama	H	39	$\mathrm{I}-\mathrm{Vt}, \mathrm{I}-\mathrm{Vv}$	Bt		M	pHs 7.40	4	
16	Sheep	H	39.3	$I-V t, I-V v$	Bt		M	pHs 7.40	4	
17	Vicuna	H	39 and 40^{6}	$1-\mathrm{Vt}$	Bt		M	pHs 7.40	4	
18	Porpoise	Sodium oxalate	38	$1-V_{t}$			M	$\mathrm{pCO}_{2} \sim 46 \mathrm{~mm} \mathrm{Hg}$	27	

$11 /$ Method of Riley, et al [28]. /2/With glass electrode, using the Henderson-Hasselbalch equation [29]. /3/ Chloralose-urethane used as anesthetic. /4/ Differential manometer. /5/ Urethane used as anesthetic. /6/ At 2.81 and 4.71 km respectively.

72. BLOOD O \mathbf{O}_{2} DISSOCIATION CURVES: MAMMALS (Continued)

72. BLOOD O_{2} DISSOCIATION CURVES: MAMMALS (Concluded)

Numbers in legend refer to numbers under Part l: METHODS OF OBSERVATION.

73. O_{2} CAPACITY OF UMBILICAL VEIN BLOOD AT VARIOUS STAGES OF PREGNANCY: MAN

Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

	Duration of Pregnancy wk	Cases no.	$\begin{gathered} \mathrm{O}_{2} \text { Capacity } \\ \text { vol } \% \end{gathered}$
	(A)	(B)	(C)
1	36	9	20.1(16.6-24.1)
2	37	9	22.0(18.5-25.1)
3	38	16	20.7(17.6-25.5)
4	39	24	19.9(17.0-24.2)
5	40	30	21.3(17.8-23.2)
6	Term	88	20.8(16.6-25.5)1
7	41	14	21.3(16.8-25.6)
8	42 and over	40	20.7(16.2-24.5)
9	Postmaturity	54	20.9(16.2-25.6) ${ }^{2}$

/1/ Mean and range for Lines 1-5. /2/ Mean and range for Lines 7, 8 .

Contributor: Nesbitt, R. E. L., Jr.

References: Prystowsky, H., and Eastman, N. J., Bull. Johns Hopkins Hosp. 101:45, 1957.
74. O_{2} SATURATION IN BLOOD OF UMBILICAL VESSELS, NORMAL AND DIFFICULT LABOR: MAN

Spontaneous, uncomplicated delivery: all deliveries in occipito-anterior presentation and without evidence of meconium staining. Complicated delivery: forceps deliveries and cesarean sections; spontaneous deliveries in occipito-anterior presentation, with meconium staining of the amniotic fluid or other signs of asphyxia before or after delivery.

$\begin{gathered} \text { Menstrual } \\ \text { Age } \\ \text { wk } \end{gathered}$		Spontaneous, Uncomplicated Delivery				Complicated Delivery			
		$\begin{gathered} \text { Cases } \\ \text { no. } \end{gathered}$	$\begin{gathered} \text { Venous } \mathrm{O}_{2} \\ \text { Saturation, \% } \end{gathered}$	Cases no.	$\begin{gathered} \text { Arterial } \mathrm{O}_{2} \\ \text { Saturation, \% } \end{gathered}$	Cases no.	Venous O_{2} Saturation, \%	$\begin{gathered} \text { Cases } \\ \text { no. } \end{gathered}$	Arterial O_{2} Saturation, \%
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	>43	30	64.5	25	30.4	22	53.4	18	26.2
2	42	33	60.4	27	33.0	26	47.9	17	19.9
3	41	52	62.6	42	34.6	38	50.7	30	25.6
4	40	39	61.3	26	36.4	28	49.2	23	27.7
5	39	28	62.9	21	39.7	11	61.4	9	34.6
6	38	20	61.8	16	30.6	7	64.9	7	43.6
7	37	14	51.9	10	28.5	3	46.0	3	13.0
8	36	3	69.0	2	47.0	3	16.7	3	10.7
9	35	2	36.5	1	30.0				
10	33	1	60.0	1	38.0				
11	31	1	74.0	1	24.0				
12	28							1	21.0
13	27	1	72.0						
14	20	1	51.0						

Contributor: Nesbitt, R. E. L., Jr.

Reference: Rooth, G., and Sjostedt, S., Acta obst. gyn. scand. 36:374, 1957.
75. O_{2} PRESSURE GRADIENT BETWEEN FETAL AND MATERNAL BLOOD: MAN

Placental vesseI: $I-S=$ intervillous space, $U-V=$ unbilical vein, $U-A=$ unbilical artery.

	$\begin{aligned} & \text { Method } \\ & \text { of } \\ & \text { Delivery } \end{aligned}$	Cases no.	Placental Vessel	$\begin{gathered} \mathrm{O}_{2} \text { Capacity } \\ \text { vol } \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \text { Content } \\ \text { vol \% } \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \text { Saturation } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Estimated } \\ \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{aligned} & \mathrm{MpO}_{2}-\mathrm{FpO}_{2} \mathrm{I} \\ & \mathrm{~mm} \mathrm{Hg} \end{aligned}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Cesarean	2	I-S	14.8	8.1	54.7	27.8	17.7
2			$\mathrm{U}-\mathrm{V}$	20.2	5.1	25.0	12.5	
3			U-A	20.2	3.4	16.8	8.0	
4		5	I-S	11.2	5.0	44.6	24.0	18.3
5			$\mathrm{U}-\mathrm{V}$	18.4	1.8	9.7	6.5	
6			U-A	18.4	1.1	5.9	5.0	
7	Vaginal	4	I-S	15.7	8.4	53.5	27.8	15.6
8			U-V	20.6	5.1	24.7	12.2	
9		6	1-S	16.0	8.3	51.8	26.5	14.3
10			U-V	21.9	5.2	23.7	12.2	
11		10	I-S	15.8	15.3	96.8	72.0	33.0
12			U-V	20.7	17.4	84.0	39.0	
13		12	I-S	22.4	19.2	85.7	48.0	27.0
14			U-V	21.2	10.0	47.1	21.0	
15		13	I-S	14.1	10.8	76.5	40.1	15.1
16			$\mathrm{U}-\mathrm{V}$	18.1	10.9	60.3	25.0	
17		21	1-S	15.7	10.6	67.4	34.0	20.4
18			U-V	19.3	6.6	34.1	16.0	
19			U-A	19.3	3.9	20.2	11.0	

$/ 1 / \mathrm{MpO}_{2}=$ partial pressure of O_{2} in maternal circulation; $\mathrm{FpO}_{2}=$ partial pressure of O_{2} in fetal circulation.

Contributor: Nesbitt, R. E. L., Jr.

Reference: Prystowsky, H., Bull. Johns Hopkins llosp. 101:48, 1957.

76. O_{2} DISSOCIATION RELATIONSIIPS OF FETAL AND MATERNAL BLOOD: MAN, COW, SHEEP

An approximate curve can be drawn for the range of values from $15-80 \mathrm{~mm} \mathrm{Hg} \mathrm{pO}_{2}$, based upon the pO_{2} at half saturation, but the curve is not necessarily valid above and below these pressures. The half saturation pO_{2} is, therefore, a satisfactory approximation. Inflections of the curves around this point have not been investigated in sufficient detail as yet. In man, separation of hemoglobin from the corpuscle results in a decrease of half saturation pO_{2} of 9 mm Hg for maternal blood and 2 mm for fetal at pH 6.8 and $37{ }^{\circ} \mathrm{C}$; this may reverse their relative positions [1]. Values in parentheses are ranges, estimate "b" or " c " of the 95% range (cf Introduction).

Animal		No.	Age	$\mathrm{pO}_{2}, \mathrm{~mm} \mathrm{Hg}^{\mathrm{l}}$ Half Saturation		$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Reference	
		Maternal		Fetal				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	Man			$31(30-35)^{\text {c }}$	25(22-29) ${ }^{2}$	40	2	
2		1		333	25^{3}	40	3	
3		22^{4}	Term	27.27(26.37-28.17) ${ }^{\text {b } 5}$	21.86(21.26-22.46) b5	$\mathrm{pH}=7.4$	4	
4		22^{4}	Term	29.08(28.02-30.14) ${ }^{\text {b5 }}$	$23.94(23.10-24.78)^{\text {b5 }}$	40	4	
5	Cow	3	3.5 mo gestation	34	18	43(41-45) ${ }^{\text {b }}$	5	
6		2	5.5 mo gestation	33	23	43(41-45) ${ }^{\text {b }}$	5	
7		7	7 and 8 mo gestation	32	20	$43(41-45) \mathrm{b}$	5	
8		6	At birth	31.5	22.5	43(41-45) ${ }^{\text {b }}$	5	
9	Sheep		50 to 111 da	$(42-49) \mathrm{c}$	$(17-19)^{c}$	$40(36-44)^{\text {b }}$	6	
10		2	139 and 140 da gestation		$(25-26) \mathrm{C}$	$40(38-42)^{\text {b }}$	6	

$11 /$ Temperature, $380^{\circ} \mathrm{C}$. $/ 2 /$ Derived from graphic approximations corrected to $\mathrm{pCO}_{2}=40$. $/ 3 /$ Estimated from published curve. /4/6 maternal, 16 fetal. $/ 5 /$ Corrected for $\Delta \log \mathrm{pO}_{2}=-0.048 \Delta \mathrm{pH}$.

Contributor: Kaiser, I. H.

References: [1] McCarthy, E. F., J. Physiol., Lond. 102:55, 1943. [2] Leibson, R. G., Likhnitzky, l. l., and Sax, M. G., ibid $87: 97,1936$. [3] Eastman, N. J., Geiling, E. M., and De Lawder, A. M., Bull. Johns Hopkins Hosp. 53:246, 1933. [4] Darling, R. C., Smith, C. A.. Asmussen, E., and Cohen, F. M., J. Clin. Invest. 20:739, 1941. [5] Roos, J., and Romijn, C., Proc. Koninkl. Ned. Akad. Wetenschap. 43:1212, 1940. [6] Barron, D. H., Yale J. Biol. 24:169, 1951.

Although the following data concerning the oxygen relationships of fetal blood are somewhat sketchy and fragmentary, they represent, nevertheless, important inroads in the ultimate understanding of intra-uterine fetal environment. The reader should not be discouraged by the apparent conflicting data presented
since the several reports may not be analogous in all respects. The many enigmas in clinical obstetrics and in the selection of cases for study have undoubtedly led the several authors, despite similar objectives, to conduct different experiments. At the same time, the reader should realize that there is disagreement about the best index of fetal oxygenation. The current interest in oxygen saturations has arisen because these determinations are much easier to compute than are pO_{2} values. It should be borne in mind that $\mathrm{pO}_{2}, \mathrm{pH}$, and pCO_{2} are related variables and that a two-dimensional representation is not nessing circumstances. Moreover, When physiologic pH . Ance correded an arblrary figure, oxygen saturation deler in both oxygen capacity and oxygen content of umbilical cord blood, as any substantial variation in oxygen capacity and content will necessarily result in great variations in the calculated percentage of oxygen saturation. Since the partial pressure of oxygen is calculated from the oxygen saturation, it is understandable that considerable sampling errors may be encountered in this work. More data are needed concerning the significance and interrelationships of the several oxygen indexes, namely, oxygen saturation of the umbilical vein and of the umbilical artery, arterio-venous difference between these two figures, however, should not detract from the statistical validity of the enclosed data derived from careful studies conducted in accordance with accepted physiological principles.

Nesbitt, R. E. L., Jr.
 Contributor:

 the conversion factor for adult blood of man: $\log \mathrm{pO}_{2}=-0.048 \mathrm{pHs}(\mathrm{pHs}=0.1 \mathrm{pH}$ units). This factor is also best used for other species [2]. Fetal age is
quite important as there is a possibility of change in the dissociation curve with the increase in age of the fetus. For man, Bartels, Harms, and Harms
 colorimetric Hb estimation, $\mathrm{E}=$ electrometric, $\mathrm{K}=$ Kugel tonometer [6], $\mathrm{M}=$ manometric [7], $\mathrm{P}=$ potentiometric [8].

Animal		No.	Fetal Age	Anticoagulant	Equilibration			Method of pO_{2} Estimation	pH or pCO_{2} Estimation	Reference	
		Temp, ${ }^{\circ} \mathrm{C}$			Technique	Method					
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
1	Man	10	Full term ${ }^{\text {l }}$	H	37	$1-\mathrm{Vt}$	Bt	M	pHs 7.40	9	
2	Man	8	Full term	P-O, S-F	37	I-VV	P	M, K, P	pHs 7.40	10	
3	Cow	1	About 36 wk		38.5	$1-\mathrm{Vt}$	Bt	B	$\mathrm{pCO}_{2} 43-45 \mathrm{~mm} \mathrm{Hg}$	11	
4	Goat	20	At birth and 18 da after birth	$\mathrm{P}-\mathrm{O}$	38	$1-\mathrm{Vt}$	Bt	M	$\mathrm{pCO}_{2} 50 \mathrm{~mm} \mathrm{Hg}$	12	
5	Rabbit		30 da		38	$1-\mathrm{Vt}$	Bt	M, C^{2}	E^{3}	13	
6	Sheep	6	60-120 da and 120-150 da	H, S-F	38	$1-\mathrm{Vt}$	Bt	M	$\mathrm{pCO}_{2} 40 \mathrm{~mm} \mathrm{Hg}$	14	

/1/8 cases full term and 2 cases before term; no significant difference between the two groups. /2/Calculated on basis of C. / $3 /$ Estimated.
Part II: MAN Part III: COW, GOAT, RABBIT, SHEEP

D. H.
References: [1] Eastman, N. J., Geiling, E. M., and De Lawder, A. M., Bull. Johns Hopkins Hosp. 53:246, 1933. [2] Bartels, H., and Harms, H., unpublished. [3] Bartels, H., Harms, M. L., and Harms, H., unpublished. [4] Barcroft, J., J. Physiol., Lond. 37:12, 1908. [5] Barcroft, J., "The Respira-
 tory Function of the Blood," Part II, Haemoglobin. Cambridge
and Neill. J. M., J. Biol. Chem. $61: 523,1924$. [8] Bartels, Romijn, C., J. Physiol., Lond. $92: 249,1938$. [12] Barcroft,
19:93, 1954. [14] Barron, D. H., Yale J. Biol. 24:169, 1951.
78. ACID-BASE BALANCE OF BLOOD: MAN
Definitions of acid, base, and buffer base given on Page 95, Table 80, Part I.
Part I: CONSTANTS, FACTORS, AND FORMULAS
Temperature corrections for pH measurements (Lines $12-16$) have been used in an attempt to reduce to a comparable basis some of the experimental values cited in Parts II-IV.

Factor (A$)$

the Page 96, Table 80, Part II. Hemoglobin concentration assumed to be $20 \mathrm{mM} / \mathrm{L}$ RBC The four digits in
 Centrifugation: (1) no centrifugation; (2) special stoppered tube. Abbreviations: $\mathrm{CpH}=$ calculation of pH by means of Henderson-Hasselbalch equation (Part I, Line 5); $\mathrm{G}=$ glass electrode, whole blood [2]; $\mathrm{R}=$ room temperature; $\mathrm{X}=$ gasometric Van Slyke, tonometer saturation with O_{2} [1]; $\mathrm{Y}=$ gasometric
 tion $=98 \%$. Values in parentheses are ranges, estimate " b " of the 95% range (cf Introduction).

Age		$\begin{array}{\|l\|} \hline \text { No. } \\ \text { and } \\ \text { Sex } \\ \hline \end{array}$	$\begin{gathered} \text { Handling } \\ \text { of } \\ \text { Blood } \\ \hline \end{gathered}$	pH			Hemoglobin		CO_{2} Content		CO_{2} Pressure		Buffer Base ${ }^{5}$ $\mathrm{mEq} / \mathrm{L}$	Reference	
		Method		Observed	Adjusted ${ }^{1}$	Method ${ }^{2}$	$\begin{gathered} \text { Concentration } \\ \mathrm{mM} / \mathrm{L} \end{gathered}$	Whole Blood ${ }^{3}$ mM / L	$\begin{gathered} \text { Plasma }^{4} \\ \mathrm{mM} / \mathrm{L} \end{gathered}$	Method	Blood or Plasma mm Hg				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
1	$8-15 \mathrm{yr}$	110	3122	CpH	7.38	7.38	X	8.2	21.5	25.6	1	40.4(33.0-47.8)	46.3	7	
2	$16-48 \mathrm{yr}$	350	3122	CpH	7.39	7.39	x	9.0	22.5	27.4	1	42.5(35.4-49.6)	48.5	7	
3	$18-29 \mathrm{yr}$	$50{ }^{\circ}$	11?1	G^{6}	7.42(7.39-7.44)	7.43	X	9.3(8.1-10.5)	21.6(20.4-22.8)	26.6	C	37.0	48.4	8	
4	$18-39 \mathrm{yr}$	360°	4231	G, R	7.39(7.34-7.44)	7.39	z	8.7(7.7-9.7)	22.5(20.7-24.3)	27.1	C	42.0	48.6	9	
5	21-52 yr	100°	$\begin{aligned} & 2311, \\ & 4231 \end{aligned}$	G ?	7.42(7.40-7.44)	7.42	X	8.3(7.1-9.5)	22.2(20.8-23.6)	26.7	C	39.0(37.4-40.6)	48.3	10	
6	$48-76 \mathrm{yr}$	140°	3122	CpH	7.38	7.38	X	8.9	22.1	26.8	1	42.8(38.0-46.6)	47.4	7	
7	$50-77 \mathrm{yr}$	228	4231	G, R	7.42(7.34-7.50)	7.42	Y	7.8(6.2-9.4)	21.1(17.7-24.5)	25.0	C	36.3(28.3-44.3)	45.3	11	
	$50-81 \mathrm{yr}$	270°	4231	G, R	7.42(7.36-7.48)	7.42	Y	7.7(5.7-9.7)	21.5(18.1-24.9)	25.4	C	37.0(28.8-45.2)	45.6	11	
9	Adult	120°	3122	CpH	7.39(7.34-7.44)	7.39	x	9.0(7.8-10.2)	21.9(20.9-22.9)	$26.4{ }^{7}$		41.0(38.2-43.8)	48.5	12	
10	Adult	100	3122	CpH	7.38(7.34-7.42)	7.38	x	8.9	22.1(20.5-23.7)	26.5	1	42.8 (38.8)	48.0	13	
11	Adult	$106{ }^{\circ}$	3122	CpH	$7.37(7.31-7.43)$	7.37			22.2(20.2-24.2)	26.9	1	43.3		13	
12	Adult	180°	3121	$\mathrm{CpH}^{\text {che }}$	7.38(7.37-7.39)	7.38			22.2(20.2-24.2)	27.0^{7}	1	43.1(40.1-46.1)		14	俗 because of conversion of a small amount of unidentified inactive CO-combining compound to an active form when the blood stands i/2 to 2 hours , and older determinations of oxygen saturation with O_{2} are thus too low by 1-3\%. [15] /3/Method: gasometric, manometric Van Slyke (later 1 factor) [16]. /4/ Calculated from whole blood CO_{2} content (cf Part I, Line 6). /5/ Calculated by method in Part I, Line 7. $/ 6 /$ At $38^{\circ} \mathrm{C}$. $/ 7 /$ Not calculated; actual value. Contributors: Singer, R. B., and Hastings, A. B

2] Dole, M. W.. "The Glass Electrode," New York, 1941. [3] Comroe, J. H., Jr., and Walker, P., Am. J. Physiol. 152:365, 1948. [4] Drabkin, D. L and Austin. J. H., J. Biol. Chem. $98: 719,1932$. [5] Drabkin, D. L., and Austin, J. H., Jr., ibid 112:51, 1935-36. [6] Eisenman, A. J., ibid 71:611, 1942. [9] Lambertsen, C. J., Emmel, G. L. Coper, D. X. Loeschke, H. H, and Kough, R. H., Fed. Proc 9:73, 1950. [10] Cournand, A. R1ley, B. Breed, E. S., Baldwin, E. de F., and Richards, D. W., Jr., J. Clin. Invest. 24:106, 1945, [11] Comroe, J. H., Jr., and Greifenstein, F., unpublished. 12] Dill, D. B., Edwards, H. T., and Consolazio, W. V., J. Biol. Chem. 118:635, 1937. [13] Dill, D. B., Wilson, J. W., Hall, F. G., and Robinson, S. Physiol. 142:708, 1944. [16] Van Slyke, D. D., and Sendroy, J., Jr.. J. Biol. Chem. 73:127, 1927.
Part III: VENOUS BLOOD
Hemoglobin concentration assumed to be $20 \mathrm{mM} / \mathrm{L} \mathrm{RBC}$; one mM (single Fe -atom structure, molecular weight 16,500) combines with 22.4 ml of O_{2}, STP when saturated. Handling of blood [1]: The four digits in the code number refer, successively, to anticoagulant, method of drawing blood, storage of $0.9 \% \mathrm{NaCl}$. Drawing of blood: (1) oiled syringe; (2) syringe with dry anticoagulant; (3) syringe with dead space filled with heparin-saline solution; (4) oil
 ugation; (2) oil tube; (3) special stoppered tube; (4) tube, under paraffin. Abbreviations: $C=$ calculated; $G=$ glass electrode, whole blood [2]; $H=$ hydrogen = gasometric, manometric Van Slyke (later i factor) [7]; $\mathrm{V}=$ gasometric, volumetric Van Slyke [1]. Values in parentheses are ranges, estimate " b " of the 95% range (cf introduction).

Age		No. and Sex	Blood	Handling of Blood	pH			Hemoglobin Concentration ${ }^{2,3}$ mM / L	$\begin{gathered} \text { Oxygen } \\ \text { Saturation } \\ \% \end{gathered}$	CO_{2} Content		$\begin{gathered} \mathrm{CO}_{2} \\ \text { Pressure }{ }^{5} \\ \text { mm Hg } \\ \hline \end{gathered}$	Reference	
		Method			Observed	Adjusted ${ }^{1}$	Method			Plasma mM / L				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)
1	$1-9 \mathrm{da}$	$400^{\circ}, 8$	J	1112	S	7.400(7.322-7.478) ${ }^{6}$	7.375	10.3	87	0	23.6(19.7-27.5) ${ }^{7}$	37.7	8	
2	16-34 yr	3098	A	1112	H	7.405(7.355-7.455) ${ }^{6}$	7.380			I	27.3(24.5-30.1)	42.6	9	
3	20-39 yr	60°	A	1112	S	7.710(7.660-7.760) ${ }^{9}$	7.385				28.3(23.7-32.9)	44.4	10	
4	21-52 yr	100°	M	$\begin{aligned} & 3331, \\ & 4241 \end{aligned}$	G	7.390(7.370-7.410)	7.390	8.3	72	I	28.610	45.7	11	
5	22-31 yr	49	A	1112	S	7.685(7.665-7.705) ${ }^{9}$	7.360			I	27.8(27.0-28.6)	46.0	10	
6	Young adult	89	A	11?2	C		7.380			I	27.7	44.111	12	
7	Adult	70°	A	3124	H, P	7.410(7.356-7.464) ${ }^{6}$	7.385			,	30.8(26.6-35.0)12	48.3	13	
8	Adult	210°	A	2113	P	7.585(7.513-7.657) ${ }^{9}$	7.330	9.3	55	0	30.9(27.7-34.1) ${ }^{13}$	54.6	14	
9	Adult	740°	A	1112	S	7.675(7.607-7.753) ${ }^{9}$	7.340				29.5(26.4-32.6)	51.0	15	
10	Adult	270°	A	1412				9.2	70	v	23.7(20.7-26.7) ${ }^{14}$		16	
11	Adult	600°	A	? ? 11				8.8	68		24.014		17	

$11 /$ Values for pHI adjusted to temperature of $37^{\circ} \mathrm{C}$ in accordance with Lines 10 , 11, and 12-16, Part I. /2/ Method: gasometric Van Slyke, tonometer saturation with O_{2} [1]. /3/ Oxygen capacity of hemoglobin: Gasometric determinations of hemoglobin by saturation with oxygen or carbon monoxide in a tonometer may give results $1-2 \%$ high because of drainage errors, and also because of conversion of a small amount of unidentifled inactive CO-combining com pound to an active form when the blood stands $1 / 2$ to 2 hours. Most older determinations of oxygen saturation with O_{2} are thus too low by $1-3 \%$. [18]
 $110 /$ Calculated from whole blood CO_{2} content of $24.0(22.8-25.2) \mathrm{mM} / \mathrm{L}$. /11/Derived from interpolated CO_{2} dissociation curve [19]. /12/ Whole blood CO_{2} content $=26.2(22.4-30.0) \mathrm{mM} / \mathrm{L}$. $/ 13 /$ Whole blood CO_{2} content $=26.1(23.5-28.7) \mathrm{mM} / \mathrm{L} . \quad / 14 /$ Values given are for whole blood CO_{2} content.

[^6][^7]Definitions of acid，base，and buffer base given on Page 95，Table 80．Part 1 Part IV：CUTANEOUS BLOOD
 and Hastings［2］．Values in parentheses are ranges，estimate＂b＂of the 95% range（cf Introduction）．

[^8]Values in parentheses are ranges，estimate＂b＂of the 95% range（cf introduction）．

	$\begin{aligned} & (\varepsilon \sigma-\varepsilon \varepsilon) I^{\circ} 8 \varepsilon \\ & (8 \sigma-\hbar \varepsilon) \varepsilon^{\prime} I \sigma \\ & (\angle Z-5 \varepsilon) 9^{\circ} I \sigma \end{aligned}$	$\begin{array}{r} (I L-9 \varsigma) z \cdot 19 \\ (\varepsilon L-8 S) 0.99 \\ -(\mp 9-9 \varsigma) 0.09 \\ \hline \end{array}$	$\begin{array}{r} (z \varepsilon-5 z) 5^{\circ}\llcorner 2 \\ (\varepsilon \varepsilon-9 z) 9^{\circ} 62 \\ (6 z-5 z) 6^{\circ} 92 \end{array}$			$\begin{aligned} & (9 t-t \varepsilon) I^{\circ} 0 t \\ & (25-2 b) 6^{\circ} 9 t \end{aligned}$	$\begin{aligned} & \left(8 \sigma^{\circ} L-9 \varepsilon^{\circ} L\right) 2 \sigma^{\circ} L \\ & \left(L \hbar^{\circ} L-G \varepsilon^{\circ} L\right) I \sigma^{\circ} L \end{aligned}$	 （ъャ＇L－ゅを＇L） $6 \varepsilon^{\circ}$ L			S V ε z
（ Y ）	（ $¢)$	（I）	（H）	（D）	（A）	（3）	（व）	（つ）	（8）	（V）	
7／biul	${ }^{8} \mathrm{H}$ um	\％ $10 \wedge$	T／Wu					euseld so pootg	xas pue ${ }^{\circ} \mathrm{ON}$	poolg	
aseg dojyng	a．nnssax $^{\text {d }}$	euserd									
poolg วгочM	203	ұuə入uoう ZOつ					$\mathrm{H}^{\text {d }}$				

[^9]Representative control values given for arterial, cutaneous, or venous blood, and for alveolar CO pressure. Conditions underlined are the factors varied. Change from control
 $A-P=$ to age of puberty; $S l=$ sleeping; $S-D=$ standard deviation; $B-M=$ before menstruation; $F-M=$ after menstruation; $A-C=$ antecubitaI; $I-J=$ internal jugular; $\mathrm{E}-\mathrm{J}=$ external jugular; $\mathrm{F}=$ femoral; $\mathrm{D}-\mathrm{H}=$ dorsal hand; $\mathrm{A}=$ arterial; $\mathrm{C}=$ cutaneous; $\mathrm{V}=$ venous.

Control or Factor Varied			Conditions of Observation					Subjects no.	$\begin{gathered} \mathrm{Hb} \\ \mathrm{mM} / \mathrm{L} \end{gathered}$	$\begin{gathered} \text { Adjusted } \\ \mathrm{pH} \end{gathered}$	Whole Blood$\begin{gathered} \mathrm{CO}_{2} \\ \mathrm{mM} / \mathrm{L} \end{gathered}$	$\begin{aligned} & \text { Adjusted } \\ & \mathrm{pCO}_{2} \\ & \mathrm{~mm} \mathrm{Hg} \end{aligned}$	$\begin{gathered} \text { Calc. } \\ (\mathrm{BB})_{\mathrm{b}} \\ \mathrm{mEq} / \mathrm{L} \end{gathered}$	Alveolar Air		Reference
		Posture	Age	Sex	Time	Activity	Other							Subjects no.	$\left\lvert\, \begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}\right.$	
		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)	(O)	(P)
Arterial Blood														40	42.9	$\begin{gathered} \mathrm{B}-\mathrm{F}, \mathrm{H}-\mathrm{M}, \mathrm{a} \\ \mathrm{~b} ; \mathrm{N}, \mathrm{O}, 1 \end{gathered}$
1	Control	Sp	15-50 yr	0	AM	B		259	9.01	7.39	22.2	41.6	48.4			
2	Posture	\underline{R}	Adult	or or 9						?	?	-0.8	+		$\begin{aligned} & -0.8 \\ & -2.7 \\ & -3.7 \end{aligned}$	$\begin{gathered} \mathrm{B}-\mathrm{D}, \mathrm{~J}-\mathrm{M}, \mathrm{O} \\ 2 \\ \mathrm{~B}-\mathrm{D}, \mathrm{~J}-\mathrm{M}, \mathrm{O}, \\ 2 ; \mathrm{H}, \mathrm{I}, 3 \\ \mathrm{~B}-\mathrm{D}, \mathrm{~J}-\mathrm{M}, \mathrm{O}, \\ 2 ; \mathrm{H}, \mathrm{I}, 4 \\ \hline \end{gathered}$
3		S	Adult	or or 9				4^{2}	+0.33	?	?	-2.7	+0.24			
4		$\underline{\text { St }}$	Adult	óor 9				162	+0.6	?	?	-3.7	+0.4 ${ }^{4}$			
5	Age	Sp	3-45 da	oror?	Day		P-I	12	-0.55	-0.09	-6	-4	-8	507	-2.4	$\begin{gathered} \mathrm{B}-\mathrm{D}, \mathrm{G}, \mathrm{H}, \\ \mathrm{~J}-\mathrm{M}, 5 ; 1,6 \\ \mathrm{~B}-\mathrm{D}, \mathrm{G}, \mathrm{~J}-\mathrm{M}, \\ \mathrm{a}, \mathrm{~b} ; 1,6 \\ \mathrm{~B}-\mathrm{D}, \mathrm{G}, \mathrm{~J}-\mathrm{M}, \\ \mathrm{a}, \mathrm{~b} ; \mathrm{l}, 6 \\ \mathrm{~B}-\mathrm{D}, \mathrm{G}, \mathrm{~J}-\mathrm{M}, \\ \mathrm{a}, \mathrm{~b} ; \mathrm{I}, 6 \\ \mathrm{~B}-\mathrm{D}, \mathrm{G}, \mathrm{~J}-\mathrm{M}, \\ \mathrm{a}, \mathrm{~b} ; \mathrm{I}, 6 \\ \mathrm{~B}-\mathrm{H}, \mathrm{~J}-\mathrm{M}, 7 ; \\ \mathrm{I}, \mathrm{6} ; \mathrm{N}, \mathrm{O}, 1 \\ \mathrm{~B}-\mathrm{F}, \mathrm{H}-\mathrm{M}, 8 \end{gathered}$
\bigcirc		Sp	0-13 da	oror $\%$	Day		F-1		+1.8	?	-	-	-			
7		Sp	2-13 wk	oror?	Day		F-I		-0.6	?	-	-	-			
8		Sp	$3 \mathrm{mo}-2 \mathrm{yr}$	or or 9	Day		F-1		-1.9	?	-	-	-			
9		Sp	$2-6 \mathrm{yr}$	óor 9	Day		$\mathrm{N}-\mathrm{C}$		-1.5	?	-	-	-			
10		Sp	$8-15 \mathrm{yr}$	oror 9	Day	B	A-P		-0.96	0	-1	-2.4	-2			
11		Sp	50-81 yr	O	Day	$1 / 2 \mathrm{H}-\mathrm{R}$			-0.8	+0.02	-0.4	-1.5	-2			
	Cutaneous Blood															
12	Control	S	16-28 yr	10	8-9 AM	$1 / 2 \mathrm{H}-\mathrm{R}$		8	9.33	7.37	21.9	43.5	48.1	40^{8}	42.9	$\begin{gathered} \mathrm{B}-\mathrm{F}, \mathrm{H}-\mathrm{M}, 9 ; \\ \mathrm{N}, \mathrm{O}, 1 \end{gathered}$
13	Sex	S	$16-28 \mathrm{yr}$	\$	8-9 AM	$1 / 2 \mathrm{H}-\mathrm{R}$		7	$-1.7{ }^{3}$	+0.02	0	-3.1	-1.2	328	-2.1	$\begin{gathered} \mathrm{B}-\mathrm{F}, \mathrm{H}-\mathrm{M}, 9 \\ \mathrm{~N}, \mathrm{O}, 1 \end{gathered}$
14	$\begin{aligned} & \text { Time } \\ & \text { of day } \end{aligned}$	S	16-28 yr	0	$9 \mathrm{AM}-5 \mathrm{PM}$	U		39	$+0.2^{3}$	+0.04	+0.4	-3.2	+2.0			B-F, H-M, 9
15		Sp	Adult	0	10AM-4 PM	B-R		1	\pm	+0.02	+2	\pm	+2			$\begin{gathered} \mathrm{B}-\mathrm{F}, \mathrm{H}-\mathrm{M} \\ 10 \end{gathered}$
16		Sp	Adult	0°	12PM-6 AM	B-R	Sl	1	\pm	-0.03	+2	+8	0	6^{8}	+6.2	$\begin{gathered} B-M, 10 ; N, \\ O, 11 \end{gathered}$

[^10]Contributors: (a) Singer, R. B., and Hastings, A. B.

[^11] subjects. 110/Standard deviation of the distribution of the group of standard deviations about 17 , Column $K= \pm 0.2$: Line 17 , Column $L= \pm 0.7$; Line 18 , Column $L= \pm 1.0$. $11 /$ Possibly negative change. $/ 12 /$ Oxygen saturation.
Change from control value due to physiological variable indicated by t, - , or 0 , with actual value for amount of change given where data are available
 $\mathrm{A}-\mathrm{P}=$ to age of puberty; $\mathrm{Sl}=$ sleeping; $\mathrm{S}-\mathrm{D}=$ standard deviation; $\mathrm{B}-\mathrm{M}=$ before menstruation; $\mathrm{F}-\mathrm{M}=$ after menstruation; $\mathrm{A}-\mathrm{C}=$ antecubital; $1-\mathrm{J}=$ internal

Control or Factor Varied		Conditions of Observation						$\begin{aligned} & \text { Subjects } \\ & \text { no. } \end{aligned}$	$\underset{\mathrm{mM} / \mathrm{L}}{\mathrm{Hb}}$	$\underset{\mathrm{pH}}{\text { Adjusted }}$	$\begin{gathered} \text { Whole } \\ \text { Blood } \\ \mathrm{CO}_{2} \\ \mathrm{mM} / \mathrm{L} \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { Adjusted } \\ \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{array}\right\|$	Calc. (BB) b mEq/L	Alveolar Air		Reference
		Posture	Age	Sex	Time	Activity	Other							Subjects no.	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(5)	(K)	(L)	(M)	(N)	(O)	(P)
Cutaneous Blood (concluded)																
17		S	16.28 yr	σ	8-9 AM	$1 / 2 \mathrm{H}-\mathrm{R}$	S-D9	8	\pm	± 0.0410	± 1.010	± 4.710	\pm			B-M, 9
18	day	S	16-28 yr	\%	8-9 AM	$1 / 2 \mathrm{H}-\mathrm{R}$	S-D ${ }^{9}$	7	\pm	$\pm 0.07^{10}$	± 1.710	± 4.810	\pm			B-M, 9
19	vari-	Sp	27 yr	\%	8 AM	S-R	8 8-10 da B-M			+0.03	? 11	-4.7	-	18	-4.7	$\mathrm{B}-\mathrm{H}, \mathrm{J}-\mathrm{O}$,
20	ability	Sp	27 yr	\%	8 AM		1-13 da F-M			+0.01	? 11	-2.7	-	18	-2.7	$\underset{12}{\mathrm{~B}-\mathrm{H}, \mathrm{~J},}$
Venous Blood																
21	Control	Sp	$16.50 \mathrm{yr}^{11}$	\bigcirc	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	A-C	60	68\%12	7.36	23.9	50	49			B-M, 13
22		Sp	18.50 yr	\bigcirc	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	1-J	60	-5\% 12	-	+0.8	+				B-L, 13
23	used	Sp	16.50 yr	\bigcirc	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	E-J	40	+19\%12	+	-0.7	-	0			B-M,13
24		Sp	$16-50 \mathrm{yr}$	σ	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	F	14	+2\% ${ }^{12}$	0	+0.1	+	0			B-M, 13
25		R	$20-50 \mathrm{yr}^{11}$	\bigcirc	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	D-H	33	+18\%12	+	-1.4	-	0			B-M, 14
26	Temperature	R	$20-50 \mathrm{yr}^{11}$	\%	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	A-C, $28^{\circ} \mathrm{C}$	15	+5\% 12	+	-0.3	-	0			B-M, 14
27		R	$20-50 \mathrm{yr}^{11}$	-	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	A-C, $23{ }^{\circ} \mathrm{C}$	15	$-4 \% 12$	-	+0.2	+	0			B-M,14
28		R	Adult	σ	Day	$1 / 2 \mathrm{H}-\mathrm{R}$	D-H, $45^{\circ} \mathrm{C}$	4	+30\% 12	+0.03	-2.2	-8	0			B-M, 15

18/Posture of subjects, supine; activity, basal. 19/Values in Lines 17 and 18 , Columns $\mathrm{I}-\mathrm{M}$, are group means of the standard deviation values for all

[^12] as it does in pure water. The following values of $\mathrm{pK}^{\prime} 1$ and $\mathrm{f} O$ were used at temperatures other than $38^{\circ} \mathrm{C}$: $50 \quad 6.26$ and $0.0864 ; 10^{\circ} \quad 6.24$ and $0.0697 ; 20^{\circ}$ 6.19 and $0.0508 ; 26^{\circ}, 6.16$ and $0.0434 ; 340,6.12$ and $0.0357 ; 400,6.09$ and $0.0313 ; 42^{\circ}, 6.08$ and 0.0303 . Abbreviations: $\mathrm{A}=$ arterial; $\mathrm{H}=$ heart; $\mathrm{M}=$ mixed arterial and venous; $V=$ venous. Values in parentheses are ranges, estimate "b" or "c" of the 95% range (cf Introduction)

 from whole blood CO_{2} content, pH and hemoglobin by means of nomogram of Singer and hastings [41]. 4/ The rat sometimes varies significantly in acid temperature. When temperature is decreased, pH and CO_{2} solubility coefficient increase, and oxygen dissociation curve is shifted to left. /7/The alligator shows a marked variation, between individuals and within the same individual at different seasons, and a prolonged and extreme "alkaline tlde" following meals [42].
 as it does in pure water. 16 and $0.0434 ; 340,6.12$ and $0.0357 ; 40^{\circ}, 6.09$ and $0.0313 ; 42^{\circ}, 6.08$ and 0.0303 . Abbreviations. A arterial and venous; $V=$ venous.

[^13]For a thorough consideration of the physicochemical laws, the physiological regulations, and the pathological states pertaining to acid-base disturbances in

	Term	Definition
	(A)	(B)
1	Acid	A chemical compound capable of dissociating in solution to form H^{+}ions and negatively charged ions (anions), e.g., HCl (strong acid), $\mathrm{H}_{2} \mathrm{CO}_{3}$ (weak acid).
2	Base	A chemical compound capable of neutralizing an acid or dissociating in solution to form OH^{-}ions and positively charged ions (cations), e.g., NaOH (strong base), $\mathrm{NH}_{4} \mathrm{OH}$ (weak base), NaHCO_{3} (buffer salt, neutralizes strong acids). This definition avoids the undesirable past usage, in acid-base literature, of "base" as synonynous with "cation", and also the more modern but confusing Bronsted definition of base as an H^{+}acceptor (e.g., the anion HCO_{3}^{-}would be called a "base") [7].
3	Buffer base	Biological buffer salts capable of neutralizing strong acids; in blood--the appropriate fraction of total cation and equivalent buffer anions, chiefly bicarbonate, hemoglobinate, and proteinate.
	Acidosis	An abnormal condition caused by the accumulation in the body of an excess of acid, or the loss from the body of base [2]
5	Alkalosis	An abnormal condition caused by the accumulation in the body of an excess of base, or the loss from the body of acid [2].
6	Respiratory factor	If the acid concerned in the disturbance is $\mathrm{H}_{2} \mathrm{CO}_{3}$, the acidosis or alkalosis may be called "respiratory." The best index for this factor is the CO_{2} pressure, pCO_{2} of arterial or cutaneous blood, which is normally equal to the pCO_{2} of alveolar air. 1 c can be calculated from plasma pH and total CO_{2} by the Henderson-Hasselbalch equation (Page 86, Table 78, Line 5), or measured directly. Venous pCO_{2} is less desirable because of variability of arterio-venous difference of $2-10 \mathrm{~mm}$ or more (Pages 88-89, Table 78. Parts 11 and III).
7	Metabolic factor	If a base or some acid other than $\mathrm{H}_{2} \mathrm{CO}_{3}$ is concerned in the disturbance, the acidosis or alkalosis may be called "metabolic." A satisfactory quantitative index for this factor is the whole blood buffer base concentration [5], or the plasma bicarbonate concentration at pH 7.4 [2]. The lotal CO_{2} or bicarbonate concentration is not satisfactory because it also varies with pCO_{2}, the respiratory factor $[1,2,5]$. The plasma CO_{2} combining power, still widely used, is even less satisfactory because it does not measure directly any variable in blood or plasma $[2,5,8]$. Buffer base can be calculated from pH , total CO_{2}, hemoglobin, and plasma protein (Page 86. Table 78, Line 7), or taken from a nomogram [5].
8	Compensation	in blood, pCO_{2} and buffer base can be regarded as independent variables sufficient to define the state of acid-base balance. The pH and total CO_{2} or bicarbonate, usually the variables determined, are better regarded as dependent variables. A primary disturbance in one factor, pCO_{2} or buffer base, usually results in compensation, one manifestation of which is a change in the other factor in such a way that the pH is returned toward, but not necessarily to, the normal range (Page 98, Part IV).

Contributor: Singer, R. B

References: [1] Henderson, L. J., "Blood, A Study in General Physiology," New Haven: Yale Univ. Press, 1928. [2] Peters, J. P., and Van Slyke, D. D.
"Quantitative Clinical Chemistry," vol 1, 1st ed., Baltimore: Williams and Wilkins Co., 1931. [3] Shock, N. W., and Hastings, A. B., J. Biol. Chem.
112: 239, 1935. [4] Shohl, A. T., "Mineral Metabolism," New York: Reinhold Publishing Co., 1939. [5] Singer, R. B., and Hastings, A. B.,
Medicine, Balt. 27:223, 1948. [6] Elkinton, J. R., and Danowski, T. S., "The Body Fluids," Baltimore: Williams and Wilkins Co., 1955. [7] Clark,
W. M., "Topics in Physical Chemistry," Baltimore: Williams and Wilkins Co., 1948. [8] Davenport, H. W., "The ABC of Acid-Base Chemistry,"
Chicago: Univ. of Chicago Press, 1950.
80. ACID-BASE IMBALANCE OF BLOOD: MAN (Continued)
Part II: NORMAL IONIC PATTERNS, ARTERIAL BLOOD
Diagram is lncluded at this point for use in conjunction with classification of acid-base disturbances (Part lll on facing page). Values shown are for adult
(HbO plasma $\mathrm{pH}, \mathrm{pCO}_{2}=\mathrm{CO}_{2}$ partial pressure or tension. $\mathrm{B}^{+}=\mathrm{mEq}$ total cation ($\mathrm{Na}^{+}, \mathrm{K}^{+}$, etc.) in one liter blood, on basis of hematocrit value of $45 \% \mathrm{RBC}$. Buffer base = the appropriate fraction of total cation and its equivalent amount, the labile fraction of total anions, i.e., proteinate, bicarbonate, oxyhemoglobinate, organic phosphate, and other RBC buffer anions.

Contributor: Singer, R. B.
Ranges for acid-base variables, as reported in the literature or inferred from related observations, for adult arterial or cutaneous blood. See also normal . Limits given are approximate, designation underined the best index for existence of the given condition.

Condition	Buffer Basel $m E q / L$	CO_{2} Pressure mm Hg	Bicarbonate 2 mEq/L	$\begin{gathered} \mathrm{pH} \\ \text { at } 37^{\circ} \mathrm{C} \end{gathered}$
(A)	(B)	(C)	(D)	(E)
1 Normal, arterial or cutaneous blood	46-52	35-45	24-28	7.35-7.45
2 Metabolic acidosis (acid excess or base deficit)	$\frac{\text { Always } 10 w}{20-46}$	$\begin{aligned} & \text { Usually low } \\ & 15-35 \end{aligned}$	$\begin{aligned} & \text { Usually low } \\ & 4-24 \end{aligned}$	$\begin{gathered} \text { Usually low } \\ 6.8-7.35 \end{gathered}$
3 Respiratory acidosis $\left\langle\mathrm{H}_{2} \mathrm{CO}_{3}\right.$ excess)	Normal or high 46-70	$\frac{\text { Always high }}{45-100 t}$	Usually high 28-45	$\begin{gathered} \text { Usually low } \\ 7.0-7.35 \end{gathered}$
4 Metabolic alkalosis (base excess or acid deficit)	$\frac{\text { Always high }}{52-75}$	$\begin{aligned} & \text { Normal or high } \\ & 35-55 \end{aligned}$	Usually high $28-50$	Usually high $7.45-7.65$
5 Respiratory alkalosis ($\mathrm{H}_{2} \mathrm{CO}_{3}$ deficit)	$\begin{aligned} & \text { Normal or low } \\ & 40-52 \end{aligned}$	$\frac{\text { Always low }}{10-35}$	Usually low 15-24	Usually high $7.45-7.70$
6 Mixed acidosis (combination Lines 2 and 3)	Always low 25-45	Always high 45-100	$\begin{gathered} \text { Variable } \\ 10-35 \end{gathered}$	Always low 6.8-7.35
7 Mixed alkalosis (combination Lines 4 and 5)	Always high $52-70$	Always low 15-35	$\begin{gathered} \text { Variable } \\ 20-45 \end{gathered}$	Always high 7.5-7.7
8 Mixed "hypercapnia" (combination Lines 3 and 4)	Always high 52-75	Always high 45-100	Always high 30-50	$\begin{array}{r} \text { Variable } \\ 7.3-7.6 \end{array}$
9 Mixed "hypocapnia" (combination Lines 2 and 5)	Always low 20-46	Always low 10-35	Always low 4-22	$\begin{gathered} \text { Variable } \\ 7.0-7.6 \end{gathered}$

1/ Buffer base for whole blood of normal hemoglobin concentration $=15 \mathrm{~g} / 100 \mathrm{ml}$. A decrease in buffer base of whole blood is almost always accompanied by a decrease in plasma or extracellular Na^{+}relative to $\mathrm{Cl}^{-}+\mathrm{X}^{-}$, e.g., decrease in (Na^{+})p, increase in ($\mathrm{Cl} \mathrm{l}^{-}$)p or $\left(\mathrm{X}^{-}\right) \mathrm{p}$, or any appropriate combination.
 appropriate combination. See normal values in diagram on facing page. /2/ Comprises about $90-98 \%$ of total CO_{2} in plasma, average 95%.
Contributor: Singer, R.B.
[2] Singer, R. B., and Hastings, A. B., Medicine, Balt. 27:223, 1948.

Part IV: PATHWAYS

Any point on this acid-base diagram [1] gives simultaneously occurring values of four variables: (1) whole blood buffer base $(13 \mathrm{~B})_{b}$, the metabolic factor in the disturbance; (2) CO_{2} pressure (pCO_{2}), the respiratory factor; (3) plasma CO_{2} content; and (4) pH . The scale of $(\mathrm{BB})_{b}$ is strictly accurate only for oxygenated human blood at $37^{\circ} \mathrm{C}$ having a hematocrit value of 45% or hemoglobin concentration of $15 \mathrm{~g} / 100 \mathrm{ml}$. The width of the buffer base bar corresponds to the "normal" range of arterial pCO_{2} selected, namely, $35-45 \mathrm{~mm} \mathrm{Hg}$. Similarly, the width of the pCO_{2} bar is the normal range for $(\mathrm{BB})_{b}$, from $46-52 \mathrm{mEq} / \mathrm{L}$. The heavy arrows represent typical average pathways of the four principal types of acid-base disturbance (Part 11). They are based on observations of the contributor and colleagues $[1-4]$, but are representative of similar clinical data in the literature. In metabolic acidosis, respiratory compensation is almost always present [2] ; in metabolic alkalosis, respiratory compensation is frequently absent, especially under clinical conditions [3, 4]. In acute, experimental, respiratory disturbances the pathways are in the horizontal pCO_{2} bar, with virtually no change in $(\mathrm{BB})_{b}[5]$. The four mixed types of acid-base disturbance are not shown on the diagram, but the possible areas may be located from the classification in Part III. Examples of these disturbances are mixed acidosis in thoracic surgery under ether anesthesia [6] . mixed alkalosis in many dyspneic patients with congestive heart failure [7], mixed hypercapnia in some cases of cor pulmonale [4]. and mixed hypocapnia in severe salicylate intoxication [2].

Contributor: Singer, R. B.

References: [1] Singer, R. B., Am. J. M. Sc. 221:199. 1951. [2] Singer, R. B., Medicine, Balt. 33:1, 1954 [3] Singer, R. B., Deering, R. C., and Clark, J. K., J. Clin. Invest. $35: 245$, 1956. [4] Singer, R. B., unpublished. [5] Shock, N. W., and llastings, A. 13., 112:239, 1935. [6] Beecher, 11. K., and Murphy, A. J., J. Thorac. Surg. 19:50, 1950. [7] Squires, R. D., Singer, R. B., Moffitt, G. R., Jr., and Elkinton, J. R., Circulation, N. Y. 4:097. 1951.

Values in parentheses are ranges, estimate " b " of the 95% range (cf Introduction).

Variable			Sex	Value	Reference
		(A)	(B)	(C)	(D)
1	RBC count, millions/cu mm blood		σ	5.4(4.6-6.2)	1,2
2			9	4.8(4.2-5.4)	1,2
3			$0 \times$	5.1	1,2
4	```RBC packed volumel (hematocrit), ml/100 ml blood```		0	$47(40-54)^{2}$	2, 3
5			9	$42(37-47)^{2}$	2,3
6			0×9	44.5	2, 3
7	Blood hemogiobin concentration, $\mathrm{g} / 100 \mathrm{ml}$ blood		\square°	16.3(14.5-18.1)	4
8			9	14.5(12.3-16.7)	4
9			$0 ¢$	15.4	4
10	RBC hemoglobin concentration, $\mathrm{g} / 100 \mathrm{ml} \mathrm{RBC}$		ơq	$33.5(30-40)^{2}$	1,2
11	RBC hemoglobin content, $\mu \mu \mathrm{g}$		6	29(25-34)	2
12			q	29(24-33)	2
13			$0 \cdot 9$	29(23-35)	2
14	RBC, cu^{μ}		0	$87(70-94)^{2}$	2
15			\%	$87(74-98)^{2}$	2
16			cof	87	2
17	RBC circulating volume, $\mathrm{ml} / \mathrm{kg}$ body wt		of	28.3(20.3-36.3)	5
18			?	24.2(19.0-29.4)	5
19			ci?	26.3	5
20	RBC specific gravity ${ }^{3}$		c	1.093(1.089-1.097)	6,7
21	RBC mass, $\mu \mu \mathrm{g}^{4}$		σ	95(76-103)	$6, j$
22	RBC iron content, $5 \mu \mu \mathrm{~g}$		oif	0.10(0.08-0.12)	2,8,9
23	RBC life span, da ${ }^{-}$		c co	120(108-130)	10
24	RBC and Hb replaced, \% of total/da		0゚?	0.83	1,2,11
25	RBC (intracellular) pH		σ	7.24(7.21-7.26)	12
26	RBC spherocytic index		- ${ }^{\text {P }}$	0.27	1,2
27	RBC charge, millivolts ${ }^{7}$		of	-16.8	13
28	RBC electrophoretic mobility. $\mathrm{sq} \mathrm{cm} /$ volt sec^{7}		of	1.31×10^{-4}	13
29	RBC diameter, μ	Dry	O8	$7.5(7.2-7.8) 8$	1.14
30		Plasma	0\%	8.4(7.4-9.4)	15
31	RBC thickness, μ	Dry	0\%	2.0(1.7-2.2) ${ }^{9}$	1.2
32		Plasma	of	2.4	15
33	RBC surface area. sq μ	Dry	0%	$135(129-146) 10$	$2, \mathrm{~h}$
34		Plasma	oi?	163	15
35	$\begin{aligned} & \text { RBC sedimen- } \\ & \text { tation rate, } \\ & \mathrm{mm} / \mathrm{hr} \end{aligned}$	Westergren method	σ	(0-15)	16
36			\%	(0-20)	16
37		Wintrobe method	of	(0-9)	17
38			9	(0-15)	17
39		Cutler method	\bigcirc	$(0-8)$	18
40			¢	(0-10)	18
	$\begin{aligned} & \text { RBC fragility, } \\ & \% \mathrm{NaCl} \\ & \text { solution } \end{aligned}$	Doland and Worthley method Initial			
41			of?	$0.47(0.48-0.46)$	19
42			-1\%	$0.27(0.30-0.24)$	19
		Giffin and Sanford method			
43		Initial	of	(0.44-0.42)	20
44		Final	0\%	(0.34-0.32)	20
		Parpart method			
45		Mean	σ°	$0.43(0.54-0.32)$	2)

/1/ Centrifuged at 2000 G or over $(=3000 \mathrm{rpm})$ for 10 min after attaining constant packed cell volume [2]
$12 /$ Heparin or other isotonic anticoagulant. When anticoagulant $=2 \mathrm{mg} \mathrm{K}$ oxalate $/ \mathrm{ml} \mathrm{blood}$, mean and $95 \% \mathrm{range}$ for Column C, Line $4=45(40-50)$; Line $5=41(36-45)$; Line $10, \quad \in=35(30-40)$, o $=34(30-40)$; Line $14=82(70-94)$; Line $15=86(74-97)$. [2] $/ 3 /$ Specific gravity of RBC at $25^{\circ} \mathrm{C}$ referred to water at $4^{\circ} \mathrm{C}$ [6] . /4/Calculated from volume (16 C) and specific gravity (20 C). [$6, \mathrm{j}] \quad / 5 / \mathrm{Calculated}$ from Hb content (13 C), using $0.339 \mathrm{as} \% \mathrm{Fe}$ in Hb $[2,8,9]$. /6/ Use of radioactive chromium 51; other methods in essential agreement. [10] /7/ M/15 phosphate buffer at pH 7.4 [13]. /8/ Diffraction, or by 500 or more measurements with micrometer eyepiece. Range $=$ range of means. [1,14] /9/Calculated from RBC volume (16C) and dry diameter (29 C) by formula $t=V / \pi r^{2}[1,2$] $/ 10 /$ Calculated from RBC volume $(16 \mathrm{C})$ and dry thickness (31 C) by formula $A=2 \pi r(r+t)[2, h]$

Contributors: (a) Bethell, F. H., (b) Carlsen, E., (c) Collier, H. B., (d) Dole, V. P., (e) Ebaugh, F. G., Jr. (f) Ferguson, J. H., (g) Gram, 11. C., (h) Guest, G. M., (i) Hirschboeck, J. S., (j) Osgood, E. E., (k) Ponder, E., (1) Riser, W. H., Jr., (m) Van Slyke, D. D.

References: [1] Bethell, F. H., "Clinical Laboratory Diagnosis and Essentials of Hematology." Ann Arbor, Mich.: The Edwards Letter Shop, 1948. [2] Osgood, E. E., Arch. Int. M. 56:849, 1935. [3] Ponder, E. in "Medical Physics," (Glasser, Otto, ed.). p 597, Chicago: Year Book Publishers, 1944. [4] Drabkin, D. L.. Physiol. Rev. 31:345, 1951. [5] Huff, R. L., and Feller, D. D., J. Clin. Invest. 35:1, 1956. [6] Van Slyke, D. D., et al, J. Biol. Chem. 183:305, 1950. [7] Ebaugh, F. G., Jr., Levine, P., and Emerson, C. P., J. Laborat. Clin. M. 46:409, 1955. [8] Drabkin, D. L., Am. J. M. Sc. 209:268, 1945. [9] Grinstein, M., and Moore, C. V., J. Clin. Invest. 28:505, 1949. [10] Ebaugh, F. G., Jr., Rodman, G. P., Jr., and Peterson, R. E., unpublished. [11] Callender, S. T., Powell, E. O., and Witts, L. J., J. Path. Bact., Lond. 57:129, 1945. [12] Gram, 11. C., Am. J. M. Sc. 168:521, 1924. [13] Abramson, 11. A., J. Gen. Physiol. 12:711, 1929. [14] Donelson, E. G., et al, Am. J. Physiol. 128:382, 1940. [15] Ponder, E., "Hemolysis and Related Phenomena," New York: Grune and Stratton, 1948.
[16] Westergren, A., Am. Rev. Tuberc. 14:94, 1926. [17] Wintrobe, M. M., and Landsberg. J. W., Am. J. M. Sc. 189:102, 1935. [18] Cutler, J. W., ibid $183: 643$, 1932. [19] Doland, G. A., and Worthley, K., J. Laborat. Clin. M. 20:1122, 1935. [20] Giffin, H. Z., and Sanford, A. H., ibid 4:465, 1919. [21] Parpart, A. K., et al, J. Clin. Invest. 26:636, 1947.

82. ERYTHROCYTE AND HEMOGLOBIN VALUES IN PREGNANCY AND POSTPARTUM: MAN

Values in parentheses are ranges, estimate "b" of the 95% range (cf introduction).

	Period	RBC Count millions/cumrablood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ blood	RBC Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ RBC	$\begin{gathered} \text { RBC Hb } \\ \text { Content } \\ \mu \mu g \end{gathered}$	RBC Volume $\mathrm{Cu} \mu$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Second trimester				32		
2	5 th mo	$4.5(3.8-5.2)$ $4.3(3.7-5.0)$	$40(35-45)$ $39(34-44)$	$12.8(11.4-15.0)$ $12.2(10.8-14.6)$	32 31	28.4 28.4	$\begin{aligned} & 89 \\ & 91 \end{aligned}$
3	6 th mo	4.0(3.5-4.8)	$37(32-42)$	11.4(10.2-14.0)	31	28.5	92
4	Third trimester 7 th mo	4.0(3.5-4.8)	37(32-42)	11.4(10.2-14.0)	31	28.5	92
5	8th mo	4.1(3.5-4.8)	37.5(33-43)	11.6(10.4-14.2)	31	28.3	91
0	9 th mo	$4.2(3.7-5.0)$	37.5(33-43)	12.0(10.8-14.4)	32	28.5	89
7	During labor	4.4(4.0-5.0)	39(34-44)	12.6(11.2-15.0)	32	28.6	89
8	10 da	4.5(4.0-5.0)	40(35-45)	12.8(11.4-15.4)	32	28.4	89
9	42 da	4.8(4.2-5.4)	42.5(37-47)	13.8(12.0-16.0)	32.5	28.7	89

Contributor: Bethell, F. H.
Reference: Bethell, F. 11., Gardiner, S. H., and Mackinnon, F., Ann. Int. M. 13:91, 1939.
83. ERYTHROCYTE AND HEMOGLOBIN VALUES IN FETUS, NEWBORN, AND ADULT FEMALE: MAMMALS

Values given for adult female are not necessarily those of the mother. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

	Stage of Development	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ blood	RBCHb Content $\mu \mu \mathrm{g}$	RBC Volume Cu μ	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
- Man							
	Fetus at fractio of terml						
1	0.3	1.1(0.3-2.2)	27(23-33)	$9.3(8.0-10.9)$	03(47-97)	191(134-285)	$B-F, 1$
2	0.4	2.8(2.3-3.5)	33(29-44)	10.7(6.0-13.1)	40(35-48)	131(113-150)	$B-F, 1$
3	0.5	2.8(2.2-3.5)	36(30-41)	11.5(8.7-14.6)	42(38-51)	129(116-140)	$B-F, I$
4	0.6	$3.5(2.9-4.1)$	44(36-52)	$13.6(11.0-14.7)$	39(33-45)	125(1)6-136)	$B-\mathrm{F}, \mathrm{l}$
5	Newborn	$4.8(3.8-6.0)^{2}$	51.3(41-61) ${ }^{2}$	$17.9(13.0-22.0)^{2}$	37.5(32-43)	$113(90-124)$	B, D-F, 2; C, 3
6	Adult female	$4.8(4.2-5.4)^{\text {b }}$	$42(37-47){ }^{\text {b }}$	$14.5(12.3-16.7)^{\text {b }}$	29(24-33) ${ }^{\text {b }}$	$87(74-98)^{\text {b }}$	B, C, E, F, 4; D, 5
	Cat						
	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Fetusat fraction } \\ \text { of term } \\ \\ 0.0 \end{array} & 2.22 \end{array}$						
7			28.0	7.9	36	134	B-F, 6.7
8	0.7	$3.12(2.01-3.78)$	$30.5(26-36)$	$9.1(7.5-10.7)$	28(24-38)	99(94-103)	B-F $, 6,7$

/1/ Gestation period $=280 \mathrm{da}$. $12 /$ Cord or venous blood; capillary blood values may increase as much as 20% during first week after birth. [14] /3/ Gestation period $=60$ da.
83. ERYTHROCYTE AND HEMOGLOBIN VALUES IN FETUS, NEWBORN, AND ADULT FEMALE: MAMMALS (Continued)

Values given for adult female are not necessarily those of the mother. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the 95% range (cf Introduction).

	Stage of Development	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration g/ 100 ml blood	RBC Hb Content $\mu \mu \mathrm{g}$	RBC Volume cu μ	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Cat (concluded)							
9	0.8	3.80(3.24-4.25)	$34.3(30-41)$	10.1(9.3-11.2)	27(23-30)	91(81-97)	B-F,6,7
10	Newborn, 3-12 da	5.70(5.16-6.14)	39.3(35-48)	12.4(9.6-15.1)	22(19-26)	68(65-78)	B-F,6.7
11	Adult female	6.6	34.2	11.8	18	51	B-F,6,7
	Cow						
	$\begin{aligned} & \text { Fetus at fraction } \\ & \text { of terml } \end{aligned}$						
12		3.9(3.7-4.1)	37.7(34-40)	8.5(7.7-9.1)	21.3(20.5-22.0)	93(91-97)	B-F. 8
13	0.4	4.8(4.5-5.3)	43.0(40-47)	10.9(10.3-11.4)	21.1(20.0-21.6)	$88(84-89)$	B-F, 8
14	0.5	4.8(3.8-5.5)	36.7(28-45)	$8.5(6.9-9.7)$	18.6(17.5-20.2)	77(74-83)	B-F, 8
15	0.6	5.5(4.4-6.4)	40.4(32-50)	9.6(7.7-11.2)	17.5(17.4-17.6)	74(71-77)	B-F, 8
16	0.7	5.2(4.2-6.2)	37.0(32-44)	9.7(8.3-12.1)	18.6(16.5-19.6)	71(69-75)	B-F. 8
17	0.8	5.9(5.4-8.0)	$39.7(35-47)$	$9.8(8.8-11.5)$	15.0(14.3-16.2)	57(58-63)	B-F. 8
18	0.9	$6.1(5.9-6.2)$	$31.0(30-32)$	8.4(8.3-8.5)	13.9(13.4-14.3)	$51(49-53)$	B-F. 8
19	Fetus at term ${ }^{4}$	6.8(6.0-7.8)	35.9(32-42)	9.6(8.5-10.8)	14.1(13.7-14.5)	$53(50-54)$	B-F, 8
20	Adult female	8.05(6.1-10.7)	38.6(31-54)	12.9(9.2-18.3)	15.7(14.2-18.5)	50(47-54)	B-F, 8
	Goat						
	Fetus at fraction of term ${ }^{5}$						
21	0.3		19	4.2			C.D. 9
22	0.5		31(29-33)	7.1(5.2-9.1)			C. D. 9
23	0.6		40	10.1			C.D.9
24	0.7		22	9.0			C. D. 9
25	0.8		32	10.4			C.D. 9
26	0.9		28.5(28-29)	$8.9(8.2-9.6)$			C, D, 9
27	Fetus at termb		27	9.4			C. D, 9
28	Newborn, $24-48 \mathrm{hr}$		33(29-36)	11.0(9.9-12.4)			C.D.9
29	Adult female		50	12.6			C.D. 9
	Pig						
	Fetus at fraction of term ${ }^{7}$						
30	0.2	$0.25(0.1-0.5)$	6.6(3.6-10.6)			244(204-301)	13, C, F, 6,7
31	0.3	0.63(0.2-1.3)	10.3(4.2-20.0)	3.3(1.5-4.9)	56(38-87)	173(131-278)	$13-F, 6.7$
32	0.4	$2.5(0.68-3.9)$	26.2(10.2-33.0)	6.9(2.6-10.6)	27(19-40)	$100(80-149)$	B-F,0,7
33	0.5	$2.9(2.0-4.0)$	27.4(23-35)	6.8(4.9-11.2)	23(17-29)	$94(84-114)$	B-F,6,7
34	0.6	3.0(2.1-4.0)	30.3(19.1-38.0)	8.1(5.2-9.7)	27(21-35)	101(85-112)	B-F,6,7
35	0.7	4.0(3.0-4.4)	31.0(29-34)	$7.0(6.5-9.6)$	25(19-31)	101(95-107)	B-F,0,7
36	0.8	$3.9(3.0-4.4)$	32.4(29-36)	$8.7(7.6-9.6)$	22(20-28)	80(77-96)	B-F,6,7
37	0.9	4.16(4.0-4.3)	34.5(33-36)	9.3(8.8-9.7)	22.5(22-23)	83(83-83)	B-F, 6,7
	Newborn						B-F.6,7
38	1-12 hr	5.72(5.51-5.91)	39.6(39-40)	11.8(11.8-12.0)	21(20-22)	09(68-71)	B-F,0,7
39	1-10 da	$3.9(2.62-5.26)$	25.0(18-36)	$8.1(5.4-10.1)$	$20(16-22)$	$04(59-69)$	B-F,6,7
40	Adult female	6.93	40.8	13.8	21	59	B-F,6,7
	Rabbit						
	```Fetus at fraction of term}\mp@subsup{}{}{8```						
41	$0.6$	1.9(1.6-2.0)	22.3(21-23)	7.3(7.1-7.7)	44(35-46)	120(113-133)	B-F,6,7
42	0.7	2.9(2.1-3.4)	34.4(23-38)	9.6(7.7-11.1)	35(27-48)	122(108-154)	B-F,6,7
43	0.8	2.8(2.3-3.1)	32.0(28-37)	8.8(10.1-11.0)	36(31-47)	113(99-123)	B-F,6,7
44	0.9	$3.7(2.9-4.3)$	30.5(24-34)	10.0(8.5-11.3)	28(26-30)	82(79-84)	B-F,6,7
	Newborn						
45	2-18 hr	4.8(3.3-5.5)	44.1(32-50)	14.2(11.0-15.7)	30(27-34)	94(90-100)	B-F,6, 7
46	24-48 hr	5.2(4.4-5.8)	50.0(43-59)	15.6(13.7-18.1)	33(27-34)	97(89-102)	B-F,6,7
47	Adult female	6.29	39.8	12.8	21	64	B-F,6,7

$/ 1 /$ Gestation period $=280 \mathrm{da} . / 4 /$ Probably by caesarian section. $/ 5 /$ Gestation period $=147 \mathrm{da} . / 6 / \mathrm{Caesarian}$ section. $17 /$ Gestation period $=114 \mathrm{da} . / 8 /$ Gestation period $=31 \mathrm{da}$.

Values given for adult female are not necessarily those of the mother. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the $95 \%$ range (cf Introduction).

$19 /$ Gestation period $=21 \mathrm{da} . / 10 /$ Gestation period $=147 \mathrm{da}$.
Contributors: (a) Barron, D. H., (b) Bethell, F. H., (c) Osgood, E. E., (d) Young, I. M

References: [1] Wintrobe, M. M., "Clinical Hematology," Philadelphia: Lea and Febiger, 1946. [2] Guest, G. M.. Brown, E. W., and Wing, M., Am. J. Dis. Child. 56:529, 1938. [3] Waugh, T. R., Merchant, F. T., and Maugham, G. B., Am. J. M. Sc. 198:646, 1939. [4] Osgood, E. E., Arch. Int. M. 56:849, 1935. [5] Drabkin, D. L., Physiol. Rev. 31:345, 1951. [6] Wintrobe, M. M., and Shumacher, H. B., J. Clin. Invest. 14:837, 1935. [7] Wintrobe, M. M., and Shumacher, H. B., Am. J. Anat. 58:313, 1935. [8] Von Desēo, D., Pflügers Arch. 221:327, 321, 1929. [9] Elliott, R. H., Hall, F. G., and Huggett, A. St. G., J. Physiol., Lond. 82:160, 1934. [10] Nicholas, J. S., Am. J. Physiol. 83:499, 1927. [11] Kindred, J. E., and Corey, E. L., Anat. Rec. 47:213, 1930. [12] Barcroft, J., "Researches on Prenatal Life." Oxford: Blackwell, 1947. [13] Ponder, E., "The Mammalian Red Cell and Properties of Hemolytic Systems," Berlin: Gebrüder Bernträger, 1934. [14] Smith, C. A., "The Physiology of the Newborn Infant," Springfield. Ill.: C. C. Thomas, 1950.

## 84. ERYTHROCYTE AND HEMOGLOBIN VALUES FROM BIRTH TO MATURITY: MAN

Values are smoothed means from plotted curves. Values in parentheses are ranges and conform, unless otherwise specified, to estimate " $c$ " of the $95 \%$ range (cf Introduction).

	Age	RBC Count   millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ blood	RBC Hb   Concentration $\mathrm{g} / 100 \mathrm{ml}$ RBC	RBC Hb Content $\mu \mu \mathrm{g}$	RBC   Volume $\mathrm{Cu} \mu$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	At birthl	$5.7(4.8-7.1)$	56.6	21.5(1)8.0-27.0)	38.0	38	106
2	First da	$5.6(4.7-7.0)$	56.1	21.2(17.7-26.5)	37.8	38	106
3	End Ist wk	5.3(4.5-0.4)	52.7	19.6(16.2-25.5)	37.2	37	101
4	End 2nd wk	$5.1(4.3-6.0)$	49.6	$18.0(14.5-24.2)$	36.3	35	96
5	Lend 3rd wk	4.9(4.1-6.0)	46.6	16.6(13.2-23.0)	35.6	34	93
$\checkmark$	End 4 th wk	4.7(3.9-5.9)	44.6	15.6(12.0-21.8)	35.0	33	91
7	End 2nd mo	$4.5(3.8-5.8)$	38.9	13.3(10.8-18.0)	34.2	30	85
8	Lnd th mo	$4.5(3.8-5.3)$	36.5	12.4(10.2-15.0)	34.0	27	79

$11 /$ Cord clamped after placental separation, averages 560,000 more $\mathrm{RBC} / \mathrm{cu} \mathrm{mm}$ and $2 . \mathrm{og} / 100 \mathrm{ml}$ more hemoglobin during first week of life than cord clamped immediately after birth. In newborn, heel blood (capillary) higher in 18BC and hemoglobin than blood from superior sagittal sinus.
84. ERYTHROCYTE AND HEMOGLOBIN VALUES FROM BIRTH TO MATURITY: MAN (Concluded)

Values are smoothed means from plotted curves. Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the $95 \%$ range (cf Introduction).

	Age	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration g/ 100 ml blood	RBC Hb   Concentration   $\mathrm{g} / 100 \mathrm{ml}$ RBC	RBC Hb   Content   $\mu \mu \mathrm{g}$	RBC   Volume $\mathrm{cu} \mu$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
9	End 6th mo	4.6(3.9-5.3)	36.2	12.3(10.0-15.0)	34.0	27	78
10	End 8th mo	4.6(4.0-5.4)	35.8	12.1(9.8-15.0)	33.8	26	77
11	End 10th mo	4.6(4.0-5.5)	35.5	11.9(8.4-14.9)	33.5	26	77
12	End 12th mo	4.6(4.0-5.5)	35.2	11.6(9.0-14.6)	33.0	25	77
13	End 2nd yr	$4.7(3.8-5.4)$	35.5	$11.7(9.2-15.5)$	33.0	25	78
14	End 4th yr	$4.7(3.8-5.4)$	37.1	12.6(9.6-15.5)	34.0	27	80
15	End 6th yr	$4.7(3.8-5.4)$	37.9	12.7(10.0-15.5)	33.5	27	80
16	End 8th yr	$4.7(3.8-5.4)$	38.9	12.9(10.3-15.5)	33.2	27	80
17	End 10 th yr	$4.8(3.8-5.4)$	39.0	13.0(10.7-15.5)	33.3	27	80
18	End 12th yr	$4.8(3.8-5.4)$	39.6	13.4(11.0-16.5)	33.8	28	81
19	14 yr and over ${ }^{2}$ Male	$5.4(4.6-6.2)^{\text {b }}$	47.0	16.3(14.5-18.1) ${ }^{\text {b }}$	33.5	29	87
20	Female	$4.8(4.2-5.4)^{\text {b }}$	42.0	$14.5(12.3-16.7)^{\text {b }}$	33.5	29	87
21	Average (19 and 20)	5.1	44.5	15.4	33.5	29	87

/2/ See Table 81.
Contributors: (a) Bethell, F. H., (b) De Marsh, Q. B., (c) Diggs, L. W., (d) Glaser, K., (e) Guest, G. M., (f) Mayerson, H. S., (g) Osgood, E. E., (h) Washburn, A. H., (i) Windle, W. F., (j) Wintrobe, M. M. Reference: Albritton, E. C., "Standard Values in Blood," Philadelphia: W. B. Saunders Co., 1952 (Table 38).
85. ERYTHROCYTE O CONSUMPTION: VERTEBRATES

Values are expressed as $\mu l / \mathrm{mg}$ dry weight/hr and are calculated on the basis of water content of cells being $70 \%$ by weight. Chem = chemical, mano = manometric, $B=$ blood, $C=c e l l s, D=d e f i b r i n a t e d, W-R=w a s h e d, ~ b u f f y ~ c o a t ~$ removed, $W-C=$ washed cells of whole blood, Sus = suspension of $R B C, R=$ Ringer, $S=$ isotonic saline.

Animal		Temp. of Measurement ${ }^{\circ} \mathrm{C}$	Method	Blood or Cells		$\mathrm{Q}_{\mathrm{O}_{2}}$		Reference	
		$\begin{aligned} & \ln \\ & \text { Serum } \end{aligned}$				In Ringer or Saline			
		Sample		Condition					
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Man	37	Chem	B	D		0.015 R	1	
2		37	Mano	B	D	0.018	0.017 R	2	
3		37	Mano	C	W-R		0.042 R	3	
4		37	Mano	C	W-C		0.060 R	4	
5	Habbit	37	Chem	B	D		0.049 R	1	
-		25	Chem	B	D	0.220	R	5	
7		38	Mano	B	D	0.064	0.028 R	6	
8		37	Mano	B	D	0.062		7	
9		37	Mano	C	Sus		0.024 R	4	
10	Chicken	25	Chem	B	D	0.260		5	
11		38	Mano	B	D	0.350	0.210 R	-	
12		37	Mano	C	W-C		0.180 R	4	
13	Goose	39	Chem	B	D	0.670	0.440 R	1	
14		25	Chem	B	D	0.250		5	
15		37	Mano	B	D	0.720	0.400 K	8	
16	Alligator, American	25	Mano	C	D	0.113	0.067 S	6	
17	Snake, garter	25	Mano	C	W-C	0.154	0.081 S	6	
18	Snake, water	25	Mano	C	W-C	0.173	0.083 S	6	
19	Turtle	25	Mano	C	W-C		0.060 R	4	
20	Turtle, Blanding's	25	Mano	C	W-C	0.096	0.067 S	6	
21	Turtle, box	25	Mano	C	W-C	0.158	0.081 S	6	
22	Turtle, snapper	25	Mano	C	W-C	0.119	0.075 S	6	
23	Frog, bull	25	Mano	C	W-C	0.111	0.051 S	6	
24	Fish, puffer	20	Mano	C	W-C	0.227		6	
25	Fish, sea robin	20	Mano	C	W-C		0.075 S	6	
26	Toadfish	20	Mano	C	W-C	0.112		6	

Contributors: (a) Hunter, F. R., (b) Ponder, E.
References: [1] Warburg, O., Zschr. physiol. Chem. 59:112, 1909. [2] Harrop, G. A.. and Barron, E. S., J. Exp. M. 48:207, 1928. [3] Damble, K., Zschr. ges. exp. Med. 86:594, 1933. [4] Ramsey, R., and Warren, C. O., Jr., Quart. J. Exp. Physiol. 20:213, 1930. [5] Roche, J., and Siegler-Soru, E., Arch. internat. physiol. 31:413, 1929. [6] Tipton, S. R., J. Cellul. Physiol. 3:313, 1933. [7] Nagelein, E., Biochem. Zschr. 158:121, 1925. [8] Horn, Z., ibid 226:297, 1930.
Values in parentheses are ranges and conform, unless otherwise specified, to estimate "c" of the $95 \%$ range (cf introduction).

	Animal	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ blood	RBC Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ RBC	RBC Hb Content $\mu \mu \mathrm{g}$	RBC Volume cu $\mu$	$\begin{gathered} \text { RBC } \\ \text { Diameter } \\ \text { (Dry Film) } \\ \mu \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
(A) Mammals									
1	Man, ${ }^{\circ}$	5.4(4.6-6.2) ${ }^{\text {b }}$	47(40-54) ${ }^{\text {b }}$	$16.3(14.5-18.1)^{\text {b }}$	33.5(27-40) ${ }^{\text {b }}$	29(25-34) ${ }^{\text {b }}$	87(70-94) ${ }^{\text {b }}$	7.5(7.2-7.8) ${ }^{\text {b }}$	$\begin{gathered} \text { B,E,1,2;C,2, } \\ 3 ; D, 4 ; F, G, \end{gathered}$
2	Man,	$4.8(4.2-5.4)^{\text {b }}$	42(37-47) ${ }^{\text {b }}$	14.5(12.3-16.7)b	$33.5(30-40)^{\text {b }}$	29(24-33) ${ }^{\text {b }}$	87(74-98) ${ }^{\text {b }}$	$7.5(7.2-7.8){ }^{\text {b }}$	2; H, 1,5
3	Buffalo, domestic	-. 8	44.3(38-52)	13.0(11.0-15.2)	19.0	29.0	72.0		
4	Cat	8.0(6.5-9.5)	40(28-52)	11.2(7.0-15.5)	28(23-31)	14(12-16)	57(51-63)	6.0(5.0-7.0)	7
5	Chimpanzee	5.1(3.4-6.0)	41.6(24-51)	12.3(6.5-15.1)	30.6(29-34)	24.5(20-27)	81.4(70-91)	7.4	8
6	Cow	8.1(6.1-10.7)	40(33-47) ${ }^{\text {b }}$	$11.5(8.7-14.5)^{\text {b }}$	29.0		50(47-54)	5.9	7
7	Dog	6.3(4.5-8.0)	45.5(38-53)	14.8(11.0-18.0)	33(30-35)	23(21-25)	66(59-68)	7.0(6.2-8.0)	7
8	Goat	16.0(13.3-17.9)	33(27.0-34.6)	10.5(8.8-11.4)	34(33-36)	6.7	19.3	4.0	8
9	Guinea pig	5.6(4.5-7.0)	42(37-47)	14.4(11.0-16.5)	34(33-35)	26.0(24.5-27.5)	77(71-83)	$7.4(7.0-7.5)$	7
10	Hamster	$6.96(3.96-9.96)^{\text {b }}$	49(39-59) ${ }^{\text {b }}$	$16.0(2.0-30.0)^{\text {b }}$	32.0	23.0	70.0	$5.6(5.4-5.8) \mathrm{b}$	9
11	Horse	9.3(8.21-10.35)b	$33.4(28-42)^{\text {b }}$	$11.1(8-14)^{\text {b }}$	33.0			5.5	7
12	Monkey, rhesus	5.2(3.6-6.8) ${ }^{\text {b }}$	42(32-52) ${ }^{\text {b }}$	$12.6(10-16)^{\text {b }}$	30.0				7
13	Mouse	9.3(7.7-12.5)	41.5	14.8(10-19)	36(33-39)	16(15.5-16.5)	49(48-51)	6.0	7
14	Rabbit	5.7(4.5-7.0)	41.5(33-50)	11.9(8.0-15.0)	29(27-31)	21(19-23)	61(60-68)	7.5(6.5-7.5)	7
15	Rat	8.9(7.2-9.6)	46(39-53)	14.8(12.0-17.5)	32(30-35)	17(15-19)	61(57-65)	$7.5(6.0-7.5)$	7
16	Sheep	10.3(9.4-11.1)	31.7(29.9-33.6)	10.9(10.0-11.8)	34.5(34-35)	11.0	31(30-32)	4.8	8
17	Swine	6.4	39.0(38.0-40.0)	13.7(13.2-14.2)	35.0	21.5(21-22)	61.1(59-63)		8
	Birds								
18	Chicken	2.8(2.0-3.2)	[35.6(24.0-43.3)	10.3(7.3-12.9)	29(27-30)	36.6(33-41)	127(120-137)	[ $11.2 \times 6.8$ ]	8
19	Duck ${ }^{2}$	2.8	39.5	14.8(9-21)	38.1	52.1(32-71)		$[12.8 \times 6.6]$	10
20	Goose	2.8(2.6-3.0)	44.7(43.1-46.2)	12.7(11.9-13.4)	28.5(28-29)	45.5(40-51)	160(145-174)	$[12.2 \times 7.2]$	8
21	Pigeon	3.2	42.3	12.8	30.0	40.0	131.0	[13.2 ${ }^{1} 15.6 .9$ ]	8
22	Turkey	2.3	38.0	11.2	23.5			[ $15.5 \times 7.5$ ]	10
	Reptiles 123.0 [ $[23.2 \times 12.1]$								
23	Alligator (Alligator	0.67	30.0	8.2	27.0	123.0	450.0	[ $23.2 \times 12.1$ ]	8
	mississippiensis)								
24	Snake, garter (Eutania sirtalis)	1.05(0.71-1.39)	28(19-37)	8.5(5.8-11.3)	31.0	82.0	267(266-268)	[ $18.1 \times 10.3$ ]	8
25	Snake, hognose	0.57(0.50-0.63)	18.7(13.3-24.1)	5.6(3.7-7.5)	29.5(28-31)	95.5(74-119)	324.5(266-383)	[ $16.0 \times 9.5$ ]	8
	(Heterodon contortrix)								
26	Snake, water (Natrix sipedon)	0.77	35.5	10.0	28.0	131.0	465.0	[19.6 $\times 11.0$ ]	8
27	Terrapin, fresh water	0.74	21.0	6.2	30.0	84.0	284.0	$\left[\begin{array}{llll}17 \times 12\end{array}\right]$	8
28	Tortoise (Cistudo	0.74	22.1	6.2	28.0	85.0	300.0	[ $18.0 \times 8.7$ ]	8
	carolina)								
29	Turtle, box	0.65	25(21-27) ${ }^{\text {b }}$	7.2(6.1-9.1) ${ }^{\text {b }}$	20.6	91.0	442.0	[19 $\times 9$ ]	11
	Amphibians								
30	Congo snake (Amphiuma means)	0.03	40(39-41)	9.4(7.7-11.0)	24(21-27)	3287(2750-3823)	13,857(13,200-14,513)	[ $62.5 \times 36.3$ ]	
31	Frog, bull (Rana catesbeiana)	0.44(0.43-0.45)	29.3(26.6-32.0)	7.8(7.4-8.2)	27(26-28)	179(174-184)	670(625-716)	[ $24.8 \times 15.3$ ]	8


32 33	Hellbender (Cryptobranchus alleghaniensis) Mud puppy (Necturus maculatus)	0.07 0.02	49.0 21.4	13.3 4.6	27.0 22.0	2010.0   2160.0	7425.0 $10,070.0$	$\left[\begin{array}{l}{[40.5 \times 21.0]} \\ {[52.8 \times 28.2]}\end{array}\right.$	8
	(ent Fish								
34	Carp(Cyprinus carpio)	0.84(0.65-1.13)	31.3(21-40)	10.5(9.4-12.4)	33.5	72(63-78)	311(278-340)		12
35	Cod, rock (Gadus callarias)	1.55(1.49-1.60)	29.1(23.8-32.6)	5.9(5.2-6.4)	20(19-22)	38(35-40)	180159-201)	[12.2 $\times 9.0$ ]	8
36	Dogfish, smooth (Mustelus laevis)	0.46	23.3	4.6			541.0	[ $19.1 \times 13.8$ ]	13
37	Dogfish, spiney (Squalus acanthas)	0.24	18.9	3.8			820.0	[ $22.7 \times 15.2$ ]	13
38	Eel, common (Anguilla rostrata)	2.48	37.9(36.0-39.8)	9.0(8.0-10.0)	23.5(22-25)	36.5(35-38)	156(141-170)	[ $13.0 \times 8.0$ ]	8
39	Flounder, rusty (Limanda ferruginea)	1.23(0.78-1.61)	14.6(8.4-18.2)	3.2(2.1-4.2)	22.7(19-25)	26.7(26-28)	117.7(107-138)	[ $10.3 \times 7.7$ ]	8
40	Goosefish (Lophius piscatorius)	1.09	16.8	4.3			241.0	[13.3 $\times 9.6$ ]	13
41	Hogfish (Myxine glutinosa)	0.15(0.12-0.19)	22.2(19.3-27.6)	4.6(4.0-5.7)	21.0	318.3(303-330)	1530(1470-1560)	$\underline{[26.4 \times 18.3)}$	13
42	Lamprey (Petromyzon marinus)	0.33	23.5	5.8			710.0	14.3	13
43	Mackerel (Scomber scombrus)	3.94(3.68-4.20)	57.5(56-59)	14.9(14.5-15.2)	26.0	37.5(36-39)	146(140-152)	[ $12.5 \times 8.3$ ]	8
44	Perch, white (Morone americana)	3.17(2.70-3.63)	35.3(32.7-37.8)	8.2(6.7-9.7)	23.5(21-26)	26(25-27)	112.5(104-121)	[10.3 $\times 7.2$ ]	8
45	Pollock (Pollachias virens)	2.64(2.34-2.93)	37.4(35.8-39.0)	7.8(7.4-8.1)	21.0	30(28-32)	143(133-153)	[ $11.4 \times 8.1$ ]	8
46	Sculpin, daddy (Myoxocephalus scorpius)	0.95(0.87-1.03)	20.2(19.8-20.6)	4.4(4.0-4.8)	21.5(20-23)	46.0	213.5(200-227)	[12.4 $\times 9.5$ ]	8
47	Sculpin, longhorn (M octodecimspinosus)	1.69(1.34-2.04)	29.4(24.6-34.2)	5.6(5.0-6.2)	19(18-20)	33.5(30-37)	175(167-183)	[ $11.6 \times 8.9$ ]	
48	Sea robin (Prionotus strigatus)	1.93	22.2	6.2			130.0	[ $10.4 \times 7.3$ ]	13
49	Shark sucker (Echeneis naucrates)	3.75	34.0	10.5			91.0	[ $10.9 \times 7.0]$	13
50	Skate, common (Raja erinacea)	0.09(0.07-0.11)	7.2(4.7-9.6)	1.4(0.9-1.8)	19.5(19-20)	148.5(125-172)	778(646-910)	$[24.3 \times 13.9]$	13
51	Skate, barndoor (R. stabuliforis)	0.27	20.0	3.6				[ $21.9 \times 15.6$ ]	13
52	Skate, clearnose (R. eglanteria)	0.36	24.0	4.5			823	[23.7 $\times 14.4$ ]	13
53	Stingray (Dasyatis centrourus)	0.30						[20.6 x 14.3]	13
54	Trout (Salvelinus fontinalis)	1.01(0.74-1.50)	27.2(22-36)	8.5(0.2-11.5)		$75(61-82)$	314(284-348)		12
55	Wrymouth (Cryptacanthodes maculatus)	1.10(0.71-1.48)	21.3(15.4-27.2)	6.4(4.6-8.1)	30.0	60.5(55-66)	200.5(184-217)	[ $9.0 \times 14.0$ ]	8

Contributors: (a) Altland, P. D., (b) Bethell, F. II., (c) Cronkite, E. P., (d) Hart, J. S., (e) Kisch, B., (f) McCutcheon, F. H., (g) Musacchia, X. J., (h) Osgood, E. E., (i) Root, R. W., (j) Young. 1. M.

References: [1] Bethell, F. H., "Clinical Laboratory Diagnosis and Essentials of Hematology," Ann Arbor, Mich. The Edwards Letter Shop, 1948. [2] Osgood, E. E., Arch. Int. M. 56:849. 1935. [3] Ponder, E. in "Medical Physics," (Glasser, Otto, ed.), p 597, Chicago: Year Book Publishers, 1944. [4] Drabkin, D. L., Physiol. Rev. 31:345, 1951. [5] Donelson, E. G.. et al, Am. J. Physiol. 128:382, 1940. [6] Hafez, E. S., and Anwar, A., Nature, Lond. 174:611, 1954. [7] Albritton, E. C., "Standard Values in Blood." Philadelphia: W. B. Saunders Co., 1952 (values from Table 42). [8] Wintrobe, M. M., Fol. Haemat., Lpz. 51:32, 1934. [9] Fulton, G. P., Joftes, D. L., Kegan, R., and Lutz, B. R., Blood, N. Y. 9:622, 1954. [10] Sturkie, P. D., "Avian Physiology," Ithaca, N. Y.: Comstock, 1954. [11] Altland, P. D., and Parker, M., unpublished. [12] Field, J. B., Elvehjem, C. A., and Juday, C., J. Biol. Chem. 148:261, 1943. [13] Kisch, B., Exp. M. and Surg. 9:125, 1951.
87. ERYTHROCYTIE AND HEMOGLOBIN VALUES AT SEA LEVEL AND ALTITUDE: VERTEBRATES

Values are for acclimatized animals. $\mathrm{SL}=$ sea level.

Animal		$\begin{gathered} \text { Altitude } \\ \mathrm{km} \end{gathered}$	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	$\begin{gathered} \mathrm{O}_{2} \text { Capacity } \\ \text { vol } \% \end{gathered}$		Reference	
		Blood			RBC			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	Llama	SL	12.1	27.5	16.1	58.4	1,2	
2		SL.	11.4	38.6	23.5	61.2	2, 3	
3		2.8	12.3	28.2	17.1	56.7	2,3	
4		5.3	11.0	25.8	14.9	57.8	2, 3	
5	Rabbit	SL	4.55	35.4	15.6	44.1	2, 3	
6	Sheep	SL	10.5	35.3	15.9	45.5	2,3	
7		4.7	12.05	50.2	18.9	38.8	2, 3	
8	Vicuna	SL	14.9	30.5	17.5	57.1	1,2	
9		4.7	16.6	31.9	18.2	58.5	2, 3	
10	Viscacha	3.7	7.12	31.8	14.8	46.6	2, 3	
11	Huallata	5.3	3.27	59.1	23.6	40.1	2,3	
12	Ostrich	3.7	2.18	33.3	13.9	41.2	2,3	

References: [1] Dill, D. B.. "Life, Heat, and Altitude," Cambridge: Harvard University Press, 1938. [ 2] Prosser, C. L., "Comparative Animal Physiology," Philadelphia: W. B. Saunders Co., 1950. [3] Hall, F. G., Dill, D. B., and Barron, E. S., J. Cellul. Physiol. 8:301, 1936.

Values are for male residents, unless otherwise indicated. Values in parentheses are ranges and conform, unless otherwise specified, to estimate " $c$ " of the $95 \%$ range (cf Introduction). SL = sea level (altitude less than 0.4 km ).

	Country	Place	$\begin{gathered} \text { Altitude } \\ \mathrm{km} \end{gathered}$	RBC Count millions/cu mm blood	RBC Packed Volume (Hematocrit) $\mathrm{ml} / 100 \mathrm{ml}$ blood	Blood Hb Concentration $\mathrm{g} / 100 \mathrm{ml}$ blood	RBC Hb Content $\mu \mu \mathrm{g}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	U. S. A.	Denver, Colorado	1.5	5.42		16.5	30.4	1
2		Kansas	SL	5.11		15.0	29.4	2
3		New Orleans, Louisiana	SL	5.26		15.6	29.7	3
4		New Orleans, Louisiana	SL	5.85		15.9	27.2	4
5		Omaha, Nebraska	SL	4.69		15.0	32.0	5
6		Portland, Oregon	SL	5.42		15.8	29.2	6
7	Argentina	Buenos Aires	SL	5.30		14.8	27.9	7
8		Buenos Aires	SL	5.50		15.4	28.0	8
9		Mina (Aguilar)	4.5	$6.46(5.07-9.43)$	59.5(50.5-73.6)	19.4(15.7-24.9)	30.0	9
10		Tucuman	0.4	5.31		16.1	30.3	10
11	Canada	Saskatchewan	0.5	5.52		15.6	28.3	11
12	Denmark	Copenhagen	SL	5.07		15.0	29.6	12
13	Germany	Giessen	SL	4.96		16.0	32.3	13
14	Hawaii	Honolulu	SL	5.08		15.1	29.7	14
15	India	Bombay	SL	5.11		15.4	30.1	15
16		Calcutta	SL	5.36		14.8	27.6	16
17	Mexico	Mexico City	2.3	5.39(4.53-6.17)	51.2(45.0-58.5)	17.7(14.4-20.1)	32.9	17.18
18		Mexico City	2.3	$5.01(4.27-6.01)^{1}$	45.5(41.5-50.0) ${ }^{1}$	15.2(12.8-17.7) ${ }^{1}$		17
19	Norway	Oslo	SL	5.52		$16.2$	29.3	19
20	Peru	Lima	SL	$5.14$		$16.0$	31.1	20
21		Lima	SL	5.00(4.5-5.6)	45.0(40.0-49.0)	15.1(13.4-16.2)		21
22		Lima	SL	4.87(4.31-5.30)	45.0(41.5-48.5)	15.3(14.0-16.6)		18
23		Morococha	4.5	6.15		20.8	33.8	20
24		Morococha	4.5	$6.70(5.30-9.30)$	57.0(46.0-71.0)	19.3(17.4-24.0)		21
25		Morococha	4.5	7.88(6.91-8.51)	66.7(58.2-79.2)	22.6(20.7-25.3)		18
26		Oroya	3.7	5.67		18.8	33.2	20
27	South Africa	Johannesburg	1.8	5.99		14.7	24.5	22
28	Switzerland	Zurich	0.5	5.00		15.0	30.0	23

/1/ Female.

Contributors: (a) Dill, D. B., (b) Ebaugh, F. G.. Jr.

References: [1] Andresen, M. I., and Mugrage, E. R., Arch. 1nt. M. 58:136, 1936. [2] Nelson, C. F., and Stoker, R., Fol. haemat., Lpz. 58:333, 1937. [3] Foster, F. C., and Johnson, J. R., Proc. Soc. Exp. Biol. 28:929. 1931. [4] Wintrobe, M. M., and Miller, M. W., Arch. Int. M. 43:96, 1929. [5] Sachs, A., Levine, V. E., and Fabian, A. A., ibid 55:226, 1935. [6] Osgood, E. E., ibid 56:849, 1935. [7] Tenconi, J., C. rend. Soc. blol. 108:133, 1931. [8] Parodi, A. S., Rev. Soc. argent. biol. 6:426, 1930. [9] Chiodi, H., J. Appl. Physiol. 2:431, 1950. [10] Moglia, J. L., and Fonio, O. A., Rev. Soc. argent. biol. 20:581, 1944. [11] Fiddes, J., and Witney, C., Canad. M. Ass. J. 35:654, 1936. [12] Bierring, E., and Sorensen, G., Ugeskr. laeger 98:822, 1936.
[13] Horneffer, L., Pflügers Arch. 220:703, 1928. [14] Hamre, C. J., and Au, M. H., J. Laborat. Clin. M. 27:1231, 1942. [15] Sokhey, S. S., Gokhale, S. K., Malandkar, M. A., and Bilimoria, H. S., Indian J. M. Res. 25:505, 1937. [16] Napier, L. E., and Das Gupta, C. R., ibid 23:305, 1935. [17] Merino, C. F., Blood, N. Y. 5:1, 1950. [18] Gill, J. R., and Terán, D. G., ibid 3:660, 1948. [19] Jervell, O., and Waaler. J. H., Norsk mag. Taegevid. $95: 1141,1934$. [20] Hurtado, A., Merino, C., and Delgado, E., Arch. Int. M. 75:284, 1945. [21] Huff, R. G., Lawrence, J. H., Sini, W. E., Wasserman, L. R., and Hennessy, T. G., Medicine, Balt. 30:197, 1951. [22] Liknaitzky, 1., Quart. J. Exp. Physiol. 24:161, 1934. [23] Burgi, K., Schweiz. med. Wschr. 63:662, 685, 1933.
89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS
These pigments are derived from porphin (A) by substitution of the nuclear hydrogen atoms. There are four stereoisomers called "etioporphyrins" (I, II, III, IV) which are used as the basis for classifying naturally occurring porphyrins. The natural porphyrins correspond to etioporphyrins I and III; chlorophylls in some pathological states. Substituent groups: $A=\left(-\mathrm{CH}_{2} \cdot \mathrm{COOH}\right) ; \mathrm{B}=(-\mathrm{CHO}) ; \mathrm{M}=\left(-\mathrm{CH}_{3}\right) ; \mathrm{P}=\left(-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{COOH}\right) ; \mathrm{V}=\left(-\mathrm{CH}: \mathrm{CH}_{2}\right)$. $m$ r N

Etioporphyrins Porphyrin Precursor
(Porphobilinogen)

## $\mathrm{HOOC}-\mathrm{H}_{2} \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

 $\mathrm{H}_{2} \mathrm{~N}-\mathrm{H}_{2} \mathrm{C}-\mathrm{C}_{\mathrm{N}}$Part I: PORPHYRINS


Coproporphyrin I( $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~N}_{4}$ )										12
4	M: P: M: P:M P M M P	```MP me, est. = 250- 2580 est. = 1.5; HCl No. f.a. = 0.1; COOH No. = 4.```	0.1 N NaOH   $25 \% \mathrm{HCl}$   0.5 N HCl   Ether/acetic   Ester in   chloroform	$\begin{aligned} & 617.5 \\ & 594(575) \\ & 591 \\ & 624 \\ & 622.5 \end{aligned}$	$\begin{aligned} & 565.5-568.5 \\ & 551 \\ & 548 \\ & 568 \\ & 568 \end{aligned}$	$\begin{aligned} & 538.5 \\ & 529 \\ & 533 \end{aligned}$	$\begin{aligned} & 504 \\ & 495 \\ & 499 \end{aligned}$	$\begin{aligned} & 406 \\ & 40110 \\ & 405 \end{aligned}$	By-product of heme biosynthesis. Traces widespread in animals, plants, microorganisms. In feces, urine, erythrocytes, bile, yeast, root nodules. Larger amounts in porphyrias and porphyrinurias.	$\begin{gathered} \text { A, a; B, 23; } \\ \text { C-H, 12, } \\ 15,16, \\ 36-38 ; 1, \\ 12.15,23 \\ 27-30 \end{gathered}$
Coproporphyrin III ( $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~N}_{4}$ )										12
5		MP me. est. $=150-$ $160^{\circ} \mathrm{C}$. remelts at $174-181^{\circ} \mathrm{C}$; HCl No. me. est. $=1.5 ; \mathrm{HCl}$ No. f.a. $=0.1 ; \mathrm{COOH}$ No. $=4$.	0.1 N NaOH $25 \% \mathrm{HCl}$ 0.5 N HCl Ether/acetic Ester in $\quad$ chloroform	$\begin{aligned} & 617.5 \\ & 594(575) \\ & 591 \\ & 624 \\ & \\ & 622.5 \end{aligned}$	$\begin{aligned} & 565.5-568.5 \\ & 551 \\ & 548 \\ & 568 \\ & 568 \end{aligned}$	$\begin{aligned} & 538.5 \\ & 529 \\ & 533 \end{aligned}$	$\begin{aligned} & 504 \\ & 495 \\ & 499 \end{aligned}$	$\begin{aligned} & 406 \\ & 40110 \\ & 405 \end{aligned}$	Often together with coproporphyrin I, predominant in lead and other toxic porphyrinurias. In central nervous system, in birds' feathers and hedgehog spines, and in bacteria.	$\begin{gathered} A, \mathrm{a} ; \mathrm{B}, 23, \\ 39 ; \mathrm{C}-\mathrm{H}, \\ 12,15 . \\ 16,36- \\ 39 ; 1,15, \\ 16,23, \\ 27-30 \end{gathered}$
Protoporphyrin IX ( $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{4}$ )										12
6		```MP me. est. = 230- 2320 est. = 5.5; HCl No. f.a. = 2.5; COOH No. =2.```	0.1 N NaOH $25 \% \mathrm{HCl}$ $5 \% \mathrm{HCl}$ Ether/acetic Chloroform	$\begin{aligned} & 642 \\ & 602.5(582) \\ & \\ & 632.5 \\ & 630.5 \end{aligned}$	$\begin{aligned} & 591 \\ & 557 \\ & 576 \\ & 578-57412 \end{aligned}$	$\begin{aligned} & 540 \\ & 537 \\ & 541 \end{aligned}$	$\begin{gathered} \text { Indis } \\ \text { tinet } \\ 502 \\ 507 \end{gathered}$	$\left\{\begin{array}{l} 411 \\ 40711 \end{array}\right.$	Component of hemoglobin, myoglobin, catalase, cytochrome-b, and some peroxidases. Free in erythrocytes, feces, chloroma, Harderian glands of rodents, birds' eggshells, earthworms, echinoderms, and protozoa. As Mg complex in mutants of alga Chlorella.	$\begin{gathered} A, \mathrm{a} ; \mathrm{B}, 40 ; \\ \mathrm{C}-\mathrm{H}, 15, \\ 16,41 ; \mathrm{I} \\ 12,16,23, \\ 42,43 \end{gathered}$
Chlorocruoroporphyrin (Spirographis) $\left(\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{4}\right.$ )										12,40
7	$\mathrm{M}: \mathrm{B}: \mathrm{M}_{1}^{\prime} \mathrm{V}: \mathrm{M}: \mathrm{P}: \mathrm{P}: \mathrm{M}$	```MP me. est. = 278- 2850}\textrm{C};\textrm{HCl No. f.a. = 5}\mp@subsup{}{}{8};\textrm{COOH}\textrm{No.} 2.```	$\begin{aligned} & 20 \% \mathrm{HCl} \\ & \text { Ether/acetic } \\ & \text { Ester in } \\ & \quad \text { chloroform } \end{aligned}$	$\begin{aligned} & 615.2 \\ & 643 \\ & 644 \end{aligned}$	$\begin{aligned} & 564.3 \\ & 581 \\ & 584 \end{aligned}$	$\left[\begin{array}{l} 555 \\ 558.5 \end{array}\right.$	$\begin{aligned} & 514.5 \\ & 518.5 \end{aligned}$		Component of chlorocruorin, blood pigment of Sabellid worms. Not found as free porphyrin.	$\begin{gathered} A, a ; B, 12- \\ 40 ; C-H \\ 12,40,44 ; \\ 1,45 \end{gathered}$
	Porphyrin a (cytoporphyrin) ( $\mathrm{C}_{47} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{~N}_{4}$ ) ?									46-49
8	Probably 1B, 3M, 2P, one long alkyl side chain, one double bond in side chain	$\begin{aligned} \text { HCl No. f.a. } & =15^{8} ; \\ \text { COOH No. } & =2 . \end{aligned}$	$25 \% \mathrm{HCl}$ Ether Chloroform	$\begin{aligned} & 619 \\ & 647 \\ & 646 \end{aligned}$	$\begin{aligned} & \text { 564.5(528) } \\ & 583 \\ & 584.5 \end{aligned}$	$\begin{aligned} & 558.5 \\ & 563.5 \end{aligned}$	$\begin{aligned} & 517 \\ & 520 \end{aligned}$	$\begin{aligned} & 412 \\ & 418.5 \end{aligned}$	Component of cytochrome oxidase (cytochrome- $\underline{a}_{3}$ ) and cytochromes a and $\underline{a}_{1}$. Not found as free porphyrin.	$\begin{gathered} \text { A. 47-49;B, } \\ 49 ; \mathrm{C}-\mathrm{H}, \\ 48 ; 1,47, \\ 50,51 \end{gathered}$



 $E \quad 1 \%$ extinction coefficients of $1 \%$ solutions of 1 cm thickness. $/ 5 /$ Free porphyrin and its ester give the same bands in the same solvent; figures in parentheses are weak bands. $/ 6 /$ Ehrlich aldehyde dye, $E 1 \%=708,17 /$ Ehrlich aldehyde dye, $E \quad 1 \% / \mathrm{cm}=1136, / 8 /$ Approximate, $/ 9 / \mathrm{E} \quad 1 \% \mathrm{~cm}=6500$ $110 / \mathrm{E}_{1 \mathrm{~cm}}^{1 \%}=6670 . / 11 / \mathrm{E}_{1 \mathrm{~cm}}^{1 \%}=4900 . / 12 /$ The second band is asymmetric, and its position depends on the concentration of the solution. Contributors: (a) Lemberg, R., (b) Rossi-Fanelli, A.. (c) Schmid, R.
References: [1] Westall, R. G., Nature, Lond. 170:614, 1952. [2] Cookson, G. H., and Rimington, C., ibid 171:875, 1953. [3] Cookson, G. H., and
Rimington, C., Biochem. J., Lond. 57:476, 1954. [4] Granick, S., and Bogorad, L., J. Am. Chem. Soc. 75:3610, 1953. [5] Waldenström, J., and
89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS Part I: PORPHYRINS (Concluded)
 Part II: IRON PORPHYRINS

Substance	General Nature	Physical and Chemical Properties ${ }^{1}$	Spectral Characteristics $\lambda$ maximum in $m_{\mu}{ }^{2}$	Remarks	Reference
(A)	(B)	(C)	(D)	(E)	(F)
Heme Compounds					
```Hematin (hydroxy- hemin) (C }\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{35}{}\mp@subsup{\textrm{O}}{5}{}\mp@subsup{\textrm{N}}{4}{}\textrm{Fe}\mathrm{ ) and anhydrides```	$\mathrm{Fe}^{+++}$complex of protoporphyrin; moderately stable.	Soluble in alkali; slightly soluble in ether.	$10 \% \mathrm{NaOH}:$ $580(10.5)$   Alcoholic $\mathrm{NaHCO}_{3}:$ 590    $402.5(79.5)$   "Acid hematin" in ether: 650   Stoke's reagent produces hemochrome bands.	Prosthetic group of methemogtobin, catalase, horseradish peroxidase. Produced by atmospheric oxidation of heme or neutralization of hemin. As alteration product of hemoglobin in the leech, in malarial parasites, and produced by certain bacteria. In blood extravasations and in the plasma in pathological conditions (hematinemia); present as methemalbumin in urine, bile, and feces in pathological conditions.	$\begin{gathered} A, 1,2 ; B-C \\ a ; D, 2 ; E, \\ 1-4 \end{gathered}$
Heme (protoheme IX) $\left(\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Fe}\right)$	Fe^{++}complex of protoporphyrin: easily autooxidized to hematin.	Soluble in alkali; Fe removed by dilute HCl in glacial acetic acid.	$\begin{aligned} & \text { Phosphate buffer pll 7.0: } 575-550(5.5) \\ & 415[\mathrm{~s}]\end{aligned}$	Prosthetic group of hemoglobin, myohemoglobln, and ferrocyto-chrome-b. Comblnes with nitrogenous bases to form hemochromes (hemochromogens).	$\begin{gathered} \mathrm{A}, 1,2 ; \mathrm{B}, \mathrm{C} \\ \mathrm{E}, \mathrm{a} ; \mathrm{D}, 2 \end{gathered}$

3	Hemin (chlorohemin) $\left(\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{FeCl}\right)$	Crystalline chloride of hematin; stable.	Brown-black crystals sintering at $240^{\circ} \mathrm{C}$, melting at $300^{\circ} \mathrm{C}$; soluble in dilute alkali, pyridine, organic bases; slightly soluble in glacial acetic acid, chloroform: insoluble	Acetic acid: Alcohol HCl : Converted to hemochro dithionite. in water.	$\begin{aligned} & 630-635 \\ & 540 \\ & 510 \\ & 400[\mathrm{~s}] \\ & 400[\mathrm{~s}] \\ & \quad(131-151) \\ & \text { ne by pyridine }+ \end{aligned}$	Not found in nature. Hemin crystals are used for identification of blood.	$\begin{gathered} \mathrm{A}, 1,2 ; \mathrm{B}, \\ \mathrm{C}, \mathrm{E}, \mathrm{a} ; \\ \mathrm{D}, 2 \end{gathered}$
4	Methemalbumin (ferrihemalbumin)	Compound of hematin with serum albumin, probably by electrostatic linkages. lron is in Fe^{+++} state.	Soluble in water like serum albumin.	$\begin{aligned} & \mathrm{Fe}^{++t}: \\ & \mathrm{Fe}^{+t}: \\ & \text { Absorption band abolish } \\ & \text { (cf sulfhemoglobin). } \end{aligned}$	623 540 500 570 530 d by dithionate	Found in plasma under conditions of rapid hemolysis as pathological product.	$\begin{gathered} A, E, 2,5 ; \\ B-D, a \end{gathered}$
5	```Pyridine hemo- chrome (hemo- chromogen) \(\left(\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Fe}\right)(\mathrm{C} 5\)```	Compound of heme (Fe^{++}) with pyridine $\left.{ }_{5} \overline{\mathrm{H}}_{5}^{-} \overline{\mathrm{N}}\right)_{2}^{-}$bound to íron by coordinate linkages، Autooxidizable. but moderately stable; diamagnetic.	Soluble in dilute pyridine, alkali, and pyridineglacial acetic acid.		$\begin{aligned} & 558(31-35) \\ & 526(16.2) \end{aligned}$	The term "hemochromogen" or "hemochrome" is used generically for compounds of heme with nitrogenous bases or proteins. All have characteristic spectra, but band positions may differ by $10-20 \mathrm{~m} \mathrm{\mu}$ with different N -compounds.	$\begin{gathered} \text { A,D,2;B, } \\ \text { C.E,a } \end{gathered}$
6	Chlorocruorohemin (Spirographis hemin) ($\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{FeCl}$)	Chlorohemin of chlorocruoroporphyrin (spirographis porphyrin).	Same as hemin (above).	Pyridine hemochrome:	$\begin{aligned} & 582 \\ & 538 \end{aligned}$	Chlorocruoroheme (Fe^{+7}) is the prosthetic group of chlorocruorin.	$\begin{gathered} \mathrm{A}, 1 ; \mathrm{B}, \mathrm{C}, \mathrm{E} \\ \mathrm{a} ; \mathrm{D}, 2 \end{gathered}$
7		Chlorohemin of porphyrin-a.	Soluble in organic solvents (except light petroleum), dilute alkali.	Pyridine hemochrome: (no β-band) CO-heme:	$\begin{aligned} & 587 \\ & 430 \\ & 603 \\ & 423 \end{aligned}$	Prosthetic group of cytochromes a $_{3}$, a, and a \underline{a}_{1} but not \underline{a}_{2}.	$\begin{gathered} \mathrm{A}, 6-8 ; \mathrm{B}, \\ \mathrm{C}, \mathrm{a} ; \mathrm{D}, \\ 7 ; \mathrm{E}, 6 \end{gathered}$
	Hemoglobin Compounds						
8	Hemoglobin (Hb)	Four hemes bound to globin; MW 67,000; iron in Fe^{++} state. Some invertebrate hemoglobins (erythrocruorins) have a far higher MW and lower	Easily soluble in water, less in strong phosphate buffer or ammonium sulfate solution; red-purple color.		$\begin{aligned} & 555(12.9-13.6) \\ & 430[\mathrm{~s}] \\ & (118-134) \end{aligned}$	O_{2} carrier in red corpuscles of vertebrates and some invertebrates; free in plasma of some invertebrates. In root nodules of plants, protozoa, and some yeasts and bacteria. Species-specific; some species contain more than one hemoglobin. In man, fetal Hb (HbF) differs from normal adult (HbA); several genetic alleles to HbA are known: S, B, C, D, E, F.	$\begin{array}{r} \mathrm{A}, 2,9 ; \mathrm{B}, \\ \mathrm{D}, 2 ; \mathrm{C}, \\ \mathrm{a} ; \mathrm{E}, 2 \\ 10-13 \end{array}$

[^14]89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS

	Substance	General Nature	Physical and Chemical Properties 1	Spectral Characteristics λ maximum in $\mathrm{m} \mu{ }^{2}$	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
Hemoglobin Compounds (continued)						
	Hemoglobin (Hb) (concluded)	isoelectric point than mammalian hemoglobin.			G, H, I, J. Also involved in CO_{2} transport.	
9	$\begin{aligned} & \text { Oxyhemoglobin } \\ & \left(\mathrm{HbO}_{2}\right) \end{aligned}$	Compound with one O_{2} reversibly bound per heme; available physiologically; iron in Fe^{++} state. At low pO_{2} intermediates between $(\mathrm{Hb})_{4}\left(\mathrm{O}_{2}\right)_{4}$ and $(\mathrm{Hb})_{4}$, such as $(\mathrm{Hb})_{4}\left(\mathrm{O}_{2}\right)_{3}$ or $(\mathrm{Hb})_{4}\left(\mathrm{O}_{2}\right)$. exist, which cause the O_{2} dissociation curve to be sigmoid (cf myohemoglobins).	Bright red color, yellow in very dilute solution (cf HbCO).	$\begin{gathered} 577(15.1-16.2) \\ 540-542 \\ (14.2-15.3) \\ 412-415[s] \\ (125-128.5) \end{gathered}$	Predominant in arterial blood, mixed with Hb in venous blood; 1 g Hb binds $1.34 \mathrm{ml} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}, 760 \mathrm{~mm}$ Hg and contains 0.335% iron.	$\begin{gathered} \mathrm{A}, 2,9 ; \mathrm{B} \\ \mathrm{C}, \mathrm{E}, \mathrm{a} ; \\ \mathrm{D}, 2 \end{gathered}$
10	Carboxyhemoglobin (HbCO)	Compound of Hb with CO reversibly bound to heme and dissociable by light; iron in Fe^{++}state. Affinity of Hb for CO approximately 400 x that for O_{2}; intermediates between $(\mathrm{Hb})_{4}(\mathrm{CO})_{4}$ and $(\mathrm{Hb})_{4}$ at very low pCO.	Bright red; pink in very dilute solution (cf HbO_{2}).	$\begin{gathered} 568-572 \\ (13.7-15.0) \\ 538-540 \\ (14.1-15.3) \\ 418[\mathrm{~s}](154) \end{gathered}$	Found in blood in CO poisoning, in small percentage in normal blood. Stable to reducing agents.	$\begin{gathered} \text { A,D,2;B, } \\ \text { C, }, a \end{gathered}$

11	Methemoglobin (MetHb)	$\begin{aligned} & \text { Iron in } \mathrm{Fe}^{+++} \\ & \text {state. MetHb } \\ & \text { forms com- } \\ & \text { pounds with } \\ & \mathrm{CN}^{-}, \mathrm{F}^{-}, \mathrm{N}_{3}^{-}, \\ & \mathrm{NO}, \mathrm{H}_{2} \mathrm{O}_{2} . \end{aligned}$	Brown to brown-red color.	"Acid MetHb": $630(3.7-3.8)$ $500(9.5)$ $405-407[\mathrm{~s}]$ $(134-154)$ Alkaline MetHb: $577(9.5)$ $540(9.7)$ $411[s](71-90)$ Stoke's reagent produces spectrum of Hb (cf hematin); the 630 band of "acid Methb" disappears on addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or cyanide and on addi- tion of dithionite.	Small amounts normally present in blood. Larger amounts formed by auto-oxidation of HbO_{2}, particularly at low pH , and by oxidation with ferricyanide, nitrite, chlorate; formed in circulating blood by aromatic amines and nitro compounds, sulfonamides, and some poisons. Erythrocytes possess mechanisms for reduction of MetHb to Hb , which do not function in idiopathic familial methemoglobinemia.	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{D}, 2_{i} \\ \text { C, a: E, } \\ 2,14,15 \end{gathered}$
12	Sulfhemoglobin (HbS)	Formed by treatment of HbO_{2} solutions with $\mathrm{H}_{2} \mathrm{~S}$; solution still contains Hb. Globin and prosthetic group of unknown strucure which can be retransformed into protoheme.	Purplish-green color.	$\mathrm{Fe}+\quad 620(11-13)$ FeCO Band stable in presence of dithionite (cf methemalbumin and methemo- globin), $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and cyanide. $\mathrm{NaOH}+$ dithionite $=$ prothemo- chrome (cf choleglobin).	Pathological product in erythrocytes, formed by the action of intestinal $\mathrm{H}_{2} \mathrm{~S}$ on HbO_{2}, catalyzed by aromatic amines, e.g., phenacetin; also found in septicemias. Red corpuscles containing sulfhemoglobin appear to have a normal life span.	$\begin{gathered} \text { A, E, 2; } \\ \text { B-D, a } \end{gathered}$
13	Choleglobin	Formed by coupled oxidation of Hb with ascorbic acid. Globin + prosthetic group derived from protoheme by oxidation (probably mixture of chole heme with intact C_{34} ring and verdoheme with an oxygen atom replacing one methene bridge).	Green color; solubility similar to that of Hb , but more easily denatured.	Fe^{++} 629 $\mathrm{FeCO}:$ 628 Na + dithionite = cholehemochrome: 619 (cf sulfhemoglobin)	May be an intermediate formation of bile pigments from hemoglobin. Formed by the action of some bacteria on hemoglobin ("viridans effect"). Found in erythrocytes after phenylhydrazine administration.	$\begin{gathered} \mathrm{A}, 2,16, \\ 17 ; \mathrm{B}, \mathrm{D} \\ \mathrm{E}, 2 ; \mathrm{C} \\ \mathrm{a} \end{gathered}$
14	Myohemoglobin (MHb) or Myoglobin (Mb)	Heme + globin (different from globin in Hb): contains one heme only at MW of 18,500 .	MbCO (of horse) is more soluble than HbCO in strong phosphate buffer or ammonium sulfate solution. Alkali	$\overline{\mathrm{Fe}}^{++} \quad 555$ Mb differs from Hb particularly in the position of the a-band of myooxyhemoglobin, $582 \mathrm{~m} \mathrm{\mu}$ and myocarboxyhemoglobin. $579 \mathrm{~m} \mathrm{\mu}$	O_{2} carrier between oxyhemoglobin and intracellular respiratory enzymes; O_{2} store under certain conditions. In red muscles of vertebrates, particularly diving animals, also in some invertebrate	A, 2,14,18; B,19;C, a;D,14, 20,$21 ;$ $\mathrm{E}, 2,14$, $22-25$

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS Part ll. IRON PORPHYRINS (Continued)

	Substance	General Nature	Physical and Chemical Properties ${ }^{1}$	Spectral Characteristics λ maximum in $\mathrm{m} \mu^{2}$		Remarks	Reference
	(A)	(B)	(C)	(D)		(E)	(F)
Hemoglobin Compounds (concluded)							
	$\begin{aligned} & \text { Myohemoglobin } \\ & \text { (MHb) or } \\ & \text { Myoglobin (Mb) } \\ & \text { (concluded) } \end{aligned}$	O_{2} affinity greater than that of $\mathrm{Hb} ; \mathrm{O}_{2}$ dissociation curve hyperbolic; Fe^{++} more readily oxidized to Fe^{+++}by O_{2} than in Hb . Derivatives similar to those of Hb .	resistance greater than that of Hb .			muscles. Species-specific, but more than one kind may be present in muscles of one and the same species. Pathologically in urine of crush injury victims and in certain diseases of man and horse.	$\begin{aligned} & 23,24, \\ & 25 \end{aligned}$
15	Chlorocruorin (Ch)	Globin of high MW and low isoelectric point + several groups of chlorocruoroheme.	MW approximately 3,000,000. Green color.	$\begin{aligned} & \mathrm{Fe}^{++}: \\ & \mathrm{FeO}_{2}: \\ & \mathrm{FeCO}: \end{aligned}$	574 (broad \quad band) 604 560 600 507	Blood pigments of some annelids (Polychaeta), e.g., Spirographis, a marine worm. Free in plasma.	$\begin{gathered} \mathrm{A} \cdot \mathrm{D}, 2 ; \mathrm{B}, \\ \mathrm{C}, \mathrm{E}, \mathrm{a} \end{gathered}$
16	Hematin Enzymes						
	Catalase	Compound of protohematin (iron in Fe^{+++}state) with protein apoenzyme. lron is not reduced by dithionite, but is reduced by $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of azide. Liver catalases often contain choleand verdohematin. Combines with $\mathrm{H}_{2} \mathrm{O}_{2}$, the green 'primary" complex being active.	$M W=225,000-250,000$ with four hematins per mole; rather stable, crystallizable proteins. Although no reverssible splitting of hematin from the apoenzyme has been achieved, the apoenzyme is present in some bacteria lacking hematin, but requiring it for growth.		$\begin{aligned} & 629-622(10.8) \\ & 544-536 \\ & 506.5-500 \\ & 409-400[\mathrm{~s}] \\ & \quad(145) \end{aligned}$	Decomposes $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{H}_{2} \mathrm{O}$ and O_{2}, but also acts as peroxidase on certain substrates, e.g., alcohol. Present in all aerobic cells, highly concentrated in some animal tissues (red cells, liver) and in some bacteria, absent in some strict anaerobes and in a few facultative anaerobes. Catalytic activity inhibited by cyanide, $\mathrm{H}_{2} \mathrm{~S}$, hydroxylamine, azide, and other compounds.	$\begin{gathered} \mathrm{A}, 2, \\ 26-29 ; \\ \mathrm{B}, 2, \\ 28-32 ; \\ \mathrm{C}, 33 ; \mathrm{D}, \\ 2 ; \mathrm{E}, 2 \\ 27-29, \\ 34-37 \end{gathered}$

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued)
Part II: IRON PORPHYRINS (Continued)

	Substance	General Nature	Physical and Chemical Properties ${ }^{1}$	Spectral Cha λ maximu	$\begin{aligned} & \text { eristics } \\ & n \mathrm{~m} \mu^{2} \\ & \hline \end{aligned}$	Remarks	Reference
	(A)	(B)	(C)	(D)		(E)	(F)
Hematin Enzymes (Continued)							
	Cytochromes of type a 23 a ${ }^{\mathbf{a}} 1$ a_{2} (concluded)	quite different, iron complex of dihydroporphyrin (chlorin) without formyl side chain.				contain the cytochrome $\underline{a}_{2}+\underline{a}_{1}$ system instead of the ${\underset{a}{3}}^{+} \underline{a}$ system.	
19	Cytochromes of type b $\frac{b}{b}$ \vec{b}_{1} b_{2} b_{3} b_{5} b_{6} \underline{b}_{7}	Prosthetic group protoheme changing valence between Fe^{++}and Fe^{+++} in reaction. Protohemin can be split off from apoenzyme. Cyto-chrome-b2 probably also contains flavin and non-heme iron.	Cytochrome-b of mitochondria and \underline{b}_{1} of some bacteria are bound to particulate matter. $E_{0}^{\prime}(\mathrm{pH} 7$. $30^{\circ} \mathrm{C}$) $=0$ (approx.). b_{2} can be brought into aqueous solution and has been obtained in crystalline form. b_{3} of plant microsomes and b_{5} of animal microsomes (liver, silkworm midgut) have similar properties. \underline{b}_{6} of chloroplasts and ${ }^{6} 7$ of the spadix of Arum are soluble. "b4" of halotolerant bacteria perhaps belongs to cytochromes of type c .	$\begin{gathered} \mathrm{Fe}^{++} \text {of } \\ \underline{b}:^{2} \\ \\ \underline{b}_{1}: \\ \underline{b}_{2}: \\ \underline{b}_{3}: \\ \underline{b}_{5}: \\ \underline{b}_{6}: \\ \underline{b}_{7}: \end{gathered}$	$\begin{aligned} & 565-563 \\ & 528-530 \\ & 430 \\ & 560-558 \\ & 556-557 \\ & 560 \\ & 557 \\ & 563 \\ & 560 \end{aligned}$	Cytochrome- \underline{b}_{2} is the lactic dehydrog enase of yeast. The role of cytochromes \underline{b} and \underline{b}_{1} is not yet fully understood; they probably act as electron carriers between enzymeactivated substrates or flavoproteins and cytochrome-c. Cytochromes $\underline{b}_{3}, \underline{b}_{5}$, and \underline{b}_{7} may react directly with O_{2} or with still unknown oxidases. A protoheme compound acts as terminal oxidase in a Micrococcus and perhaps in other bacteria. Helicorubin and cytochrome-h of snails belong to this class.	$\begin{aligned} & \mathrm{A}, 2,45 ; \mathrm{B}, \\ & 49,50,90 \\ & 91 ; \mathrm{C}, 49- \\ & 64,90- \\ & 93 ; \mathrm{D}, \mathrm{a} \\ & \text { E,12,13, } \\ & 65,66 \end{aligned}$
20	Cytochromes of type \subseteq $\frac{c}{c}$ $\frac{c}{c} 1$ $\frac{f}{c_{2}}$ c_{3} c_{4} c_{5} and other bacterial cytochromes	Prosthetic group of cytochrome\underline{c} is a derivative of hematoheme, with thioether bridges between $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)$ side chains of the porphyrin and cysteine groups in the	Cytochrome-c. MW = 12,000-13,000; water soluble, resistant to heat and moderately resistant to strong acids, not autooxidizable and does not react with CO. $\mathrm{E}_{\mathrm{O}}^{\prime}\left(\mathrm{pH} 7,30^{\circ} \mathrm{C}\right)=$ 0.25 volts. Several species-specific cytochromes \subseteq (pig and ox heart,	Fe^{++}cytochrome-c: Fe^{+++}cytochrome- - Fe^{++}of $\frac{C_{1}}{\text { f }}:$ c_{2} :	```550(26-28) 522(15.5-16.9) 415[s] (143) 345 565 (indistinct) 530(9.4-9.7) 407[s] (112) 346 552 555 550-552 520-523```	Most animal and plant cells contain cytochrome- in their mitochondria as essential électron carrier. Also found in yeasts and many aerobic bacteria, while other related cytochromes of type \underline{c} are found in photosynthetic and anaerobic bacteria. Some, e.g., c3. \underline{c}_{4}, c5. do not react with the mammalian cytochrome $\underline{a}_{3}+\underline{a}$ system. Cyto-chrome- \underline{f} is present in chloroplasts and is probably essential for photosynthesis. Cytochrome- \underline{c}_{2} is found	$\begin{gathered} A, 2,45,53, \\ 54,67- \\ 75,94- \\ 96 ; B, 2 \\ 76-81 ; \\ C, 82- \\ 85 ; \mathrm{D}, \mathrm{a} ; \\ \mathrm{E}, 12,13, \\ 86-89, \\ 94-96 \end{gathered}$

in photosynthetic bacteria and is active in their photochemism Cytochrome-c c_{3} tion mechanism. Cytochrome-c 3 reducer. Desulfovibrio desulfuricans, and cytochromes c_{4} and C_{5} in Azobacter vinelandii. Cyto-chrome- \bar{c} and is also found in plant microsomes.

ले णे चि
penguin, fish, yeast) lized.

Cytochrome-f, MW~ 110,$000 ; \mathrm{E}_{\mathrm{O}}(\mathrm{pH} 7$,
$\left.30^{\circ} \mathrm{C}\right)=0.365$ volts. Cytochrome- \underline{c}_{3}, MW approximately heme groups; 9
\vdots
0
0
0
0
0
0
0
0
0
 viding a firm linkage which be broken by Ag salin linkage appears to be present in cytochromes c_{2} and f. While terial cytochromes have bands in the
region of cytoregion of cyto-
chrome-c. their structure has not yet lished. They may belong to cytochrome-b or to a netween cytochromes b and c .
$/ 1 / \mathrm{MW}=$ molecular weight; $\mathrm{E}_{0}^{\prime}=$ oxidation-reduction potential, $/ 2 / \lambda$ maximum in $m \mu=$ wave length of maximum absorption; figures in parentheses are
$E \mathrm{mM}$, i.e., extinction coefficients of millimolar solutions of 1 cm thickness; $[s]=$ Soret band.

Contributors: (a) Lemberg, R., (b) Rossi-Fanelli, A., (c) Schmid, R.

 References: [1] Fischer, H., and Orth, H., "Die Chemie des Pyrrols
 physiol. Chem. 288:1, 1951. [9] Roughton, F. J., and Kendrew, J. C., ed. "Haemoglobin, a Symposlum on a Conference Held at Cambridge in June 1948 in

11] Keilin D. and Ryley, J. F ibid 172:451, 1953. [12] Smith, L., Bact. Rev., Balt. 18:106, 1954. [13] Kamen, M. D., ibid 19:250, 1955.
14] Bénard, H., Gajdos, A., and Tissier, M., "Hémoglobine et Pigments apparentées," Paris: Masson \& Cie., 1949. [15] Recknagel, K., and Hörlein, H., Die Medizinische, Stuttgart. No. 14, 463. 1954. [16] Lemberg, R., Reviews of Pure and Applied Chemstry, Royal Australian Chemical insture 6. 1956. [17] Foulkes, E. C., Lemberg, R., and Purdom, P., Proc. Roy. Soc., Lond. B 138:386, 1951. [18] Rossi-Fanelli, A., Giornate Biochimiche
[19 , J., Lond. 35:1164, 1941. [21] De Duve, C., Acta chem. scand. 2:264, 1948. [22] Lewis, U. J., and Schweigert, B. S., J. Biol. Chem. 214:647, 1955. 23] Rossi-Fanelli, A., and Antonini, E., Arch. Biochem., N, Y. 65:587, 1956. [24] Jonxis, J. P., and Wadman, S. K., Nature, Lond. $169: 884,1952$.
 and Hartree, E. F., Nature, Lond. 173:720, 1952. [29] Keilin, D., and Hartree, E. F., Biochem. J., Lond. 60:310, 1955. [30] Foulkes, E. C., and Lemberg, R., Enzymologla, Haag $13: 302,1949$. [31] Chance, B., and Fergusson, R. R., in "Symposium on the Mechanism of Enzyme Action" (McElroy, W. D., and Glass, B., ed.). p 385, Baltimore: Johns Hopkins Press, 1954. [32] Chance, B., ibid, p 399. [33] Jensen, J., J. Bact., Balt. 73:324, 1957.
89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS AND RELATED COMPOUNDS (Continued) Part Il: IRON PORPHYRINS (Concluded)

	Substance		Number of Pyrrole Nuclei in Chromophor, and Color	Other Physical and Chemical Properties ${ }^{2}$	Spectral Characteristics λ maximum in $m \mu^{2}, 3$	$\begin{gathered} \text { Reactions } \\ G_{1}^{\prime} D_{1}^{\prime} \mid P_{1}^{\prime} S: F \end{gathered}$	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Bilanes and Hydrobilanes								
1	Mesobilane ${ }^{4}$ (mesobilirubinogen; i-ur obilinogen; urobilinogen IX-a) $\left(\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{~N}_{4}\right)$		$\begin{gathered} 1 \\ \text { Colorless } \end{gathered}$	$\begin{aligned} & \text { Cryst.; MP }= \\ & \text { 1990 C; s. } \\ & \text { al., am.al., } \\ & \text { chl., eth., } \\ & \text { pet. eth., } \\ & \text { dil. alk: } \\ & \text { i.w. } \end{aligned}$	Red pigment (s. chl.) on treatment with	1-:-!	Traces in normal, more in pathological urine, bile, and feces. Distinguished from 2 (below) by F reaction or by violet pigment (bands at 665,600, $510 \mathrm{~m} \mathrm{\mu}$) on warming with $\mathrm{NaOH}-\mathrm{CuSO}_{4}$.	$\begin{gathered} \mathrm{A}, 1-4 ; \\ \mathrm{B}-\mathrm{D}, \mathrm{~F}, \\ \mathrm{a} ; \mathrm{E}, 4 \\ \mathrm{G}, 1-9 \end{gathered}$
2	$\begin{aligned} & \hline \text { Tetrahydro- } \\ & \text { mesobilane } \\ & \text { (stercobilin- } \\ & \text { ogen; } 1 \text {-uro- } \\ & \text { bilinogen) } \\ & \left(\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{~N}_{4}\right) \end{aligned}$		$\begin{gathered} 1 \\ \text { Colorless } \end{gathered}$	Non-cryst.; MP $=125-$ $150^{\circ} \mathrm{C} ; \mathrm{s}$. al.. am. al., chl.. eth., pet. eth., dil. alk.; i. w. $[\text { a }]_{\mathrm{D}}^{20}=$ -170°	Ehrlich aldehyde: approximately $560 \mathrm{~m} \mathrm{\mu}$ (64.5).		Main excretory product of hemoglobin in most vertebrates. Distinguished from 1 (above) by negative F reaction, or $\mathrm{NaOH}-\mathrm{CuSO}_{4}$ reaction (only one band at 530500 mu).	$\mathrm{A}, 1,2,10$ $11 ; B, C$ $\mathrm{~F}, \mathrm{G}, \mathrm{a} ;$ $\mathrm{D}, 12 ; \mathrm{E}$, 4
3	$\begin{array}{r} \text { d-Urobilinogen } \\ -\left(\mathrm{C}_{33} \mathrm{~N}_{42} \mathrm{O}_{6} \mathrm{~N}_{4}\right) ? \end{array}$	Unknown	1 Colorless	Cryst. needles from eth. ac.; MP $=$ $142-175^{\circ} \mathrm{C} ;$ s. chl., eth. acet., bz., glac. ac. a., al., dil. alk.; s. s. eth. ac.. pet. eth.; i. w. $[a]_{D}^{20}=$ +740	Red pigm̄ent (s. chl.) on treatment with Ehrlich aldehyde.	$-1+?-x+1$	Formed in infected bile passages and in the intestine during ingestion of broad spectrum antibiotics (tetracyclines).	A,G,7,12; B,C,E, F,a;D 12

[^15]89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS

	Substance		Number of Pyrrole Nuclei in Chromophor, and Color	Other Physical and Chemical Properties ${ }^{2}$	Spectral Characteristics λ maximum in $m \mu^{2,3}$	Reactions $G_{1}^{\prime} D_{1}^{\prime} E_{1}^{\prime} P_{1}^{\prime} S_{1}^{\prime} F$	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Bilenes and Hydrobilenes								
4	Mesobilene (urobilin $1 \mathrm{X}-\mathrm{a}:$ i-urobilin) $\left(\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{~N}_{4}\right)$		$\begin{array}{r} 2 \\ \text { Yellow } \end{array}$	Reddish- yel. cryst.; MP $=$ $177^{\circ} \mathrm{C}^{5} ;$ $\mathrm{HCl}=$ $162^{\circ}{ }^{\circ}{ }^{5} ;$ $\mathrm{MP}=$ $190^{\circ} \mathrm{C}^{6} ;$ $\mathrm{HCl}=$ $199^{\circ} \mathrm{C}^{6} ;$ s. al., am. al., chl., dil. alk.; sl. s. eth.; i.w.	Dioxane: $452(25.1)$ $330(3.6)$ Dioxane-HCl: 495.2 Alcohol-HCl: $490(50.1)$ Zn complex $375(7.4)$ in me. al.: 509.5		Oxidation product of 1 (above). Distinguished from 5 (below) by positive F and P reactions, optical inactivity and band position in alcohol- HCl in reversion spectroscope.	$\begin{gathered} \mathrm{A}, 1,2 ; \mathrm{B} \\ \mathrm{C}, \mathrm{~F}, \mathrm{G} . \\ \mathrm{a} ; \mathrm{D}, 1, \\ 12,13 ; \\ \mathrm{E}, 2,12 \end{gathered}$
5	Tetrahydro- mesobilene (stercobilin; $\frac{1-u r o b i l i n) ~}{}$ $\left(\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{~N}_{4}\right)$		$\stackrel{2}{\text { Yellow }}$	Or. cryst.; MP $=$ $236^{\circ} \mathrm{C} ; \mathrm{HCl}$ $=1620 \mathrm{C} ; \mathrm{s}$. al., am. al., chl., dil. alk.; sl. s. eth.; i. w.	Dioxane: $456(33.0)$ Dioxane-HCl: 492.7 Alcohol-HCl: $488(55.0)$ $372(8.5)$ Zn complex in al.: 506.5 Cu complex in al.: 515 $[$ a] 20 free: 320 $\mathrm{HCl}:$ -3800		Oxidation product of 2 (above). Distinguished from 4 (above) by negative F and P reactions, optical activity (levorotatory). and band position in alcohol-HCl.	$A, 1,2,10$ $11 ; B, C$ F,G,a; $D, 12 ; E$, $1,2,12$
6	$\begin{aligned} & \text { d. Urobilin }{ }^{4} \\ & \left(\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~N}_{4} .\right. \end{aligned}$	Unknown $2 \mathrm{H}_{2} \mathrm{O} \mathrm{O}$?	$\begin{gathered} 2 \\ \text { Yellow } \end{gathered}$	```Or.-yel. cryst.; MP =1740}\textrm{C HCl= 1650 eth. ac.; sl. s. me. al.```	$\begin{array}{ll} \text { Dioxane-HCl: } & 495.2 \\ {[\mathrm{a}]_{\mathrm{D}}^{20} \mathrm{HCl}:} & +5000 \end{array}$		Oxidation product of 3 (above) in infected bile and in feces of patients treated with tetracyclines.	$\begin{gathered} \text { A,G,7,12; } \\ \text { B,C,F } \\ \text { a;D,E } \\ 12 \end{gathered}$

$\begin{array}{\|l\|} \hline \text { Bilirubin } \\ \left(\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{~N}_{4}\right) \end{array}$		$\begin{aligned} & 2 \times 2 \\ & \text { Orange } \end{aligned}$	MP dimeth. est. $=198$ $200^{\circ} \mathrm{C}$; s . hot pyr., hot chl., CCl_{4}, dil.	Chloroform: $450(56)$ $\mathrm{NaOH}:$ 420		Main product of breakdown of hemoglobin snd other heme compounds; in gallstones, bile feces of newborn, hemorrhagic infarcts (hematoidin). "Indirect bilirubin"	$\begin{gathered} \text { A,1,2;B,C, } \\ \text { F,G.a; } \\ \text { D,1;E,2 } \\ 20,21 \end{gathered}$

89. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: PYRROLE PIGMENTS

H
$\mathrm{N}_{\mathrm{NH}} \overbrace{\mathrm{N}} / \mathrm{CO}$. $12 /$ Abbreviations: ac.a. $=$ acetic acid; benzene; chl. = chloroform; cryst. = crystal(line); dil. = dilute; dimeth. = dimethyl; est. ster; eth. = ether; eth. ac. = ethyl acetate; pyrm pyridine; sl. =slightly; $s .=$ soluble; w. = water; yel. =yellow. $h^{\prime} \lambda$ maximum in $m \mu=$ wave length of maximum absorption, figures in parentheses thickness. $/ 7 /$ According to the conditions of formation the linkage between rings III and
 C ; and ring IV may be V may be $\quad \square \quad\left(\mathrm{R}=\mathrm{OH}, \mathrm{OCH}_{3}, \mathrm{NO}_{2}\right.$, or Br$)$, as well as
 n. A Frost-Hansen, 1954. [5] Watson, C. J., Harvey Lect., Balt. 44:41, 1950. 6] Baumgärtel, T., "Physiologie und Pathologie des Bilirubinstoffwechsels als Grundlage der Ikterusforschung, "Stuttgart: G. Thieme, 1950. [7] Watson, Legge, 9 grb
mien

Contributors: (a) Lemberg, R., (b) Rossi-Fanelli, A., (c) Schmid, R,
C
179:264, 1957.
$[14]$
Siedel, W. Pure and Applied Chemistry, Royal Australian Chemical lnstitute 6:1, 1956. [17] Siedel, W., and Grams, E., Zschr. physiol. Chem. 267:49, 1940. J., Biochem. J., Lond. 66:65, 1957. [21] Schmid, R., J. Biol. Chem. 229:881, 1957.
90. PHYSICAL, CHEMICAL, AND BIOLOGICAL PROPERTIES: CYTOCHROMES OF ANIMALS AND HIGHER PLANTS
The cytochromes of animals and higher plants are intracellular chromoprotelns which are entirely associated with lipoprotein structural elements of the cytoplasm. The prosthetic group contains coordinated iron which may undergo alternate oxidation and reduction.

Source		Cytochrome	Physical and Chemical Properties ${ }^{1}$	Spectral Characteristics λ maximum in $m \mu^{2}$		Remarks	Reference	
		Reduced		Oxidized				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
Animal Pigments A . An .								
1	Pigments of mitochondria ${ }^{3}$	$\underline{2}$	$P \mathrm{PG}=$ hematin-a; $\mathrm{E}_{\mathrm{O}}^{\prime}=0.29$ volts.	$\begin{aligned} & 603 \\ & 452 \end{aligned}$	$\begin{aligned} & 590-600 \\ & 418-420 \end{aligned}$		$\begin{gathered} B, C, 1,2 ; B, D \\ 3 ; B, E, 4 \end{gathered}$	
2		a_{3}		$\begin{aligned} & 604 \\ & 448 \end{aligned}$	$\begin{aligned} & 590-600 \\ & 418-420 \end{aligned}$	Carbon monoxide-a 3 complex, when reduced, has absorption bands at 590$593 \mathrm{~m} \mathrm{\mu}$ and at $432 \mathrm{~m} \mathrm{\mu}$.	$\begin{gathered} \text { B,D,F,3;E,4 } \\ \text { F,5 } \end{gathered}$	
3		b	$P G=$ protohematin; $E_{0}^{\prime}=-0.04$ volts.	$\begin{aligned} & 564(20.8) \\ & 530 \\ & 430 \\ & \hline \end{aligned}$	416		$\begin{gathered} \mathrm{B}-\mathrm{D}, 6,7 ; \mathrm{C}, 2 \\ \mathrm{E}, 6 \end{gathered}$	
4		c	MW $=12,200 ; P G=$ hematin-c; $\mathrm{Fe}=$ 0.45%; heat stable at neutral pH ; isoelectric point pH 10.5-10.8; $\mathrm{E}_{\mathrm{O}}^{\prime}=0.255$ volts.	$\begin{aligned} & 550(27.8) \\ & 520 \\ & 415 \\ & 316 \end{aligned}$	$\begin{aligned} & 530 \\ & 408 \\ & 355 \end{aligned}$	Data refer to pigment purified from horse heart. Fe content may be increased by enrichment with iron-containing impurities.	$\begin{gathered} \mathrm{B}, \mathrm{C}, 8-11 ; \mathrm{B} \\ \mathrm{D}, \mathrm{E}, 12,13 ; \\ \mathrm{F}, 9,10,12 \\ 13 \end{gathered}$	
5		c_{1}	$\mathrm{PG}=$ hematin-c.	$\begin{aligned} & 553-554 \\ & 522-524 \\ & 416-418 \\ & \hline \end{aligned}$	410	Identical with cytochrome-e.	$\begin{aligned} & B, D, 14,15 ; C \\ & E, 14 ; F, 15 \\ & 16 \end{aligned}$	
6	Pigments of the endoplasmic reticulum ${ }^{4}$	\underline{b}_{5}	MW = 16,900; PG = protohematin; non-mitochondrial oxidation of reduced DPN and of reduced TPN; E ${ }_{0}^{\prime}=0.12$ volts.	$\begin{aligned} & 556(25.6) \\ & 526 \\ & 423 \\ & 320-340 \end{aligned}$	$\begin{aligned} & 500-580 \\ & 413 \\ & 355-370 \end{aligned}$	Identical with cytochrome-m. Separate flavoproteins catalyze the reactions of DPNH and of TPNH with cytochromeb_{5} in animal tissues.	$\begin{aligned} & \text { B,D,E,17;C, } \\ & 17,18 ; F, 18, \\ & 19 \end{aligned}$	
7	Intracellular pigments ${ }^{5}$	\underline{h}	```MW = 18,500; PG = modified proto- hematin; Fe = 0.33%; heat stable at neutral pH; isoelectric point < pH 4.3; E```	$\begin{aligned} & 556(22.7) \\ & 526.5 \\ & 422 \end{aligned}$	$\begin{aligned} & 562 \\ & 536 \\ & 408 \end{aligned}$	Occurs in land snails and other invertebrates. Helicorubin is probably a degraded form of cytochrome-h.	$\begin{gathered} \text { B, C,F }, 20,21 \\ \text { D-E, } 20 \end{gathered}$	
	Higher Plant Pigments							
8	Pigments of mitochondria ${ }^{6}$	$\underline{3}$	As found in animal mitochondria. Presence indicated by spectroscopic and spectrophotometric observations.				A-E,22-25.	
9		33				Role in electron transport inferred by cyanide inhibition of respiration, and by shift in spectrum observed with carbon monoxide.	$\begin{gathered} A-E, 22-25 ; \\ F, 22,24,26 \end{gathered}$	
10		\underline{b}					A-E,22-25	
11		c					A-E, 22-25,27	
12		c_{1}				Present in high concentration in wheat roots.	$\begin{gathered} \mathrm{A}-\mathrm{E}, 22-25,27 \\ \mathrm{~F}, 22 \end{gathered}$	
13		b_{7}		$\begin{aligned} & 560 \\ & 529 \\ & \hline \end{aligned}$		Observed in mitochondria from spadix of Arum maculata.	B-F,28	
14	Pigments of the endoplasmic reticulum ${ }^{7}$	\underline{b}_{3}	```PG = protohematin; non-mitochon- drial oxidation of reduced DPN and of reduced TPN.```	$\begin{aligned} & 559 \\ & 525 \\ & 425 \end{aligned}$		Observed in microsomes from wheat roots and beet petiole. A pigment with a similar spectrum observed in autolisates of green leaves.	$\begin{aligned} & \mathrm{B}, \mathrm{C}, 25 ; \mathrm{B}, \mathrm{D} \\ & 22,25 ; \mathrm{F}, 22, \\ & 29 \end{aligned}$	
15	$\begin{aligned} & \text { Pigments of chloro- } \\ & \text { plasts } 8 \end{aligned}$	b_{6}	$\mathrm{PG}=$ protohematin; $\mathrm{E}_{\mathrm{O}}^{\prime}=-0.06$ volts	563		Distinguished from cytochrome-b by greater stability to organic solvents.	B-F,30	

Contributors: Morton, R. K., and Armstrong, J. M.

The cytochromes are part of the terminal oxidation system loxygen reduced by the hydrogen atoms from various reduction. The energy of the various partial oxidations is used to form adenosine triphosphate (ATP) from adenosine process is known as "oxidative phosphorylation." [1-3] The following schematic drawing shows some of the known oxidized.

/1/Some substrates are activated by DPN-specific, some by TPN-specific dehydrogenases. DPN (diphosphopyridine II, respectively. / 2 / Transhydrogenase catalyzes transfer of hydrogen from reduced TPN to DPN. /3/The dotted from the action of a DPN-specific dehydrogenase. /4/Succinic dehydrogenase, for example, is a typical flavoprotein reduce the flavin prosthetic group of a dehydrogenase directly in the respiratory chain, or $/ 6 /$ reduce the heme is destroyed by BAL (British Anti-Lewisite, or 1, 2-mercaptopropanol) influences the interaction of cytochrome-b A. [5]

[^16]References: [1] Chance, B., and Williams, G. R., J. Biol. Chem. 217:429, 1955. [2] Chance, B., Williams [4] Slater, E. C., Biochem. J., Lond. 45:14, 1949. [5] Potter, V. R., and Reif, A. E., J. Biol. Chem. 194:287,

OF MITOCHONDRIA

substrates, thus forming water). Each step, as indicated in the diagram below, involves both oxidation and diphosphate (ADP) and inorganic phosphate (Pi), by coupling with the various phosphorylating enzyme systems. This components of the respiratory chain. Up to three molecules of ATP may be synthesized per molecule of DPNH

nucleotide) and TPN (triphosphopyridine nucleotide) are commonly used abbreviations for Coenzyme 1 and Coenzyme arrow indicates that reduced DPN arising by transhydrogenase action eventually may pool with reduced DPN formed dehydrogenase of the respiratory chain. /5/ The dotted arrows indicate that the reduced flavoprotein may elther prosthetic group of cytochrome b, which is part of the respiratory chain. /7/ Slater has shown that a factor which with cytochrome-c. [4] This may be identical with a factor which is sensitive to low concentrations of Antimycin
G. R., Holmes, W. F., and Higgins, J., ibid 217:439, 1955. [3] Slater, E. C., Chem. wbl., Amst. 53:180, 1957. 1952. identical with the mammalian pigments, even though they serve similar functions. Ome are rapidly oxidized in air and reduced when the oxygen in solution
Part I: ABSORPTION SPECTRA OF CYTOCHROMES IN INTACT BACTERIA Pari. $a_{2}, a_{4}, b_{1}, b_{4}, \varsigma_{2}, \varsigma_{3}, \varsigma_{4}$, and \underline{c}_{5} have been observed to occur only in
Function intermediate in electron transport.
Terminal oxidase. Alternate terminal oxidase.
Terminal oxidase. Unknown. Intermediate in electron transport. Intermediate in electron transport. Not part of respiratory chain; may be involved in light-induced reactions. Electron carrier during reduction of
sulfate and related ions. Intermediate in electron transport.
Intermediate in electron transport. Varies with growth phase of cells.
Balt. 18:106, 1954. [3] Keilin, D
, and Hartree, E. F.,
Part II: PROPERTIES OF SOLUBLE BACTERIAL CYTOCHROMES The cytochromes listed below have been isolated from bacteria in soluble form and purified to varying degrees.

Remarks \quad| Refer- |
| :---: |
| ence |

 \square appears to be a "c-type ${ }^{\text {" cytochrome; the }}$
preparation is probably a mixture of at
least two pigments.
ntermediate electron carrier in reduc-
tion of nitrate and O_{2}.
ntermediate electron carrier in reduc-
tion of nitrate and O_{2}; can be oxidized ppears to be a "c-type" cytochrome; the
preparation is probably a mixture of at
least two pigments.
tion of nitrate and O_{2}.
tion of nitrer in reduc-
tion of nite and O_{2}; can be oxidized ppears to be a "c-type" cytochrome; the
preparation is probably a mixture of at
least two pigments.
tion of nitrate and O_{2}.
Intermediate electron carrier in reduc-
tion of nitrate and O_{2}; can be oxidized
ition of nitrate and O_{2}. tion of nitrate and O_{2}; can be oxidized
by pig heart cytochrome-c
Not a part of respiratory chain of R. rub rum [7]; not oxidized by mammalian ed in reactions following illumination. λ maximum in m^{4} \qquad N $\underset{\sim}{\sim}$
416-418

Physical and Chemical Properties ${ }^{2}$

(D)
(D)

Sources

eamit eutures

orox d erobacter aerogenes | Escherichia coli, Proteus vulg |
| :--- |
| Bacillus subtilis, Sarcina lutea |
| Acetobacter peroxidans |
| Bacillus subtilis, Sarcina lutea |
| Escherichia coli, Proteus vulga |
| Halotolerant bacteria |
| Micrococcus denitrificans, Pse |
| Acetobacter pasteurianum, A. |
| Rhodospirillum rubrum, Rhodo |
| Desulfovibrio desulfuricans |
| Azotobacter vinelandii |

20 -10

ximum absorption. /3/ Approximately.
 B., J. Biol. Chem. 202:383, 1953. [5]
\qquad

at acid $\mathrm{pH} ; \mathrm{E}_{\mathrm{o}}^{\prime}=0.25$ volts.
Not auto-oxidizable; hemin like cytochrome-c; $E_{0}^{\prime}=0.32$ volts.
$M W=13,000 ;$ sam

IRC-50; IP less than that of cytochrome-c $E_{O}^{\prime}=0.34$ volts.

Halotolerant
bacteria Pseudomonas aeruginosa
icrococcus
denitrificans
seudomonas denitrificans rubrum

จшохчวоม)

(1)
 3

6		Rhodospirillum spheroides			Not oxidized by mammalian cytochromec oxidase. May be involved in reactions following illumination.	
7	c_{3}	Desulfovibrio desulfuricans	MW = 13,000; same hemin as cytochrome-c; no reaction with CO or cyanide; auto-oxidizable; appears to have two hemin groups per molecule; rather stable to heat and acid; $\mathrm{Fe}=0.92 \% ; 1 \mathrm{P}$ between $\mathrm{pH} 10.30-10.66 ; \mathrm{E}_{\mathrm{o}}=-0.204$ volts.	$\begin{aligned} & 553 \\ & 525 \\ & 419 \end{aligned}$	Electron carrier during reduction of sulfate and related ions.	8,9
8	C_{4}	Azotobacter vinelandij	MW = 12,000; same hemin as cytochrome-c; relatively stable to heat and alkali; denatured in acid; not auto-oxidizable; does not combine with CO or cyanide; $\mathrm{Fe}=0.46 \%$; 1 P at acid pH ; $\mathrm{E}_{\mathrm{O}}^{1}=0.32$ volts.	$\begin{aligned} & 551(23.8) \\ & 522(17.6) \\ & 416(157.2) \end{aligned}$	Part of the bacterial respiratory chaln. Not oxidized by oxidases of heart muscle, Escherichia coli, or Acetobacter peroxidans.	10
9	C_{5}	Azotobacter vinelandii	Not auto-oxidizable; same hemin as cytochrome-c; relatively stable to heat and alkali; denatured in acid; does not combine with CO or cyanide; 1P at acid $\mathrm{pH} ; \mathrm{E}_{\mathrm{O}}^{\prime}=0.30$ volts.	$\begin{aligned} & 555 \\ & 526 \\ & 420 \end{aligned}$	Part of the bacterial respiratory chain. Not oxidized by oxidases of heart muscle, Escherichia coli, or Acetobacter peroxidans.	10
10	Chromatium cytochrome	Chromatium sp	$M W=30,000-38,000$; hemin like cytochrome-c; appreciably auto-oxidizable; $\mathrm{E}_{\mathrm{O}}^{\prime}=-0.04$ volts	$\begin{aligned} & 552 \\ & 525 \\ & 418 \end{aligned}$	Preparation is probably a mixture of two pigments.	11
11	Chlorobium cytochromes	Chlorobium thiosulfatophilum	Two pigments isolated, having protein parts of different basicity; one is absorbed on Amberlite IRC-50, other is not. Pigment 1: $\mathrm{Fe}=0.37 \%$; slowly auto-oxidizable, but does not combine with $\mathrm{CO} ; \mathrm{E}_{\mathrm{O}}^{\dagger}=0.16$ volts.	$\begin{aligned} & 554 \\ & 523 \\ & 417 \end{aligned}$		12,13
12		Chlorobium limicola		$\begin{aligned} & 553 \\ & 520 \\ & 415 \\ & \hline \end{aligned}$	Impure mixture.	
13	Pseudomonas fluorescens cytochrome	Pseudomonas fluorescens		$\begin{aligned} & 550 \\ & 520 \\ & 415 \end{aligned}$	Contains a peroxidase which oxidizes the cytochrome in presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. Not reduced by liver TPNH-cyto-chrome-c reductase.	14

 tion-reduction potential at $\overline{\mathrm{p}} \mathrm{H} 7$. / / / For reduced pigment. /4/ λ maximum in $\mathrm{m}_{\mu}=$ wave length of maximum absorption; figures in parentheses are $E_{1 \mathrm{~cm}}^{\mathrm{mM}}$, i.e., extinction coefficients of millimolar solutions of 1 cm thickness.
Contributor: Smith, L. Publishers, 1957. [8] Postgate, J. R., J. Gen. Microb., Lond. 14:545, 1956. [9] lshimoto, M., and Koyama, J., Bull. Chem. Soc., Japan 28:231, 1955.
 N. O., J. Biol. Chem. 220:967, 1956.

Maximal breathing capacities, of seated subjects, were measured in a Benedict-Roth type spirometer (Collins ventilometer) with the soda lime container and valves removed. MBC values have been corrected to BTPS conditions (cf Page 1); those in parentheses are ranges and conform to estimate " b " of the 95% range (cf Introduction).

Part I: VS AGE

$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$		Males		Females	
		no.	MBC, L/min	no.	MBC, L/min
	(A)	(B)	(C)	(D)	(E)
1	5.0-5.9	4	42(30-54)	12	41(19-63)
2	6.0-6.9	8	45(25-65)	8	53(42-63)
3	7.0-7.9	6	65(53-77)	18	$53(33-73)$
4	8.0-8.9	7	69(49-89)	19	60(36-85)
5	9.0-9.9	7	73(35-111)	29	67(46-88)
6	10.0-10.9	10	79(43-115)	22	72(49-94)
7	11.0-11.9	6	75(61-89)	28	79(49-109)
8	12.0-12.9	3	109(75-143)	28	96(47-144)
9	13.0-13.9	20	117(67-167)	14	104(67-141)
10	14.0-14.9	72	117(68-166)	19	99(39-160)
11	15.0-15.9	9	129(61-197)	12	105(59-152)
12	16.0-16.9	5	134(108-160)	10	92(56-128)
13	17.0-17.9	4	155(133-177)	12	108(59-157)
14	18.0-18.9			2	123(83-163)

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Females: Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953.

Part II: VS STANDING HEIGHT
Subjects measured in stocking feet.

Height cm		Males		Fernales	
		no.	MBC, L/min	no.	MBC, L/min
		(B)	(C)	(D)	(E)
1	100.0-109.9			4	4) (14-69)
2	110.0-119.9	7	44(30-58)	13	47(28-71)
3	120.0-124.9	5	45(21-69)	10	62(29-94)
4	125.0-129.9	4	63(45-81)	15	58(38-77)
5	130.0-134.9	5	69(33-105)	19	62(41-83)
6	135.0-139.9	9	68(30-106)	30	72(50-94)
7	140.0-144.9	9	79(63-95)	19	74(47-100)
8	145.0-149.9	9	82(58-106)	12	78(41-115)
9	150.0-154.9	5	86(48-124)	23	90(48-132)
10	155.0-159.9	12	102(72-132)	38	95(52-137)
11	160.0-164.9	13	115(61-109)	18	103(50-155)
12	165.0-169.9	30	113(66-160)	17	107(51-164)
13	170.0-174.9	29	127(75-179)	6	124(95-153)
14	175.0-179.9	16	129(107-151)		
15	180.0-184.9	8	148(110-186)		

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659. 1952. [2] Females: Ferris, B. G., Jr., and Smith, C. W., ibid 12:341, 1953.

Maximal breathing capacities, of seated subjects, were measured in a Benedict-Roth type spirometer (Collins ventilometer) with the soda lime container and valves removed. MBC values have been corrected to BTPS conditions (cf Page 1); those in parentheses are ranges and conform to estimate " b " of the 95% range (cf Introduction).

Part III: VS WEIGHT

Subjects weighed without heavy clothing.

Weight kg		Males		Fernales	
		no.	MBC, L/min	no.	$\mathrm{MBC}, \mathrm{L} / \mathrm{min}$
	(A)	(B)	(C)	(D)	(E)
1	15.0-19.9			6	36(24-48)
2	20.0-24.9	9	46(28-64)	26	53(33-73)
3	25.0-29.9	7	53(21-85)	17	61(41-81)
4	30.0-34.9	12	74(40-108)	29	65(38-92)
5	35.0-39.9	11	71(39-103)	28	78(51-104)
6	40.0-44.9	10	83(61-105)	28	77(43-112)
7	45.0-49.9	15	93(73-113)	24	88(48-127)
8	50.0-54.9	8	110(52-168)	25	98(40-155)
9	55.0-59.9	22	121(85-157)	26	100(45-155)
10	60.0-64.9	29	129(75-183)	15	106(59-153)
11	65.0-69.9	12	119(65-173)	4	98(51-145)
12	70.0-74.9	12	126(62-190)	3	126(91-161)
13	75.0-79.9	11	122(74-170)	1	132
14	80.0-84.9	3	136(104-168)		

Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L.. and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Females: Ferris, B. G.. Jr., and Smith. C. W., ibid 12:341, 1953.

Part IV: VS SURFACE AREA

Surface area obtained from DuBois nomogram.

Surface Area sq m		Males		Females	
		no.	MBC ${ }_{1} \mathrm{~L} / \mathrm{min}$	no.	MBC, $\mathrm{L} / \mathrm{min}$
	(A)	(B)	(C)	(D)	(E)
1	0.60-0.79			9	42(21-63)
2	0.70-0.89	8	46(28-64)		
3	0.80-0.89			18	53(30-76)
4	0.90-0.99	5	48(16-80)	14	60(24-95)
5	1.00-1.09	9	65(35-95)	25	63(39-88)
6	1.10-1.19	9	70(32-108)	30	70(48-92)
7	1.20-1.29	10	79(55-103)	23	76(49-102)
8	1.30-1.39	10	84(62-106)	22	81(43-119)
9	1.40-1.49	11	93(79-107)	24	91(47-135)
10	1.50-1.59	12	108(52-164)	32	93(44-142)
11	1.60-1.69	22	110(70-150)	24	107(54-160)
12	1.70-1.79	36	$130(85-175)$	9	121(85-156)
13	1.80-1.89	12	130(70-190)	3	130(96-164)
14	1.90-1.99	-14	125(73-177)		
15	2.00-2.09	3	148(124-172)		

[^17]References: [1] Males: Ferris, B. G., Jr., Whittenberger, J. L., and Gallagher, J. R., Pediatrics, Springf. 9:659, 1952. [2] Females: Ferris, B. G., Jr., and Smith. C. W., ibid 12:341, 1953.
94. MAXIMAL BREATHING CAPACITY: MAN

Ventilatory values have generally been corrected to BTPS conditions (cf Page 1). Values in parentheses are ranges and conform to estimate "c" of the 95% range (cf Introduction). Ventilatory data of Shock conform to estimate "b."

	$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$	Height cm	Weight kg	Surface Area sq m	$\begin{aligned} & \mathrm{MBC} \\ & \mathrm{~L} / \mathrm{min} \end{aligned}$	Author	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Males							
1	8.1	124.8	21.4	0.87	37	Morse	1
2	9.5	148.2	41.6	1.31	62		
3	11.5(11.3-11.7)	154.2(146.0-162.5)	42.7(37.3-48.0)	1.37(1.25-1.49)	55(46-63)		
4	12.5	153.3	39.9	1.31	91		
5	13.4	171.7	58.7	1.69	129		
6	14.0	169.5	51.7	1.56	94		
7	19.3	172.2	61.6	1.72	144		
8	23	165.9	65.4	1.77	172		
9	24.3	167.1	62.6	1.71	218		
10	30.0	182.3	68.0	1.89	155		
11	35.6	174.2	54.2	1.62	106		
12	24.5(20-29)	174.3(164.7-183.9)	77.5(39.1-115.9)	1.92(1.53-2.31)	126(55-198)	Shock	2
13	34.5(30-39)	176.6(166.2-187.0)	74.2(52.4-96.0)	1.90(1.65-2.15)	114(55-173)		
14	44.5(40-49)	173.2(162.8-183.6)	67.8(45.3-90.3)	1.81(1.57-2.05)	101(40-162)		
15	54.5(50-59)	171.3(158.4-184.2)	63.0(46.2-79.8)	1.74(1.49-1.99)	74(21-126)		
16	64.5(60-69)	167.8(158.6-177.0)	63.5(44.9-82.1)	1.72(1.48-1.96)	67(14-120)		
17	74.5(70-79)	166.9(154.9-178.9)	63.2(36.7-89.7)	1.71(1.36-2.06)	54(14-93)		
18	$83.1(80-87)$	163.9(147.8-180.0)	59.7(39.9-79.5)	1.65(1.34-1.96)	48(4-92)		
19	20.9(15.8-25.9)				168(124-212)	Gray	3
20	23.3(16.5-30.1)	179.1(167.9-190.3)	71.7(54.5-88.9)		169(130-207)	Matheson	4
21	23.5(18.0-29.0)				145(76-214)	Malamos	5
22	23.5(21.0-26.0)				166(125-207)	Dripps	6
23	24.1	178.8	72.7		169(126-208)	Gray	3
24	25.5(13.5-37.5)	173.8(156.6-191.0)	66.0(49.4-82.6)		126(69-183)	Baldwin	7
25	42.7(34.5-50.9)	171.7(157.9-185.5)	64.9(42.5-87.3)	1.76	109(78-141)		
26	58.1(43.1-73.1)	168.5(151.1-185.9)	63.0(38.8-87.2)	1.72	103(62-144)	Galdston	8
27	59.6(48.8-70.4)	169.6(153.0-186.2)	63.3(49.1-83.5)	1.72	91(57-124)	Baldwin	7
Females							
28	6.3(6.2-6.4)	122(121-123)	23.3(23.0-23.6)	0.94(0.90-0.98)	45(35-54)	Morse	1
29	7.7(7.6-7.9)	128(128-129)	28.3(25.0-31.6)	1.00(0.95-1.05)	42(35-50)		
30	8.3(8.1-8.6)	132(127-137)	30.8(27.9-33.8)	1.07(1.05-1.08)	38(34-42)		
31	9.5(9.0-9.9)	140(140-142)	33.8(26.0-42.9)	1.15(1.03-1.27)	48(41-52)		
32	10.3(10.1-10.6)	145(144-147)	35.5(29.6-40.4)	1.21(1.11-1.29)	67(49-92)		
33	11.5(11.1-11.8)	151(148-153)	38.0(27.7-46.7)	1.27(1.06-1.44)	63(47-81)		
34	12.6(12.2-12.9)	158(141-172)	47.1(36.0-54.0)	1.48(1.26-1.69)	75(43-96)		
35	13.4(13.2-13.7)	159(148-165)	53.8(43.0-59.0)	1.54(1.40-1.60)	103(57-150)		
36	14.5(14.2-14.9)	165(162-169)	53.7(53.1-54.3)	1.58(1.57-1.60)	127(87-194)		
37	15.4(15.2-15.6)	165(160-170)	60.5(53.2-74.4)	1.66(1.54-1.85)	110(89-141)		
38	18.4(18.0-18.8)	168(158-177)	57.5(42.4-65.5)	1.65(1.39-1.82)	120(107-143)		
39	20.2(20.0-20.4)	165(161-168)	56.0(47.2-64.9)	1.63(1.50-1.76)	129(122-137)		
40	21.5(21.3-21.7)	159(149-164)	51.8(43.0-59.5)	1.51(1.34-1.63)	110(97-127)		
41	22.2(22.0-22.4)	166(157-174)	64.9(56.3-73.6)	1.72(1.56-1.88)	162(144-180)		
42	23.4(23.0-23.9)	167(157-175)	65.8(51.1-88.4)	1.74(1.50-1.98)	132(81-209)		
43	24.4(24.3-24.7)	165.1(158.4-169.3)	59.9(47.6-70.4)	1.64(1.53-1.81)	129(93-181)		
44	25.4(25.0-25.8)	163.7(159.5-167.9)	59.9(59.4-60.4)	1.66(1.64-1.68)	109(108-110)		
45	26.1	165.5	55.1	1.63	118		
46	28.7(28.5-28.9)	172(171-173)	59.6(56.0-63.1)	1.74(1.71-1.76)	126(109-144)		
47	29.1	170.2	45.6	1.50	101		
48	30.0	175.6	79.5	1.96	184		
49	34.0	152.2	57.0	1.53	145		
50	36.5(36.5-36.6)	161(155-166)	52.8(50.2-55.3)	1.54(1.47-1.61)	98(82-113)		
51	24.3(12.6-36.0)	164.9(151.0-178.8)	56.2(44.0-68.4)		116(74-158)	Gray	3
52	25.1(12.7-37.5)	161.8(149.4-174.2)	$59.2(37.0-81.4)$		94(69-119)	Baldwin	7
53	27.2(17.2-37.1)	160.0(128.8-191.2)	60.3(42.7-77.9)	1.62	100(67-134)	Cournand	9
54	43.3(36.1-50.5)	164.0(150.4-177.6)	62.6(32.0-93.2)	1.67	89(53-125)	Baldwin	7
55	44.8(23.6-66.0)	163.6(152.8-174.4)	59.9(44.9-74.9)	1.64	86(55-118)	Galdston	8
56	59.8(41.8-77.8)	158.4(145.0-171.8)	67.2(45.2-89.2)	1.67	73(40-107)	Baldwin	7

Contributors: (a) Galdston, M., (b) Morrow, P. E., (c) Morse, M., (d) Shock, N. W.
References: [1] Morse, M., Univ. of Chicago, unpublished. [2] Shock, N. W., Norris, A. H., Landowne, M., and Falzone, J. A., Jr., J. Geront. 11:379, 1956. [3] Gray, J. S., Barnum, D. C., Matheson, H. W., and Sples, S. N., J. C11n. Invest. 29:677, 1950. [4] Matheson, H. W., and Gray, J. S., Dbid 29:688, 1950. [5] Malamos, B., Beitr. Klin. Tuberk. $93: 225,1938$. [6] Dripps, B. D., and Comroe, J. H., Jr., Am. J. Physiol. 149:43, 1947. [7] Baldwin, E. de F., Cournand, A., Richards, D. W., Jr., Medicine 27:243, 1948, [8] Galdston, M., Wolfe, W. B., and Steele, J. M., J. Appl. Physiol, 5:17. 1952. [9] Cournand, A., Richards, D. W., Jr., and Darling. R. C., Am. Rev. Tuberc. 40:487, 1939.

95. MECHANICS OF BREATHING

Although a large literature has accumulated on the mechanics of breathing, comparison of results often is difficult because of differences in experimental technique. Measurements of lung compliance may yield different results when the elastic pressure changes are measured during spontaneous or rapid breathing, as against those measured under true static conditions when air flow is stopped for a second or more. An additional complication in measurements of compliance arises because the pressures observed during slow volume changes depend on the previous degree of expansion of the lungs. (Part 1 illustrates slow pressure-volume changes in the cat; similar lung behavior has been observed for other mammals, including man.) Thus lung compliance determinations depend on whether measurements are made (1) from the normal resting volume, (2) after a deep inspiration, or (3) with the functional residual capacity decreased, either voluntarily or involuntarily, from effects of posture or anesthetics. Most of the measurements given in the tables below have been made from the resting lung volume, usually in sitting individuals. The reservations cited above apply also to measurements of lung resistance; furthermore, the measured resistance may depend on the lung volume, as well as on the frequency of breathing.

Contributor: Radford, E. P., Jr.
Part l: SLOW PRESSURE-VOLUME CURVES: CAT
Cat, weighing 3.7 kilograms, lungs exposed, lay in tank respirator; lung volume changes were produced by slowly decreasing tank pressure. Three different inflation curves were obtained after the lungs had been allowed to deflate to various pressures. Each inflation or deflation curve required 20-30 seconds.

/1/ Lungs allowed to collapse completely and immediately reinflated slowly. /2/ Lungs deflated to a pressure of $0.6 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ after a maximum inflation, then reinflated. $/ 3 / \mathrm{Lungs}$ deflated to $2 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ and immediately reinflated. /4/ Deflation (following procedures used in obtaining Curve 1), shown for comparison.

Contributor: Radford, E. P., Jr.

Reference: Radford, E. P., Jr.. "Tissue Elasticity," p 186, Baltimore: American Physiological Society, 1957.

95. MECHANICS OF BREATHING (Continued)

Part II: INTRAPULMONARY PRESSURES AT VARIOUS LUNG VOLUMES: MAN

All measurements made on males in sitting position. Mean lung volumes are per cent of vital capacity at ambient pressure. Values in parentheses are ranges, estimate " b " of the 95% range (cf Introduction).

Maximum Expiratory Pressure				Maximum Inspiratory Pressure			Relaxation Pressure ${ }^{1}$			
	Subjects no.	$\begin{array}{\|c\|} \text { Volume } \\ \% \end{array}$	Positive Pressure mm Hg	$\begin{gathered} \text { Subjects } \\ \text { no. } \end{gathered}$	$\underset{\%}{\text { Volume }}$	Negative Pressure mm Hg	Subjects nо.	$\begin{aligned} & \text { Volume } \\ & \% \end{aligned}$	Pressure mm Hg	$\begin{gathered} \text { Refer- } \\ \text { ence } \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
1	12	9.7	41.5(14.7-68.3)	11	3.9	86.0(47.0-125.0)	14	0	-19.2(-31.8 to -6.6)	1
2	12	25.0	52.5(10.9-94.1)	11	21.7	74.6(46.4-102.8)	14	13.9	-8.5(-15.5 to -1.5)	1
3	12	43.8	69.9(30.5-109.3)	11	34.8	63.3(25.9-100.7)	14	31.0	-1.3(-9.9 to 7.3)	1
4	12	60.0	90.0(47.0-133.0)	11	55.6	56.8(25.6-88.0)	14	51.0	$4.1(-1.9$ to 10.1$)$	1
5	12	75.0	93.3(58.1-128.5)	11	75.7	44.8(16.8-72.8)	14	72.0	10.5(1.9-19.1)	1
6	12	83.0	107.0(74.4-139.6)	11	91.0	23.6(2.2-49.4)	14	87.0	14.9(0.3-29.5)	1
7	100	100.0	119.0(86.0-145.0)				14	100.0	20.6(10.2-31.0)	1,2

/1/ Measured with glottls open at desired lung volume; one nostril plugged and other connected with a water manometer.

Contributors: (a) Lees, W. M., Snider, G. L., and Fox, R. T., (b) Radford, E. P., Jr., (3) Dayman, H. G.
References: [1] Rahn, H., Otis, A. B., Chadwick, L. E., and Fenn, W. O., Am. J. Physiol. 146:161, 1946. [2] Gross, D., Am. Heart J. 25:335, 1943.

Part lII: PRESSURE-VOLUME DIAGRAM OF CHEST AND LUNGS: MAN

On the ordinates 100% of vital capacity represents the height of inspiration, and 0% of vltal capacity represents maximum expiration, both at zero pressure or ambient pressure in the lungs. The diagram shows the pressures which can be developed passively (relaxatlon pressure) or actively (maximum pressures) at different lung volumes. In the upper right corner where the lung is maximally expanded and the pressure has a positive value, there is danger of rupture of the lung (broken line in diagram). In the lower left corner where the blood vessels are exposed to a maximum negative pressure, there is extreme vasodilation and danger of hemorrhage (broken line in diagram).

Contributors: (a) Fenn, W. O., (b) Radford, E. P., Jr.
References: [1] Fenn, W. O., in "Handbook of Respiratory Physiology" (Boothby, W. M., ed), Randolph Field, Texas: USAF School of Aviation Medicine, 1954. [2] Fenn, W. O., Rivista Di Medicina Aeronautica, 1955.

95. MECHANICS OF BREATHING (Continued) Part IV: INTRAPLEURAL PRESSURES: MAN

Values expressed as gauge pressures (cm of $\mathrm{H}_{2} \mathrm{O}$ less than ambient atmospheric pressure).

No, and Sex	Inspiration	Expiration	Reference
(A)	(B)	(C)	(D)
1 200 2 $4000,10 \%$	$-7.3(-14.0$ to -4.0$)$ $-9.3(-14.6 \text { to }-3.9)^{1}$	$\begin{aligned} & -3.8(-10.0 \text { to }-2.0) \\ & -3.8(-8.7 \text { to }-1.1) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$

/1/ Measurements made with a modified Lillingston and Pearson pneumothorax apparatus.
Contributors: (a) Lees, W. M., Snider, G. L., and Fox, R. T., (b) Radford, E. P., Jr.
References: [1] Lees, A. W., Glasgow M. J. 32:1, 1951. [2] Laha, P. N., lnd. M. Gazette 81:359, 1946.
Part V: COMPLLANCE OF LUNG-THORAX SYSTEM: MAMMALS

	Animal	Condition	Weight kg	Compliance L/cm H2O	Reference
(A)		(B)	(C)	(D)	(E)
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Man	Unanesthetized, supine Anesthetized, supine	66	$\begin{aligned} & 0.12 \\ & 0.062 \end{aligned}$	$\begin{aligned} & 1-3 \\ & 1-3 \end{aligned}$
	Cat	Anesthetized Anesthetized	$\begin{aligned} & 3.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 0.0068 \\ & 0.0057 \end{aligned}$	$\begin{aligned} & 4 \\ & 4-6 \end{aligned}$
	Dog	Anesthetized Anesthetized	$\begin{aligned} & 20 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 0.048 \\ & 0.0265 \end{aligned}$	$\begin{aligned} & 5,7 \\ & 5,8 \end{aligned}$
	Rabbit	Anesthetized	2	0.0023	9

Contributors: (a) Du Bois, A. B., (b) Ross, B. B., (c) Radford, E. P., Jr., (d) Frank, N. R.
References: [1] Nims, R. G. Conner, E. H., and Comroe, J. H., Jr.. J. Clin. Invest. 34:744, 1955. [2] Rahn, H., Otis, A. B., Chadwick, L. E., and Fenn, W. O., Am. J. Physiol. 146:161, 1946, [3] Otis, A. B., Fenn, W. O., and Rahn, H., J. Appl. Physiol. $2: 592$, 1950. [4] Nisell, O. I., and DuBois, A. B., Am. J. Physiol. 178:206, 1954. [5] Brody, A. W., ibid $178: 189$, 1954. [6] Brody, A. W., DuBois, A. B., Nisell, O. 1., and Engelberg, J., ibid 186:142, 1956. [7] Van Liew, H. D., ibid 177:161, 1954. [8] Severinghaus, J. W., and Stupfel, M., J. Appl. Physiol. 8:81, 1955. [9] Bernstein, L., J. Physiol. 123:44P. 1954.

Part VI: RELAXATION PRESSURE CURVE: MAN

The relaxation pressure curve (solid line) of the chest and lungs ($\mathrm{P}_{\mathrm{C}}+\mathrm{P}_{\mathrm{L}}$) consists of two components (broken lines), the elasticity of the chest and diaphragm (P_{C}) and the elasticity of the lungs (P_{L}). At the normal relaxation volume, where the relaxation pressure curve crosses the axis, the elasticity of the lung is exactly balanced by the elasticity of the chest, and both are equal in magnitude to the intrapleural pressure, or 4 mm Hg at expiration. The lung curve intersects the relaxation pressure curve at a volume of about 70% of the vital capaclity, at which point the chest curve crosses the axis and all of the relaxation pressure is due to the elasticity of the lung. The lung curve presumably intersects the " 0 " axis in the residual air region at a point that measures the minimal air.

Contributors: (a) Fenn, W. O., (b) Radford, E. P., Jr.

Reference: Fenn, W. O., in "Handbook of Respiratory Physiology" (Boothby, W. M., ed), Randolph Field, Texas: USAF School of Aviation Medicine, 1954.

95. MECHANICS OF BREATHING (Continued)

Part VII: PULMONARY COMPLIANCE: MAN

Two standard methods of measuring pulmonary compliance give similar results in normal subjects. Static Method: The intra-esophageal pressure upon interruption of air flow after an inspiration of 0.5 and 1.0 L , is subtracted from the intra-esophageal pressure upon interruption of air flow at the end expiratory level. Compliance is expressed as $\mathrm{L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ pressure difference. Dynamic Method: The intra-esophageal pressure at the instant of zero air flow after inspiration, is subtracted from the intra-esophageal pressure at the instant of zero air flow after expiration. This pressure difference during normal breathing is divided into the tidal volume of that breath. The value is usually expressed as an average for 5 or 10 breaths. Capacity values are for ATPS. Values in parentheses are ranges and are estimate " c " of the 95% range (cf Introduction), unless otherwise indicated.

	Condition	Method	Age	No. and Sex	Functional Residual Capacity, L	Vital Capacity L.	Compliance ${ }^{1}$ $\mathrm{L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Supine	Dynamic	$1 \mathrm{hr}-7 \mathrm{da}$	180° and ?			0.005(0.002-0.009)	1
2	Sitting	Dynamic	28(19-49)	490		5.02(2.20-7.80)	0.19(0.14-0.33)	2-4
3		Dynamic	22(19-29)	119		3.14(2.30-3.80)	0.13(0.09-0.18)	2, 3, 5
4		Static	28(21-43)	$60{ }^{\circ}$		4.70(3.30-5.90)	0.20(0.14-0.31)	4-7
5		Static	26(18-43)	429		3.57 (3.00-4.20)	0.14(0.09-0.22)	4-6,8
6		Static	69(50-87)	$80^{\circ}, 189$		$3.09(1.79-4.39)^{\text {b }}$	$0.13(0.058-0.202)^{\text {b }}$	9
7	During Exercise ${ }^{2}$	Dynamic	24(20-36)	290	3.84(2.5-6.5)		0.22(0.13-0.39)	
8		Dynamic	$21(19-29)$	7%	2.37(1.7-3.2)		0.13(0.09-0.18)	2,3,5

/1/ Intra-esophageal pressure taken as equivalent to intrathoracic pressure in determining pressure differential across the lung. 12/ Treadmill speed, 3 miles per hour.

Contrlbutors: (a) Mcllray, M. B., (b) Alexander, J. K., (c) Fritts, H. W., (d) Frank, N. R., (e) Radford, E. P., Jr., (f) Turino, G. M.

References: [1] Cook, C. D., Sutherland, J. M., Segal, S., Cherry, R. B., Mead, J., Mcllroy, M. B., and Smith. C. A., J. Clin. Invest. 36:440, 1957. [2] Marshall, R., unpublished. [3] Attinger, E. O., Monroe, R. D., and Segal, M. S., J. Clin. Invest. 35:905, 1956. [4] Frank, N. R., Mead, J., Siebens, A. A., and Storey, C. F., J. Appl. Physiol. $9: 38,1956$. [5] Cherniack, R. M., J. Clin. Invest. 35:394, 1956. [6] Heaf, P. J., and Prime, F. J., Clin. Sc., Lond. 15:319, 1956. [7] Stead, W. W., Fry, D. L., and Ebert, R. V., J. Laborat. Clin. M. 40:674, 1952. [8] Brown, C. C., Fry, D. L., and Ebert, R. V., Am. J. M. 17:438, 1954. [9] Frank, N. R., Mead, J., and Ferris, B. G., Jr., unpublished.

Part VIII: PULMONARY COMPLIANCE VS VITAL CAPACITY: MAN

Measurements made using the intra-esophageal balloon technique on young adults, 18-35 years old, in sitting position. Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).

No. and Sex		Vital Capacity L	Compliance $\mathrm{L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$	Reference (D)
	(A)	(B)	(C)	
1	9%	2.5-3.0	0.13(0.10-0.18)	1-3
2	13%	3.0-3.5	0.15(0.09-0.22)	1,4,5
3	18%	3.5-4.0	0.15(0.10-0.25)	1,2,4-6
4	70	3.5-4.0	0.17(0.11-0.25)	1,3
5	130	4.0-4.5	0.18(0.09-0.28)	1-3,7
6	$20{ }^{\circ}$	4.5-5.0	$0.20(0.15-0.33)$	1-4,6,7
7	1400	5.0-5.5	0.22(0.15-0.32)	1,4,6
8	$7{ }^{\circ}$	Over 5.5	0.27 (0.24-0.33)	1,4,6,7

[^18]References: [1] Frank, N. R., Mead. J., Slebens, A. A., and Storey, C. F., J. Appl. Physiol. 9:38, 1956. [2] Attinger, E. O., Monroe, R. G., and Segal, M. S., J. Clin. Invest. 35:905, 1956. [3] Heaf, P. J., and Prime, F. J., Clin. Sc., Lond. 15:319, 1956. [4] Mead, J., and Whittenberger, J. L., J. Appl. Physiol. 5:779, 1453. [5] Brawn, C. C., Fry, D. L., and Ebert, R. V., Arm. J. M. 17:438, 1954. [6] Cherniack, R. M., J. Clin. Invest. 35: 394, 1956. [7] Stead, W. W., Fry, D. L., and Ebert, R. V., J. Laborat. Clin. M. 40:674, 1952.
95. MECHANICS OF BREATHING (Concluded)

Part 1X: PULMONARY COMPLIANCE: VERTEBRATES

| Animal
 (A) | Weight
 kg | Compliance
 L/cm $\mathrm{H}_{2} \mathrm{O}$ | Reference |
| :--- | :--- | :--- | :--- | :---: |

Contributors: (a) DuBois, A. B., (b) Ross, B. B., (c) Radford, E. P., Jr.
References: [1] Cook, C. D., Cherry, R. B., O'Brien, D., Karlberg, P., and Smith, C. A., J. Clin. Invest. 34:975, 1955. [2] Frank, N. R., Mead, J., Siebens, A. A., and Storey, C. F., J. Appl. Physiol. 9:38, 1956. [3] Nisell, O. I., and DuBois, A. B., Am. J. Physiol. 178:206, 1954. [4] Van Liew, H. D., ibid 177:161, 1954. [5] Klein, F., Zschr. Biol. 33:219, 1896. [6] Hild, R., and Bruckner, G., Zschr. Biol. 108:250, 1956. [7] McCutcheon, F. H., J. Cellul. Physiol. 37:447, 1951. [8] Lawton, R. W., and Joslin, D., Am. J. Physiol. 167:111, 1951.

Part X: CLINICAL RANGE OF PULMONARY COMPLIANCE: MAN

Condition		Degree of Alteration	Compliance $\mathrm{L} / \mathrm{cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
	(A)	(B)	(C)
1	No pulmonary restriction	Normal	0.19(0.12-0.26)
2	Preumonectomy, pulmonary congestion, bronchospasm	Slight	0.09(0.06-0.12)
3	Asthma, repeated heart failure, poliomyelitis, kyphoscoliosis, pulmonary infiltration (sarcoidosis, scleroderma)	Moderate	0.05(0.03-0.06)
4	Pulmonary fibrosis, pulmonary carcinomatosis	Severe	0.02(0.01-0.03)

Contributors: (a) DuBois, A. B., (b) Radford, E. P., Jr.
References: [1] Brown, C. C., Fry. D. L.. and Ebert, R. V., Am. J. M. 17:438, 1954. [2] Bondurant, S., Hickam, J. B., and Isley, J. K., J. Clin. Invest. 36:59, 1957. [3] Marshall, R., Mcllroy, M. D., and Christie, R. V., Clin. Sc., Lond. 13:137, 1954. [4] Mcllroy, M. B., and Marshall, R., ibid 15:345, 1956. [5] Mcllroy. M. B., and Bates, D. V., Thorax 11:303, 1956. [6] Marshall, R., and DuBois, A. B., Clin. Sc., Lond. 15:473, 1956. [7] DuBois, A. B., Botelho, S. Y., and Comroe, J. H., Jr., J. Clin. Invest. 35:327, 1956. [8] Ferris, B. G., Jr., Mead. J., Whittenberger, J. L., and Saxton, G. A., Jr., N. England J. M. 247:390, 1952.

Part X1: RESISTANCE OF LUNGS AND AlRWAY: MAN

Resistive pressure determined from esophageal pressure measurements. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

Subjects	Rate of Air Flow L/sec	Resistive Pressure cm $\mathrm{H}_{2} \mathrm{O}$	Resistance $\mathrm{cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$	Reference
(A)	(B)	(C)	(D)	(E)
118 infants, newborn	0.05	1.0	29	1
28 adults, male	0.5	0.85(0.55-1.20) ${ }^{1}$	1.70	2
3	1.0	1.81(1.10-2.55) ${ }^{1}$	1.81	2
4	1.5	$2.87(1.75-4.25)^{1}$	1.91	2
51 adult, male (asthmatic)	0.5	17.7	35.4	2

/1/ Measured during inspiration only.
Contributor: Radford, E. P., Jr.
References: [1] Cook, C. D., Sutherland, J. M., Segal, S., Cherry, R. B., Mead, J., Mcllroy, M. B., and Smith, C. A., J. Clin. Invest. 36:440, 1957. [2] Mcllroy, M. B., Mead, J., Selverstone, N. J., and Radford, E. P., Jr., J. Appl. Physiol. 7:485, 1955.
96. MEAN RESPIRATORY AIR FLOW CHARACTERISTICS: MAN

/1/Period of measurable air flow. /2/ Tidal air flow. /3/ Average air flow increase during phase initiation. /4/ Average air flow decrease during phase termination.

> Contributors: (a) Morrow, P. E., (b) Scott, C. C.
References: [1] Hartwich, A., Zschr. ges. exp. Med. 69:482, 1929-30. [2] Bretschger, H. J., Pflügers Arch. 210:134, 1952. [3] Specht, H., Marshall, References: [1] Hartwich, A., Zschr. ges. exp. Med. $69: 482,1929$ [4] Specht, H., Marshall, L. H., and Spicknall, B. H., J. Appl. Physiol. 2: 363, 1950 [5] Silverman, L., Lee, R. C., and Drinker, C. K., J. Clin. Invest. 23:907, 1944. [6] Cain, C. C., and Ois, Med. 101:493, 1937. [9] Fleisch, A., [7] Proctor, D. F., and Hardy,
Pflūgers Arch. 214:595, 1926 .
Reflexes, except where noted, have been demonstrated in man. Many respiratory alterations exist for which receptors or reflex routes are nut known, and all reflexes depend upon net prevailing integrated activity of countless other reflexes. $C A C=$ cardio-accelerator center, CIC $=$ cardio-inhibitor center,

	Reflex	Stimulus	Conditions lnitiating Stimulus	Reflex Pathway				Predominant Response	Reference
				Receptor Cell	Afferent Nerve	Center	Efferent Nerve		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Respiratory									
1	Proprioceptorespiratory	Motion of extremities.		Stretch (?) receptors in joints (and tendons?).	Somatics.	$\begin{aligned} & \mathrm{RC} \text { stimu- } \\ & \text { lated. } \end{aligned}$		$\begin{aligned} & \text { Increased } \\ & \text { respiratory } \\ & \text { ratel or } \\ & \text { depth }{ }^{2} \text {. } \\ & \hline \end{aligned}$	1
2	Vena cavo-respiratory (Harrison)	Blood pressure in great veins, right atrium.		Stretch receptors in great veins, right atrium.		$\begin{aligned} & \text { RC stimu- } \\ & \text { lated. } \end{aligned}$		Hyperpnea.	1
3	```Alveolo-respira- tory (Hering- Breuer)```	Moderate inflation of lungs.		Slowly adapting alveolar stretch receptors.	Vagus.	$\begin{array}{\|c\|} \hline \mathrm{RC} \text { de- } \\ \text { pressed. } \end{array}$	Phrenics,	Apnea.	1
4	Alveolo-respiratory (acceleratory)	Extreme inflation or deflation.		Rapidly adapting alveolar stretch receptors.	Vagus.	$\begin{aligned} & \text { RC stimu- } \\ & \text { lated. } \end{aligned}$	thoracics.	lncreased respiratory rate without important circulatory effects ${ }^{3}$.	1
5	Bronchiolorespiratory (cough reflex)	Irritation of the bronchiolar mucosa.	Inhalation of irritant gases and vapors; respiratory infections.	Free nerve endings (?).	Vagus.	$\begin{aligned} & \text { RC stimu- } \\ & \text { lated. } \end{aligned}$		Expiratory blast or cough.	1
Mixed Respiratory and Cardiovascular									
6	Coronary reflex	Occlusion of coronary artery.	Thrombotic, embolic, or atherosclerotic occlusion.	Visceral pain receptors(?).	Cardiac sympathetics.	$\left\lvert\, \begin{array}{\|c\|} \text { CAC }^{4} \\ \text { VCC } ; R C \\ \text { stimu- } \\ \text { lated. } \end{array}\right.$	Vagus, sympathetics, phrenics, thoracics.	Vasoconstriction, tachycardia ${ }^{4}$, polypnea.	1
7	Pulmonary vein reflex	Pressure increase in pulmonary vessels.		Stretch receptors in pulmonary veins.	Pulmonary vagus.	$\begin{gathered} \text { VCC; RC } \\ \text { stimu- } \\ \text { lated. } \end{gathered}$	Sympathetics, phrenics, thoracics.	Vasodilatation, apnea followed by polypnea (diphasic).	1
8	Aortic body and carotid body reflex	Arterial blood O_{2} decrease: blood free CO_{2} increase; pH decrease.	Acetylcholine, acidosis, anemia, asphyxia, deep anesthesia.	Chemoreceptors in aortic, carotid bodies.	```Glossopharyngeal (Hering's); vagus (Cyon's).```	$\left\lvert\, \begin{gathered} \text { CAC } \\ \text { VCC; RC } \\ \text { stimu- } \\ \text { lated. } \end{gathered}\right.$	Vagus, sympathetics. phrenics. thoracics.	Heart rate increased, vasoconstriction, hyperpnea, generalized convulsions.	2-5

/1/In dog. $/ 2 /$ In cat. $/ 3 / \ln$ dog and rabbit. /4/ Usual result of coronary occlusion is tachycardia, but in some cases there is a complicating vaso-vagal reflex which results in bradycardia and fall in blood pressure.
References: [1] Aviado, D. M., Jr., and Schmidt, C. F., Physiol. Rev. 35:247. 1955. [2] Wright, S., "Applied Physiology," London: Oxford University Press, 1945. [3] De Castro, U., Trav. Lab. Rech. Biol. Inst. Cajal, 24:365, 1926. [4] Schmidt, C. F., and Comroe, J. H., Physiol. Rev. 20:115, 1940. [5] Schweitzer, A., and Wright, S., Quart. J. Exp. Physiol. 28:33, 1938.
98. REQUIRED TIDAL VOLUME VS BODY WEIGHT AND BREATHING FREQUENCY: MAN
 fifer all above corrections have been added, subtract volume equal to one-half body weight. sat = saturated with water vapor.

Breathing
Frequency
cycles/min
$1+$ sұuejul

səரеW

Re: (in press)
99. MEAN TIDAL VOLUME FOR VARIOUS TECHNIQUES OF ARTIFICIAL RESPIRATION: MAN Values are cubic centimeters air per respiratory cycle for five

$\begin{gathered} \text { Age } \\ \text { mo } \end{gathered}$	$\begin{aligned} & \text { Weight } \\ & \text { lb } \end{aligned}$	Tidal Volume,														
		Sleeping	Mouth-toMouth	Chestpressure Arm-lift	Backpressure Arm-lift ${ }^{\mathrm{i}}$	Backpressure Hip-lift ${ }^{2}$	Manual Rocking									
							Prone		Supine							
							$45^{\circ}-45^{\circ}$	$30^{\circ}-600$	450-450	$300-60^{\circ}$						
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)						
1\|5	15	32	94	46	41	58	18	20	22	25						
2!12	22	48	150	98	62	106	24	28	30	36						
3 24	31	62	220	110	86	116	35	42	45	50						
	30	87	248	124	111	133	42	46	52	62						
536	38	94	284	206	184	210	65	72	86	92						
/l/ Arm-lift alone gave values of $30-50 \%$ of back-pressure arm-lift. $/ 2 / \mathrm{Hip}$-lift alone gave values of $35-45 \%$ or back-pressure hip-lift.Contributor: Gordon, A. S.																
Reference:	ordon,	and Fry	W., J. Am	Ass. (in							Part II: APNEIC ADULTS					

 artificial oropharyngeal (standard Connell airway that prevents lip obstruction and reaches to base of tongue); $E=c u f f e d$ endotracheal tube. Head position:

	No. and Sex	$\begin{gathered} \text { Age } \\ \text { yr } \end{gathered}$	$\begin{aligned} & \mathrm{W} \mathrm{t} \\ & \mathrm{lb} \end{aligned}$	Apnea Induction	Airway	Head Position	Tidal Volume, ml								
							Prone Pressure (Schafer)	$\begin{gathered} \text { Hip- } \\ \text { lift } \\ \text { (Emerson) } \end{gathered}$	Chestpressure Arm-lift (Silvester)	Back-pressureArm-lift(Holger Nielsen)	Backpressure Hip-roll (Emerson)	Back-pressureHip-lift(Schafer-Emerson-lvy)	Eve Rocking		
													Prone	Supine	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
1	2606	21-34		A-C	E		485	635^{1}	10692	1056	967	1140			1
2	78	21-28		A-C	E^{3}				1123	1170		1249	574	393	2
3	30,1 우	35-81		I-P			155		285	245	350	405			3
4	8%	31-59		D-A4						474		864			3
5	20, 48	20-83		I-P			365	352		577		680			4
6	10,4\%		101-174	A-C	E	N or E			503(400-700)	655(260-840)					5-7
7	80,48		101-210	A-C	N				73(0-560)						5-7
8	$100,5 \%$		101-210	A-C	N	N				126(0-780)					5-7
9	$70,1 \%$		155-210	A-C	N	E			$352(0-1060)$						5-7
10	60		155-180	A-C	N	E				52(0-1160)					5-7
11	$8 d^{\text {d }} 2$ \%		165-210	A-C	A	E			418(0-1200)						5-7
12	50,19		155-210	A-C	A	E				$338(0-760)$					5-7
13	60, 2 \%		155-186	A-C	A	N			84(0-500)						5-7
14	70°		155-210	A-C	A	N				177(0-840)					5-7
15	Arter		155	ion, \% 5	86174-9	$)^{6}$	67(42-91)			93(89-100)	95(90-100)	88(70-98)	93(89-	00)!	8

 minute periods of artificial respiration on 11 anesthetized and curarized adult males. /6/ Control.
Contributors: (a) Gordon, A. S., (b) Safar, P., (c) Elam, J. O. R. D., and Wyant, G. M., U. S. Armed Forces M. J. 6:781, 1955. [3] Nims, R. G., Conner, E. H., Botelho, S. Y., and Comroe, J. H., Jr., J. Appl. Anesthesiology (in press). [6] Safar, P., Escarraga, L., and Elam, J. O., N. England J. M. (in press). [7] Safar, P., J. Am. M. Ass. (in press). [8] Gordon, A. S., Prec, O., Wedell, H., Sadove, M. S., Raymon, F., Nelson, J. T., and lvy, A. C., J. Appl. Physiol. 4:6, 421, 1951.
100. VENTILATORY CHARACTERISTICS OF VARIOUS RESPIRA TORS AND TECHNIQUES OF ARTIFICIAL RESPIRATION:
MAN Values in parentheses are ranges, estimate " c " of the 95% range (cf introduction).

Contributors: (a) Price, H. L., and Conner, E. H., (b) Safar, P.
References: [1] Price, H. L., Conner, E. H., and Dripps, R. D., J. Appl. Physiol. 6:517, 1954. [2] Maloney, J. V., Jr., Affeldt, J. E., Sarnoff, S. J.
A. C.
 (in press).
/1/ Lines 10-16 indicate effort of operator. /2/ Mean pressure at mask. /3/ Peak pressure at tank. /4/ Approximate. S., and lvy Prec, J. Aviat
6:531, A. S., in
s.
si arnand, A., and Richards, D. W., Jr., Gordon,
Sadove J. M. (in

Data from subjects clinically free of pulmonary or cardiovascular disease and in basal conditions. Values for males and females calculated separately. STPS conditions.[1] Ranges in parentheses conform to estimate "b" of the 95% range (cf Introduction).

Variable		Males		
		Group I: Age 16-34 yr	Group II: Age 35-49 yr	Group III: Age 52-69 yr
	(A)	(B)	(C)	(D)
1 2 3 4	Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m	$\begin{aligned} & 25.5(\text { mean }) \\ & 173.8(156.6-191.0) \\ & 66.0(49.4-82.6) \\ & 1.77(1.29-2.05) \end{aligned}$	$\begin{aligned} & 42.7 \text { (mean) } \\ & 171.7(157.8-185.6) \\ & 64.9(42.5-87.3) \\ & 1.80(1.48-2.12) \\ & \hline \end{aligned}$	$59.6($ mean $)$ $169.6(153-186.2)$ $66.3(49.1-83.5)$ $1.80(1.50-2.70)$
5	Vital capacity, supine, cc^{1}	4012(2780-5244)	4160(3200-5120)	3417(1767-5067)
6	Maximal breathing capacity, standing, $\mathrm{L} / \mathrm{min}^{1}$	126.0(67.8-183.2)	109.4(77.6-141.2)	90.6(57.0-124.2)
10	Ventilation, $\mathrm{L} / \mathrm{min} / \mathrm{sq} \mathrm{m} \mathrm{BSA}{ }^{2}$ Basal 1 min standard exercise ${ }^{3}$ 1 st min recovery 2nd min recovery 5th min recovery	$\begin{aligned} & 2.6(3.0-4.2) \\ & 11.0(6.4-15.6) \\ & 12.5(8.3-16.7) \\ & 8.6(5.6-11.6) \\ & 5.2(3.94-6.46) \end{aligned}$	$\begin{aligned} & 3.1(2.1-4.1) \\ & 10.0(5.4-14.6) \\ & 13.4(8.2-18.6) \\ & 9.4(5.2-11.2) \\ & 5.2(3.8-6.6) \end{aligned}$	$\begin{aligned} & 3.9(3.0-4.8) \\ & 11.2(5.8-16.6) \\ & 14.5(9.5-19.5) \\ & 10.8(6.8-14.8) \\ & 6.3(2.9-8.7) \end{aligned}$
12	Oxygen consumption, cc/min/ sq m, BSA Basal 1 min standard exercise 5th min recovery	$\begin{aligned} & 146(118-174) \\ & 503(331-675) \\ & 1488(1144-1832) \\ & \hline \end{aligned}$	131(111-151) 481(301-661) 1493(1301-1665)	$\begin{aligned} & 132(98-166) \\ & 506(326-686) \\ & 1511(1183-18391 \\ & \hline \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Oxygen removal, cc/L ventil. Basal ${ }^{4}$ 1 min standard exercise	$\begin{array}{\|} 47.1(37.1-57.1) \\ 56.2(41.4-71.0) \\ \hline \end{array}$	$\begin{aligned} & 46.1(35.1-57.1) \\ & 55.7(42.3-69.1) \end{aligned}$	$\begin{aligned} & 38.5(33.7-43.3) \\ & 55.7(42.3-69.1) \\ & \hline \end{aligned}$
			Females	
	Variable	Group I: Age 16-34 yr	Group II: Age 35-49 yr	Group III: Age 50-79 yr
	(A)	(E)	(F)	(G)
1 2 3 4	Physical characteristics Age, yr Height, cm Weight, kg Body surface area, sq m	$\begin{aligned} & \text { 25.1(mean) } \\ & 161.8(149.4-174.2) \\ & 59.2(37.0-81.4) \\ & 1.58(1.30-1.86) \\ & \hline \end{aligned}$	$\begin{aligned} & 43.3 \text { (mean) } \\ & 164.0(150.4-177.6) \\ & 62.6(32.0-93.2) \\ & 1.72(1.38-2.06) \end{aligned}$	$\begin{aligned} & 59.8(\text { mean }) \\ & 158.4(145.0-171.8) \\ & 67.2(45.2-89.2) \\ & 1.7(1.46-1.94) \end{aligned}$
5	Vital capacity, supine, cc ${ }^{1}$	3057(1955-4159)	2830(2036-3624)	2431(1367-3495)
6	Maximal breathing capacity, standing, $\mathrm{L} / \mathrm{min}^{1}$	93.7(68.5-118.9)	89.3(53.5-125.2)	73.5(39.9-107.1)
10	Ventilation, $\mathrm{L} / \mathrm{min} / \mathrm{sq} \mathrm{mBSA}{ }^{2}$ Basal 1 min standard exercise ${ }^{3}$ 1 si min recovery 2nd min recovery 5th min recovery	$\begin{aligned} & 3.2(2.4-4.0) \\ & 9.0(5.6-12.4) \\ & 10.9(7.9-13.9) \\ & 8.1(5.5-10.7) \\ & 4.9(3.7-6.1) \end{aligned}$	$\begin{aligned} & 3.2(2.4-4.0) \\ & 11.4(7.8-15.0) \\ & 11.9(8.5-15.3) \\ & 9.2(5.8-12.6) \\ & 5.2(3.2-7.2) \end{aligned}$	$\begin{aligned} & 3.4(2.6-4.2) \\ & 11.4(8.0-14.8) \\ & 12.6(8.2-17.0) \\ & 8.5(6.7-10.3) \\ & 4.5(2.3-6.7) \\ & \hline \end{aligned}$
12 13 14	Oxygen consumption, cc/min/ sq m, BSA Basal 1 min standard exercise 5th min recovery	$\begin{aligned} & 126(106-146) \\ & 463(311-615) \\ & 1318(1158-1478) \end{aligned}$	126(108-144) 505(323-690) 1368(1184-1552)	$\left\lvert\, \begin{aligned} & 126(107-151) \\ & 512(370-654) \\ & 1348(1078-1618) \\ & \hline \end{aligned}\right.$
15	Oxygen removal, cc/L venili. Basal ${ }^{4}$ 1 min standard exercise	$\left\lvert\, \begin{aligned} & 45.1(36.5-53.7) \\ & 60.2(41.2-79.2) \end{aligned}\right.$	$\begin{aligned} & 46.0(35.2-58.8) \\ & 53.6(38.8-68.4) \end{aligned}$	$\begin{aligned} & 44.5(36.7-52.3) \\ & 53.5(40.7-66.3) \end{aligned}$

/1/ Lung volumes and maximal breathing capacity determined by spirographic method. Lung volumes, method of Christie [2], modified by Hurtado and Baller [3]. For lung volumes, resting pulmonary mid-position is point of reference from which all measurements are taken (position of return end quite expiration). The volume of air contained then in the chest is the sum of the reserve and residual airs [2-8]. Maximal breathing capacity apparatus, modified recording spirometer of closed-circuit type derived from Benedict-Roth, calculations at $37^{\circ} \mathrm{C}$. [9] /2/ Apparatus: tissot gasometer, electrically driven kymograph; Douglas bag interposed through three-way valve into inflow circuil to spirometer; inspiratory flutter valves connected through tube and mouth piece to patient. CO_{2}. O_{2} determinations by Haldane apparatus. $/ 3 / \mathrm{Step}$ up on platform, 20 cm high, and down again at rate of 30 cycles $/ \mathrm{min}$. $/ 4 /$ Rate of O_{2} removal calculated as difference between inspired and expired air O_{2} concentrations.

Contribulor: (a) Cohn, J. E., (b) Harden, K. A.

References: [1] Baldwin, E. de F., Cournand, A., and Richards, D. W., Jr., Medicine 27:243, 1948. [2] Christie, R. V., J. Clin. Invest. 11:1099, 1932. [3] Hurtado, A., and Boller, C., ibid 12:793, 1933. [4] Lundsgaard, C., and Schierbeck, K., Acta med. scand. 58:541, 1923. [5] Binger, C. A., J. Exp. $\overline{\mathrm{M}} .38: 445$, 1923. [6] Binger, C. A., and Brow, G. R., ibid 39:677, 1924. [7] Robinson, S., Arbeitsphysiologie 10:3, 1938. [8] Anthony, A. J., "Funktionsprüfung der Atmung.""Leipzig: J. A. Barth, 1937. [9] Sonne, C., Zschr. ges. exp. Med. 94:13, 1934.
102. EFFECTS OF EXERCISE ON PULMONARY FUNCTION AND HEART RATE: MAN

Values in parentheses are estimate "c" of the 95% range (cf introduction).
Part I: MALES, 4-33 YEARS
Values obtained over a six-minute period during maximal work on a treadmill or bicycle ergometer.

	Variable	$\begin{gathered} 4-6 \mathrm{yr} \\ (10 \text { Subjects }) \end{gathered}$	$\begin{gathered} 7-9 \mathrm{yr} \\ \text { (12 Subjects) } \end{gathered}$	$\begin{gathered} 10-11 \mathrm{yr} \\ \text { (13 Subjects) } \end{gathered}$	$\begin{gathered} 12-13 \mathrm{yr} \\ \text { (19 Subjects) } \end{gathered}$	$\begin{gathered} 14-15 \mathrm{yr} \\ \text { (10 Subjects) } \end{gathered}$	$\begin{gathered} 16-18 \mathrm{yr} \\ \text { (9 Subjects) } \end{gathered}$	$\begin{gathered} 20-33 \mathrm{yr} \\ (42 \text { Subjects) } \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Body height, cm	$\begin{gathered} 113.5 \\ (107-128) \end{gathered}$	$\begin{gathered} 135.0 \\ (125-143) \end{gathered}$	$\begin{gathered} 145.4 \\ (132-157) \end{gathered}$	$\begin{gathered} 154.4 \\ (139-169) \end{gathered}$	$\begin{gathered} 171.8 \\ (150-188) \end{gathered}$	$\begin{gathered} 176.9 \\ (165-187) \end{gathered}$	$\begin{gathered} 176.7 \\ (165-188) \end{gathered}$
2	Body weight, kg	$\begin{gathered} 20.8 \\ (16.0-27.8) \end{gathered}$	$\begin{gathered} 30.7 \\ (25.1-36.5) \end{gathered}$	$\begin{gathered} 36.5 \\ (31.1-44.7) \end{gathered}$	$\begin{gathered} 43.6 \\ (31.8-60.6) \end{gathered}$	$\begin{gathered} 59.5 \\ (40.6-76.2) \end{gathered}$	$\begin{gathered} 64.1 \\ (45.2-73.4) \end{gathered}$	$\begin{gathered} 70.4 \\ (61.7-86.6) \end{gathered}$
3	Vital capacity, BTPS, L		$\begin{gathered} 2.21 \\ (1.84-2.51) \end{gathered}$	$\begin{gathered} 2.65 \\ (2.24-3.25) \end{gathered}$	$\begin{gathered} 3.22 \\ (2.52-4.33) \end{gathered}$	$\begin{gathered} 4.55 \\ (2.78-6.57) \end{gathered}$	$\begin{gathered} 5.17 \\ (3.20-6.48) \end{gathered}$	$\begin{gathered} 5.68 \\ (4.17-7.26) \end{gathered}$
4	Max. heart rate. beats/min	$\begin{gathered} 203 \\ (188-214) \end{gathered}$	$\begin{gathered} 208 \\ (191-220) \end{gathered}$	$\begin{gathered} 211 \\ (200-227) \end{gathered}$	$\begin{gathered} 205 \\ (175-237) \end{gathered}$	$\begin{gathered} 203 \\ (178-222) \end{gathered}$	$\begin{gathered} 202 \\ (194-220) \end{gathered}$	$\begin{gathered} 194 \\ (171-212) \end{gathered}$
5	Max. O_{2} uptake, STPD, L/min	$\begin{gathered} 1.01 \\ (0.77-1.30) \end{gathered}$	$\begin{gathered} 1.75 \\ (1.40-2.01) \end{gathered}$	$\begin{gathered} 2.04 \\ (1.78-2.32) \end{gathered}$	$\begin{gathered} 2.46 \\ (1.79-3.40) \end{gathered}$	$\begin{gathered} 3.53 \\ (2.59-4.47) \end{gathered}$	$\begin{gathered} 3.68 \\ (2.48-4.35) \end{gathered}$	$\begin{gathered} 4.11 \\ (3.30-5.09) \end{gathered}$
6	Max. O_{2} uptake, ST PD, $\mathrm{ml} / \mathrm{min} / \mathrm{kg}$	$\begin{gathered} 49.1 \\ (43.2-57.6) \end{gathered}$	$\begin{gathered} 56.9 \\ (51.8-62.7) \end{gathered}$	$\begin{gathered} 56.1 \\ (51.1-61.5) \end{gathered}$	$\begin{gathered} 56.5 \\ (53.0-61.9) \end{gathered}$	$\begin{gathered} 59.5 \\ (54.8-63.7) \end{gathered}$	$\begin{gathered} 57.6 \\ (51.0-62.4) \end{gathered}$	$\begin{gathered} 58.6 \\ (51.1-67.4) \end{gathered}$
7	Max. pulmonary ventilation, BTPS, L/min	$\begin{gathered} 39.8 \\ (30.9-43.5) \end{gathered}$	$\begin{gathered} 61.8 \\ (44.1-75.2) \end{gathered}$	$\begin{gathered} 70.5 \\ (50.0-77.5) \end{gathered}$	$\begin{gathered} 75.2 \\ (58.1-105.0) \end{gathered}$	$\begin{gathered} 112.9 \\ (84.5-140.3) \end{gathered}$	$\begin{gathered} 110.3 \\ (79.6-139.3) \end{gathered}$	$\begin{gathered} 111.3 \\ (91.5-160.3) \end{gathered}$
8	Max. respiratory rate, breaths/min	$\begin{array}{r} 70.4 \\ (63-90) \end{array}$	$\begin{array}{r} 67.0 \\ (55-83) \end{array}$	$\begin{array}{r} 57.5 \\ (32-77) \end{array}$	$\begin{array}{r} 54.1 \\ (31-68) \end{array}$	$\begin{array}{r} 52.9 \\ (39-68) \end{array}$	$\begin{array}{r} 44.7 \\ (28-60) \end{array}$	$\begin{array}{r} 39.9 \\ (27-59) \end{array}$
9	Max. tidal volume, L	$\begin{gathered} 0.60 \\ (0.43-0.87) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.72-1.25) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.12-1.62) \end{gathered}$	$\begin{gathered} 1.59 \\ (1.02-2.54) \end{gathered}$	$\begin{gathered} 2.52 \\ (1.62-3.26) \end{gathered}$	$\begin{gathered} 2.77 \\ (1.68-3.40) \end{gathered}$	$\begin{gathered} 3.05 \\ (2.26-4.72) \end{gathered}$
10	Max. blood lactic acid. mg \%	$\begin{array}{r} 56.3 \\ (33-76) \end{array}$	$\begin{gathered} 82.0 \\ (60-110) \end{gathered}$	$\begin{gathered} 84.0 \\ (50-125) \end{gathered}$	$\begin{gathered} 79.1 \\ (45-143) \end{gathered}$	$\begin{gathered} 90.4 \\ (74-113) \end{gathered}$	$\begin{array}{r} 104.9 \\ (83-138) \end{array}$	$\begin{array}{r} 112.0 \\ (71-158) \end{array}$
11	$\begin{gathered} \mathrm{O}_{2} \text { uptake, } \\ \frac{\text { maximal }}{\text { basal }} \end{gathered}$	6.8	9.4	10.2	10.9	13.1	13.5	15.7

Contributor: Astrand, P.-O.
Reference: Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age." Copenhagen: Ejnar Munksgaard, 1952.

Part II: MALES, 20-66 YEARS
Values obtained over a five-minute period during maximal work on a treadmill.

	Variable	$\begin{gathered} 20-29 \mathrm{yr} \\ \text { (11 Subjects) } \end{gathered}$	$\begin{gathered} 31-38 \mathrm{yr} \\ \text { (11 Subjects) } \end{gathered}$	$\begin{gathered} 40-48 \mathrm{yr} \\ (10 \text { Subjects) } \end{gathered}$	$\begin{gathered} 48-55 \mathrm{yr} \\ \text { (8 Subjects) } \end{gathered}$	$\begin{gathered} 59-66 \mathrm{yr} \\ \text { (7 Subjects) } \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)
1	Body height, cm	180	175	177	172	173
2	Body weight, kg	72.9	77.5	75.6	68.6	68.9
3	Vital capacity, BTPS, L	5.25(4.20-6.03)	4.76(3.83-6.49)	4.28(3.76-5.16)	4.16(3.60-5.52)	4.05(3.45-5.04)
4	Max. heart rate, beats/min	193(186-197)	187(176-206)	178(166-184)	174(161-185)	165(154-176)
5	Max. O_{2} uptake, STPD, L/min	$3.53(2.56-4.50)$	3.42(2.76-3.97)	2.92(2.30-3.62)	2.63(2.24-3.35)	2.35(1.64-3.15)
6	Max. O2 uptake, STPD, ml/min/kg	48.7(41.9-55.6)	43.1(37.6-52.8)	39.5(33.7-46.5)	38.4(33.7-43.2)	34.5(30.2-41.7)
7	Max. pulmonary ventilation, BTPS, L/min	118.2(104-135)	122.4(103-147)	97.6(72-133)	86.8(57-114)	80.8(62-106)
8	Max. respiratory rate, breaths/ min	43(32-56)	43(32-48)	39(28-48)	$38(28-58)$	35(26-44)
9	Residual air, BTPS, L	1.66(0.84-2.94)	1.60(1.27-2.12)	1.48(0.66-2.24)	1.81(1.00-2.38)	1.72(1.43-2.39)
10	Max. blood lactic acid, mg \%	89(60-121)	97(70-129)	85(67-114)	73(59-91)	58(46-70)

Contributor: Asmussen, E.
Reference: Robinson, S., Arbeitsphysiologie 10:251. 1938.

Values in parentheses are estimate "c" of the 95% range (cf Introduction).
Part III: FEMALES, 4-25 YEARS
Values obtained over a six-minute period during maximal work on a treadmill or bicycle ergometer.

	Variable	$\begin{gathered} 4-6 \text { yr } \\ \text { (7 Subjects) } \end{gathered}$	$\begin{gathered} 7-9 \mathrm{yr} \\ (14 \text { Subjects) } \end{gathered}$	$\begin{gathered} 10-11 \mathrm{yr} \\ \text { (13 Subjects) } \end{gathered}$	$\left\{\begin{array}{c} 12-13 \mathrm{yr} \\ (13 \text { Subjects }) \end{array}\right.$	$\begin{gathered} 14-15 \mathrm{yr} \\ \text { (11 Subjects) } \end{gathered}$	$\begin{gathered} 16-17 \mathrm{yr} \\ (10 \text { Subjects }) \end{gathered}$	$\begin{gathered} 20-25 \mathrm{yr} \\ \text { (44 Subjects) } \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Body height. cm	$\begin{gathered} 111.6 \\ (108-114) \end{gathered}$	$\begin{gathered} 132.0 \\ (121-142) \end{gathered}$	$\begin{gathered} 140.6 \\ (129-148) \end{gathered}$	$\begin{gathered} 158.5 \\ (150-175) \end{gathered}$	$\begin{gathered} 164.9 \\ (156-173) \end{gathered}$	$\begin{gathered} 167.7 \\ (162-176) \end{gathered}$	$\begin{gathered} 165.8 \\ (155-175) \end{gathered}$
2	Body weight, kg	$\begin{gathered} 18.4 \\ (17.4-21.9) \end{gathered}$	$\begin{gathered} 27.2 \\ (20.6-33.0) \end{gathered}$	$\begin{gathered} 32.5 \\ (27.0-37.4) \end{gathered}$	$\begin{gathered} 46.7 \\ (39.6-60.5) \end{gathered}$	$\begin{gathered} 56.0 \\ (46.2-67.1) \end{gathered}$	$\begin{gathered} 57.3 \\ (50.5-63.7) \end{gathered}$	$\begin{gathered} 60.3 \\ (50.0-72.8) \end{gathered}$
3	Vital capacity. BTPS, L		$\begin{gathered} 1.95 \\ (1.69-2.24) \end{gathered}$	$\begin{gathered} 2.30 \\ (1.88-2.63) \end{gathered}$	$\begin{gathered} 3.25 \\ (2.52-4.01) \end{gathered}$	$\begin{gathered} 3.74 \\ (2.94-4.32) \end{gathered}$	$\begin{gathered} 4.14 \\ (3.24-5.04) \end{gathered}$	$\begin{gathered} 4.28 \\ (3.15-5.76) \end{gathered}$
4	Max. heart rate, beats/min	$\begin{gathered} 204 \\ (176-214) \end{gathered}$	$\begin{gathered} 211 \\ (194-233) \end{gathered}$	$\begin{gathered} 209 \\ (192-220) \end{gathered}$	$\begin{gathered} 207 \\ (188-222) \end{gathered}$	$\begin{gathered} 202 \\ (192-217) \end{gathered}$	$\begin{gathered} 206 \\ (188-214) \end{gathered}$	$\begin{gathered} 198 \\ (184-225) \end{gathered}$
5	Max. O_{2} uptake, STPD, L/min	$\begin{gathered} 0.88 \\ (0.74-0.94) \end{gathered}$	$\begin{gathered} 1.50 \\ (1.21-1.79) \end{gathered}$	$\begin{gathered} 1.70 \\ (1.48-1.94) \end{gathered}$	$\begin{gathered} 2.31 \\ (2.01-2.72) \end{gathered}$	$\begin{gathered} 2.58 \\ (2.02-3.31) \end{gathered}$	$\begin{gathered} 2.71 \\ (2.25-3.08) \end{gathered}$	$\begin{gathered} 2.90 \\ (2.41-3.40) \end{gathered}$
6	Max. Oz uptake, STPD, $\mathrm{ml} / \mathrm{min} / \mathrm{kg}$	$\begin{gathered} 47.9 \\ (42.4-52.2) \end{gathered}$	$\begin{gathered} 55.1 \\ (49.3-58.8) \end{gathered}$	$\begin{gathered} 52.4 \\ (46.4-56.1) \end{gathered}$	$\begin{gathered} 49.8 \\ (45.0-53.5) \end{gathered}$	$\begin{gathered} 46.0 \\ (42.5-52.5) \end{gathered}$	$\begin{gathered} 47.2 \\ (42.8-51.2) \end{gathered}$	$\begin{gathered} 48.4 \\ (43.2-59.6) \end{gathered}$
7	Max. pulmonary ventilation, BTPS, L/min	$\begin{gathered} 33.9 \\ (31.0-38.9) \end{gathered}$	$\begin{gathered} 57.3 \\ (48.2-67.6) \end{gathered}$	$\begin{gathered} 61.1 \\ (46.2-80.9) \end{gathered}$	$\begin{gathered} 79.9 \\ (65.5-102.6) \end{gathered}$	$\begin{gathered} 87.9 \\ (68.4-100.7) \end{gathered}$	$\begin{gathered} 93.8 \\ (73.6-119.1) \end{gathered}$	$\begin{gathered} 89.8 \\ (74.4-114,8) \end{gathered}$
8	Max. respiratory rate, breaths/min	$\begin{array}{r} 66.4 \\ (56-81) \end{array}$	$\begin{array}{r} 67.1 \\ (54-94) \end{array}$	$\begin{array}{r} 61.3 \\ (51-82) \end{array}$	$\begin{array}{r} 54.4 \\ (41-88) \end{array}$	$\begin{array}{r} 51.6 \\ (40-58) \end{array}$	$\begin{array}{r} 51.2 \\ (44-60) \end{array}$	$\begin{array}{r} 46.0 \\ (28-63) \end{array}$
9	Max. tidal volume, L	$\begin{gathered} 0.52 \\ (0.40-0.58) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.64-1.22) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.85-1.36) \end{gathered}$	$\begin{gathered} 1.64 \\ (1.28-2.54) \end{gathered}$	$\begin{gathered} 1.87 \\ (1.34-2.41) \end{gathered}$	$\begin{gathered} 1.95 \\ (1.43-2.28) \end{gathered}$	$\begin{gathered} 2.10 \\ (1.64-3.29) \end{gathered}$
10	Max. blood lactic acid, mg \%	$\begin{gathered} 60 \\ (51-69) \end{gathered}$	$\begin{array}{r} 76.5 \\ (64-85) \end{array}$	$\begin{gathered} 82.2 \\ (56-116) \end{gathered}$	$\begin{gathered} 97.6 \\ (76-119) \end{gathered}$	$\begin{array}{r} 100.5 \\ (73-145) \end{array}$	$\begin{array}{r} 110.2 \\ (77-144) \end{array}$	$\begin{array}{r} 103.6 \\ (69-134) \end{array}$
11	$\begin{gathered} \mathrm{O}_{2} \text { uptake, } \\ \frac{\text { maximal }}{\text { basal }} \end{gathered}$	6.6	9.1	9.6	10.8	11.6	12.6	14.0

Contributor: Åstrand, P.-O.

Reference: Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952.
103. EFFECT OF VARIOUS WORK LOADS ON PULMONARY FUNCTION AND HEART RATE: MAN

Values are for healthy, well-trained males and females during work on a bicycle ergometer. Values in parentheses are ranges, estimate "c" of the 95% range (cf Introduction).

				Work Load		
	Variable	$600 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$	900 k	$\mathrm{m} / \mathrm{min}$	$1200 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$	$1500 \mathrm{~kg}-\mathrm{m} / \mathrm{min}$
		\%1	02	91	$\sigma^{\circ} 2$	$\sigma^{\circ} 2$
	(A)	(B)	(C)	(D)	(E)	(F)
1	O2 uptake, STPD, L/min	1.48(1.36-1.66)	2.09(1.92-2.23)	2.06(1.90-2.24)	2.67(2.43-2.83)	3.33(3.02-3.64)
2	Net efficiency, \%	22.5(19.5-24.5)	23.4(22.0-25.5)	23.1(21.3-25.3)	23.7(22.1-26.6) ${ }^{\circ}$	23.3(21.1-25.7)
3	O_{2} uptake, \% of maximal ${ }^{3}$	52(43-64)	50(44-61)	73(59-87)	64(52-78)	79(71-96)
4	Heart rate, beats/min	138(120-156)	128(102-148)	168(146-192)	148(130-169)	167(148-188)
5	Ventilation, BTPS, L/min	34.7(25.3-45.6)	41.9(34.6-52.7)	50.6(39.0-62.4)	55.2(42.7-65.6)	70.9(60.2-89.0)
6	Ventilatory equivalent ${ }^{4}$	23.4(18.3-28.3)	20.1(16.4-25.3)	24.5(19.9-29.0)	20.6(15.8-24.7)	21.1(17.8-26.6)
7	Ventilation, \% of maximal ${ }^{5}$	39(26-52)	34(27-49)	56(36-73)	45(33-64)	58(49-86)

[^19]All values obtained over a five- or six-minute period during maximal work on a treadmill or bicycle ergometer.

[^20]The oxygen requirement per minute for a given rate of energy expenditure may exceed the oxygen uptake during any given minute if an oxygen debt is being accumulated, resulting in very high values for level running and swimming. Values in parentheses are calculations, assuming one liter of $\mathrm{O}_{2}=5$ Calories. Values for all subjects listed as weighing 70 kg are proportional calculations from values for subjects of other weights.

Activity		Subjects				Speed		Energy Expenditure $\mathrm{Cal} / \mathrm{min}$	O_{2} Requirement $\mathrm{L} / \mathrm{min}$	Reference
		No.	Sex	Wt, kg	Remarks	$\mathrm{mi} / \mathrm{hr}$	$\mathrm{km} / \mathrm{hr}$			
	(A)	(B)	(C)	(D)	(E)	(F)	(G)		(I)	(J)
1	Resting, supine, basal	$\begin{aligned} & 5 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { 0́ } \\ & 9 \end{aligned}$	$\begin{aligned} & 68 \\ & 55 \end{aligned}$	$\begin{aligned} & 19-25 \mathrm{yr} \\ & 22 \mathrm{yr} \end{aligned}$			$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & (0.238) \\ & (0.196) \end{aligned}$	$\begin{aligned} & 1,2 \\ & 3 \end{aligned}$
3	Resting, sitting	$\begin{array}{\|l} 5 \\ 22 \end{array}$	$\begin{aligned} & \sigma^{\circ} \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & 68 \\ & 55 \end{aligned}$	$\begin{aligned} & 19-25 \mathrm{yr} \\ & 22 \mathrm{yr} \end{aligned}$			$\begin{aligned} & 1.8 \\ & 1.1 \end{aligned}$	$\begin{aligned} & (0.360) \\ & (0.218) \end{aligned}$	$1,2$
5	Resting, standing	$\begin{aligned} & 5 \\ & 22 \end{aligned}$	$\begin{aligned} & \circ \\ & q \end{aligned}$	$\begin{aligned} & 68 \\ & 55 \end{aligned}$	$\begin{aligned} & 19-25 \mathrm{yr} \\ & 22 \mathrm{yr} \end{aligned}$			$\begin{aligned} & 2.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & (0.396) \\ & (0.222) \end{aligned}$	$\begin{aligned} & 1,2 \\ & 3 \end{aligned}$
7 8 9 10	Walking, level	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0^{\circ} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	Soldiers Laboratory worker Soldiers Soldiers	$\begin{aligned} & 2.3 \\ & 3.2 \\ & 3.5 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \\ & 5.6 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & 4.8 \\ & 7.8 \\ & \hline \end{aligned}$	$\begin{aligned} & (0.70) \\ & (0.90) \\ & (0.97) \\ & (1.57) \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$
11 12 13 14	Walking, level, treadmill	1	\bigcirc	75	Adult	$\begin{aligned} & 2.5 \\ & 3.8 \\ & 5.0 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 8.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.6 \\ & 9.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.15 \\ & 1.94 \\ & 3.47 \end{aligned}$	6
15 16 17		1	σ	63	Trained athlete	$\begin{aligned} & 5.0 \\ & 6.3 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 11.3 \\ & 15.7 \end{aligned}$	$\begin{aligned} & 1.57 \\ & 2.31 \\ & 3.21 \end{aligned}$	6
18 19 20 21 22 23	Walking, level llard surface road Grass-covered road Furrow in field Harvested field Plowed field Harrowed field Hard snow Soft snow	2	σ	68-69	Carrying $9-\mathrm{kg}$ clothing and apparatus	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 3.4 \\ & 3.3 \\ & 3.3 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.6 \\ & 5.4 \\ & 5.2 \\ & 5.3 \\ & 5.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.3 \\ & 7.0 \\ & 6.9 \\ & 7.7 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 1.28 \\ & 1.43 \\ & 1.41 \\ & 1.57 \\ & 2.05 \end{aligned}$	7
24		1	σ	83		$\begin{aligned} & 3.8 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 11.2 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 3.22 \end{aligned}$	8
26		1	σ	83	Carrying 20-kg load	2.5	4.0	20.2	4.13	8
27 28 29 30	Walking, level. carrying 2l-kg load	5	σ	70	1 miner, 2 athletes, 2 sedentary workers	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.2 \\ & 4.8 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & 5.8 \\ & 9.0 \end{aligned}$	$\begin{aligned} & (0.70) \\ & (0.90) \\ & (1.16) \\ & (1.80) \end{aligned}$	9
31	Walking, gradel, 2.7% uphill 5.0% 5.0% 5.5% 6.2% 7.3% 8.3% 8.6% 8.6% 11.0% 14.8%	2	$0 \cdot$	70	Soldiers	3.5	5.6	6.1	(1.23)	4
32		1	\bigcirc	70	Trained individual	2.0	3.2	4.1	(0.83)	10
33		1	σ	70	Trained individual	2.5	4.0	4.8	(0.97)	10
34		1	σ	70	Soldier	3.5	5.6	7.5	(1.50)	4
35		2	0	70	Soldiers	3.5	5.6	7.8	(1.56)	4
36		2	σ	70	Laboratory workers	3.5	5.6	8.6	(1.73)	4
37		1	\bigcirc	70	Soldier	3.5	5.6	9.3	(1.87)	4
38		2	σ	70	Laboratory workers	2.4	3.8	7.2	(1.43)	4
39		64	0°	70	1 marathon runner, 23 sharecroppers, 40 trained individuals	3.5	5.6	9.3	(1.87)	4
40		2	$\stackrel{\circ}{ }$	70	Soldiers	3.5	5.6	9.3	(1.87)	4
41		7	0	70	Civilian public service workers	3.5	5.6	9.7	(1.93)	11
42		2	∞	70	Soldiers	3.5	5.6	11.0	(2.20)	4
43		2	σ	70	Soldiers	3.5	5.6	12.3	(2.47)	4
44 45 46 47 48 49	Walking, grade 2, 0% treadmill, 5% uphill 10% 15% 20% 25%	2	σ	70-79		2.6	4.2	3.9-4.4 5.4-5.9 7.4-7.8 9.7-10.3 12.2-13.0 14.7-15.8	$\begin{aligned} & 0.80-0.90 \\ & 1.10-1.20 \\ & 1.51-1.60 \\ & 1.98-2.10 \\ & 2.48-2.65 \\ & 3.00-3.23 \end{aligned}$	12
50 51 52 53 54 55	Walking, grade 2, 0% treadmill, 5% downhill 10% 15% 20% 25%	2	$\stackrel{\circ}{\circ}$	70-79		2.6	4.2	3.9-4.4 3.4-3.7 3.3-3.6 3.7-3.8 4.2-4.3 4.8-4.9	$\begin{aligned} & 0.80-0.90 \\ & 0.70-0.76 \\ & 0.68-0.73 \\ & 0.75-0.77 \\ & 0.85-0.88 \\ & 0.97-1.00 \end{aligned}$	12

$1 /$ Grade $=$ the distance the body rises, expressed in per cent of the distance travelled. $/ 2 /$ Grade $=5 \%$ for each 29° of incline.

The oxygen requirement per minute for a given rate of energy expenditure may exceed the oxygen uptake during any given minute if an oxygen debt is being accumulated, resulting in very high values for level running and swimming. Values in parentheses are calculations, assuming one liter of $\mathrm{O}_{2}=5$ Calories. Values for all subjects listed as weighing 70 kg are proportional calculations from values for subjects of other weights.

Activity		Subjects				Speed		Energy Expenditure Cal/min (H)	O_{2} Requirement $\mathrm{L} / \mathrm{min}$ (I)	Reference \qquad (J)
		No.	Sex	Wi, kg	Remarks	$\mathrm{mi} / \mathrm{hr}$	$\mathrm{km} / \mathrm{hr}$			
	(A)	(B)	(C)	(D)	(E)	(F)	(G)			
$\begin{aligned} & 56 \\ & 57 \\ & 58 \end{aligned}$	Walking, 35.8% grade . carrying $21-\mathrm{kg}$ load	5	${ }^{\circ}$	70	1 miner, 2 athletes, 2 sedentary workers	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.6 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2 \\ & 11.3 \\ & 14.0 \end{aligned}$	$\begin{aligned} & (1.23) \\ & (2.27) \\ & (2.81) \end{aligned}$	9
59 60	Running, level	2	σ	70	Soldiers	$\begin{aligned} & 5.7 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & (2.40) \\ & (2.90) \end{aligned}$	4
61 62 63 64 65 66 67 68		1	Ơ	70	Athlete ${ }^{3}$	$\begin{aligned} & 11.4 \\ & 13.2 \\ & 14.6 \\ & 14.8 \\ & 15.8 \\ & 17.2 \\ & 18.6 \\ & 18.9 \end{aligned}$	$\begin{aligned} & 18.4 \\ & 21.1 \\ & 23.5 \\ & 23.7 \\ & 25.3 \\ & 27.7 \\ & 29.8 \\ & 30.4 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 38.8 \\ & 44.7 \\ & 48.0 \\ & 65.2 \\ & 79.0 \\ & 129.8 \\ & 158.0 \\ & \hline \end{aligned}$	$\begin{aligned} & (4.33) \\ & (7.77) \\ & (8.93) \\ & (9.60) \\ & (13.03) \\ & (15.80) \\ & (25.57) \\ & (31.60) \end{aligned}$	13
$\begin{aligned} & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \end{aligned}$	Running, level, treadmill 4	1	0	74	Running, at "steady state"	$\begin{aligned} & 7.5 \\ & 8.8 \\ & 10.0 \\ & 11.3 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 14.0 \\ & 16.0 \\ & 18.0 \\ & 20.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.7 \\ & 18.1 \\ & 21.1 \\ & 25.0 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 3.70 \\ & 4.30 \\ & 5.10 \\ & 6.80 \end{aligned}$	14
$\begin{aligned} & 74 \\ & 75 \\ & 76 \\ & 77 \end{aligned}$	Running, level, on track ${ }^{4}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 75 \\ & 74 \\ & 70 \\ & 72 \end{aligned}$	Running 800 meters Running 400 meters Running 200 meters Running 100 meters	$\begin{aligned} & 12.0 \\ & 16.4 \\ & 17.6 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.2 \\ & 26.3 \\ & 28.1 \\ & 28.8 \end{aligned}$	$\begin{aligned} & 34.8 \\ & 89.6 \\ & 160.9 \\ & 227.2 \end{aligned}$	$\begin{aligned} & 7.10 \\ & 18.30 \\ & 32.85 \\ & 46.40 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 16 \end{aligned}$
78 79	Running, 8.6\% grade ${ }^{1}$	$\begin{aligned} & 25 \\ & 64 \end{aligned}$	\circ 0	70 70	```l marathon runner, 12 adults, 12 boys 1 \text { marathon runner, } 2 3 sharecroppers, 40 trained individuals```	5.8 7.0	$\begin{aligned} & 9.3 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 12.6 \\ & 15.8 \end{aligned}$	$\begin{aligned} & (2.53) \\ & (3.17) \end{aligned}$	4
$\begin{aligned} & 80 \\ & 81 \\ & 82 \end{aligned}$	Bicycling, level	1	0	70	Laboratory worker on bicycle weighing 21 kg	$\begin{aligned} & 5.5 \\ & 9.4 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 15.1 \\ & 21.3 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 5.8 \\ & 10.0 \end{aligned}$	$\begin{aligned} & (0.63) \\ & (1.17) \\ & (2.00) \end{aligned}$	17
$\begin{aligned} & 83 \\ & 84 \\ & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \end{aligned}$	Bicycling, 3.5% grade 2 treadmill, uphill	1	σ	85	Well-trained individual on bicycle weighing 17 kg	$\begin{aligned} & 6.3 \\ & 7.5 \\ & 8.8 \\ & 10.0 \\ & 11.3 \\ & 12.5 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \\ & 14.0 \\ & 16.0 \\ & 18.0 \\ & 20.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 8.8 \\ & 10.1 \\ & 11.3 \\ & 12.8 \\ & 14.2 \\ & 16.2 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.80 \\ & 2.05 \\ & 2.30 \\ & 2.60 \\ & 2.90 \\ & 3.30 \end{aligned}$	18
$\begin{aligned} & 90 \\ & 91 \\ & 92 \\ & 93 \\ & 94 \end{aligned}$	Bicycling, grade, 2% treadmill, 4% uphill 6% 8% 10%	1	0°	79	On bicycle weighing 16 kg	5.4	8.6	$\begin{aligned} & 6.0 \\ & 8.7 \\ & 11.4 \\ & 14.1 \\ & 16.9 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.77 \\ & 2.33 \\ & 2.88 \\ & 3.45 \end{aligned}$	12
95 96 97 98 99 100 101	Bicycling, grade, 2% treadmill, 4% downhill 6% 8% 10% 12% Free-wheeling	1	-	79	$\begin{aligned} & \text { On bicycle weighing } \\ & 16 \mathrm{~kg} \end{aligned}$	5.4	8.6	$\begin{aligned} & 2.5 \\ & 2.9 \\ & 3.3 \\ & 3.7 \\ & 4.1 \\ & 4.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.59 \\ & 0.67 \\ & 0.75 \\ & 0.83 \\ & 0.90 \\ & 0.48 \end{aligned}$	12
102 103 104 105	Rowing, calm water	3	σ	70	Laboratory workers in rowboat with assistant; 2 oars used	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 4.0 \\ & 4.8 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 6.5 \\ & 8.7 \\ & 11.0 \end{aligned}$	$\begin{aligned} & (0.97) \\ & (1.30) \\ & (1.73) \\ & (2.50) \end{aligned}$	19
106 107 108	Rowing machine ergometer	$\left[\begin{array}{l} 1 \\ 3 \\ 1 \end{array}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	Expert oarsmen in excellent condition; 1 oar used ${ }^{3}$	$\begin{aligned} & 10.9 \\ & 11.3 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 17.4 \\ & 18.1 \\ & 19.2 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 18.8 \\ & 25.0 \end{aligned}$		20
109	Skating, smooth ice	2	σ O	70	Laboratory workers; skating skill, good	$\begin{aligned} & 9.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.8 \\ & 10.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.57) \\ & (2.07) \\ & \hline \end{aligned}$	21

$11 /$ Grade $=$ the distance the body rises, expressed in per cent of the distance travelled. $/ 2 /$ Grade $=5 \%$ for each 2.90 of incline. $13 / \mathrm{O}_{2}$ debt included in values given for this subject. $/ 4 / \mathrm{O}_{2}$ determination from total O_{2} uptake in work and recovery.

The oxygen requirement per minute for a given rate of energy expenditure may exceed the oxygen uptake during any given minute if an oxygen debt is being accumulated, resulting in very high values for level running and swimming. Values in parentheses are calculations, assuming one liter of $\mathrm{O}_{2}=5$ Calories. Values for all subjects listed as weighing 70 kg are proportional calculations from values for subjects of other weights.

Activity		Subjects				Speed		Energy Expenditure Cal/min	Requirement L/min	Reference
		No.	Sex	Wt, kg	Remarks	$\mathrm{mi} / \mathrm{hr}$	km/hr			
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
111	Skating, smooth ice (concluded)	2	-	70	Laboratory workers; skating skill, good	13.0	20.9	13.0	(2.60)	21
112 113 114 115 116 117	Skiing, level	1	$0^{\prime \prime}$	83	Skiing, at "steady state" on loose snow	$\begin{aligned} & 2.6 \\ & 3.9 \\ & 5.3 \\ & 6.7 \\ & 8.2 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 6.3 \\ & 8.4 \\ & 10.7 \\ & 13.1 \\ & 14.7 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 11.5 \\ & 14.8 \\ & 15.4 \\ & 21.6 \\ & 25.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.69 \\ & 2.34 \\ & 3.02 \\ & 3.14 \\ & 4.41 \\ & 5.24 \end{aligned}$	8
118	Skiing, level, carrying $20-\mathrm{kg}$ load	1	σ	83	Skiing, at "steady state" on loose snow	2.5	4.0	12.6	2.57	8
119	Skiing, 16.7% grade ${ }^{2}$, uphill	1	σ O'	83	Skiing, at "steady state" on loose snow	1.8	2.8	13.9	2.84	8
120	Snow-shoeing, level	2	\bigcirc	70	Soldiers on bearpaw snow-shoes; skill, fair Mountaineers on bearpaw snow-shoes; skill, good	$2 . \overline{5}$ 2.6	4.0 4.2	8.7 12.3	$\begin{aligned} & (1.73) \\ & (2.47) \end{aligned}$	4
122		4	σ	70	2 soldiers; skill, fair. 2 mountaineers; skill, good. All on trail snow-shoes.	2.5	4.0	10.3	(2.07)	4
123		1	0	70	Mountaineer on trail snow-shoes; skill, good	3.5	5.6	14.8	(2.97)	4
124		1	\bigcirc	83		2.5	4.0	13.8	2.82	8
125	Snow-shoeing, level, carrying $20-\mathrm{kg}$ load	1	σ	83		2.5	4.0	15.0	3.06	8
126	$\begin{gathered} \text { Snow-shoeing, } 16.7 \% \\ \text { grade } 2 \end{gathered}$	1	-	83		1.8	2.8	16.4	3.34	8
127	Swimming, breast stroke, up to 3-min	1	0°	70	Laboratory worker; skill, good	1.0	1.6	6.8	(1.37)	22
128		6	0	70	Laboratory workers: skill, 4 good, 2 fair	1.6	2.6	8.2	(1.63)	22
129 130 131 132		1	0	70	Athlete; skill. good ${ }^{3}$	$\begin{aligned} & 1.9 \\ & 2.2 \\ & 2.4 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & 3.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 30.8 \\ & 42.2 \\ & 61.5 \end{aligned}$	$\begin{aligned} & (2.73) \\ & (6.17) \\ & (8.43) \\ & (12.30) \end{aligned}$	23
$\begin{aligned} & 133 \\ & 134 \\ & 135 \\ & 136 \\ & 137 \\ & 138 \end{aligned}$	$\begin{aligned} & \text { Swimming, breast } \\ & \text { stroke, "steady } \\ & \text { state" } \end{aligned}$	1	0°		Excellent swimmer	$\begin{aligned} & 0.6 \\ & 0.9 \\ & 1.2 \\ & 1.5 \\ & 1.8 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.9 \\ & 2.4 \\ & 2.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.7 \\ & 9.9 \\ & 12.6 \\ & 16.0 \\ & 19.6 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.58 \\ & 2.02 \\ & 2.57 \\ & 3.26 \\ & 4.00 \end{aligned}$	24
139 140	Swimming, breast stroke, short sprint 4	1	σ		Good swimmer, sprinting 20-40 meters	$\begin{aligned} & 2.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 58.0 \end{aligned}$	$\begin{aligned} & 7.75 \\ & 11.80 \end{aligned}$	25
$\begin{aligned} & 141 \\ & 142 \\ & 143 \\ & 144 \end{aligned}$	$\begin{aligned} & \text { Swimming, crawl } \\ & \text { stroke, "steady } \\ & \text { state" } \end{aligned}$	1	0°		Excellent swimmer	$\begin{aligned} & 1.4 \\ & 1.7 \\ & 2.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.6 \\ & 3.1 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 11.9 \\ & 14.4 \\ & 16.2 \end{aligned}$	$\begin{aligned} & 1.92 \\ & 2.42 \\ & 2.94 \\ & 3.30 \end{aligned}$	24
$\begin{aligned} & 145 \\ & 146 \\ & 147 \\ & 148 \\ & 149 \\ & 150 \end{aligned}$	Swimming, crawl stroke, short sprint ${ }^{4}$	1	Of		Good swimmer, sprinting 20-40 meters	$\begin{aligned} & 2.2 \\ & 2.6 \\ & 2.9 \\ & 3.2 \\ & 3.5 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.1 \\ & 4.6 \\ & 5.0 \\ & 5.6 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 29.0 \\ & 39.0 \\ & 50.0 \\ & 67.0 \\ & 95.0 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 5.90 \\ & 8.00 \\ & 10.20 \\ & 13.70 \\ & 19.40 \end{aligned}$	25

$12 /$ Grade $=5 \%$ for each 2.90 of incline. $/ 3 / \mathrm{O}_{2}$ debt included in values given for this subject. /4/ O_{2} determination from total O_{2} uptake in work and recovery.

Contributors: (a) Riley, R. L., and Johns, C. J., (b) Morehouse, L. E., and Cherry, R. B., (c) Asmussen, E., (d) Chapin, J. L.. (e) Douglas, C. G.

References: [1] Passmore, R., Thomson, J. G., and Warnoch, G. M., Brit. J. Nutrit. 6:253, 1952. [2] Boothby, W. M., Berkson, J., and Dunn, H. L., Am. J. Physiol. 116:468, 1936. [3] Quiggle, A. B., and Kottke, F. J., Bull. Univ. Minnesota Ilosp. XXV1, No. 4, 1954. [4] Morehouse, L. E., and Cherry, R. B., "Energy Cost of Progression, " National Academy of Sciences Contract No. W 44-109 q.m. 305, Subcontract QMC 65, July 22, 1946. [5] Talhott, J. II., et al, J. Biol. Chem. 78:445, 1928. [6] Böje, O., Acta physiol. scand. 7:362, 1944. [7] Glasow, W., and Müller, E. A., Arbeitsphysiologie 14:319, 1950. [8] Christensen, E. H., and Hōgberg, P., ibid 14:292, 1950. [9] Briggs, H., J. Physiol., Lond 54:292, 1920. [10] Smith, 11. M., Carnegie Institution of Washington Pub. No. 309, 1921. [11] Erickson, L. E., Simonson, H. L., Taylor, H. A., and Keys, A., Am. J. Physiol. 145:391, 1946. [12] Asmussen, E., unpublished. [13] Sargent, R. M., Proc. Roy. Soc., Lond., B100:10. 1926.
[14] Christensen, E. H., and Högberg, P., Arbeitsphysiologie 14:249, 1950. [15] Hansen, E., unpublished. [16] Hansen, E., Arbeitsphysiologie 8:151, 1934. [17] Zuntz, L., Pflüger's Arch. 70:346, 1898. [18] Astrand, P.-O., Arbeitsphysiologie 15:23, 1953. [19] Liljestrand, G., and Lindhard, J., Skand. Arch. Physiol., Berl. 39:215, 1920. [20] Henderson, Y., and Haggard, H. W., Am. J. Physiol. 72:264, 1925. [21] Liljestrand, G., and Stenstro̊m, N., Skand. Arch. Physiol., Berl. 39:167, 1920. [22] Liljestrand, G., and Stenstróm, N., ibid 39:1, 1920. [23] Karpovich, P. V., and LeMaistre, H., Res. Quart. Am. Ass. Health 11:40, 1940. [24] Frederiksen, R., Tidsskrift for Legems申velser 1945:49. [25] Karpovich, P. V., and Millman, N., Am. J. Physiol. 142:140, 1944.
106. O_{2} REQUIREMENT AT VARIOUS RUNNING AND WALKING SPEEDS: MEN

Contributor: Henry, lध. M.
107. EFFECT OF BREATHING N_{2} ON RESPIRATORY

RATE, TIDAL AND MINUTE VOLUMES: MAN

Breath no.	Respiratory Rate breaths/min	Tidal Volume ml	Minute Volume	
	(B)	(C)	Ratio Experimental Control	
1	1	16.4	370	0.62
2	4	17.2	550	0.99
3	7	16.2	1063	1.63
4	10	19.8	1111	2.25
5	13	19.5	704	1.69

/1/ Breathing was continuous. /2/ "Experimental" refers to any pulmonary ventilation after the first breath; "control" refers to volume of the first breath.

Contributor: Swann, H. G.

Reference: Lutz, B. R., and Schneider, E. C., Am. J. Physiol. 50:336, 1920.
108. EFFECT OF BREATHING N_{2} ON RESPIRATORY

RATE AND MINUTE VOLUME: DOG

	Time of Exposure min	Respiratory Rate		Minute Volume	
		per min	Ratiol: $\frac{\text { Experimental }}{\text { Control }}$	$\mathrm{L} / \mathrm{min}$	Ratiol: $\frac{\text { Experimental }}{\text { Control }}$
	(A)	(B)	(C)	(D)	(E)
1	At rest ${ }^{2}$	13.0		4.9	
2	0.1			8.0	1.63
3	0.3	23.5	1.7	10.3	2.10
4	0.5			13.5	2.76
5	0.7	29.0	2.2	17.0	3.47
6	0.9			12.5	2.55
7	1.1	20.5	1.6	9.0	1.84

/1/ "Experimental" refers to ventilation after exposure to N_{2}; "control" refers to breathing during the first minute before exposure to N_{2}. $12 /$ Minute before exposure to N_{2}.

Contributor: Swann, H. G.
Reference: Swann, H. G., Engineering Division, ATSC, USAAF, Report No. TSEAL-696-79B, p 31, Oct., 1945.

109. PULMONARY FUNCTION: RESIDENTS AND NEWCOMERS AT HIGH ALTITUDES

Altitude $=13,090 \mathrm{ft}(478 \mathrm{~mm} \mathrm{Hg})$, except for Line 1 . Values in parentheses are ranges, estimate " b " of the 95% range (cf Introduction).

Residence		Respiratory Rate breaths/min	Minute Volume $\mathrm{L} / \mathrm{min}$	Alveolar Air		Respiratory Quotient	O_{2} Consumption L/min	
		$\mathrm{pO}_{2}, \mathrm{~mm} \mathrm{Hg}$		$\mathrm{pCO}_{2}, \mathrm{~mm} \mathrm{lig}$				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	Sea level	12.1	6.9(6.1-7.7)	97.9(93.5-102.3)	40.8(38.6-43.0)	0.864(0.842-0.886)		
2	2-8 da ${ }^{1}$	16.8	9.6(8.8-10.4)	50.4(48.4-52.4)	32.1(31.4-32.8)	0.826(0.782-0.870)	257.2(230.0-284.4)	
3	14-54 dal	16.1	9.2(8.4-10.0)	53.6(51.6-55.6)	31.1(28.8-33.4)	0.831(0.801-0.861)	246.8(239.0-254.6)	
4	$6-23 \mathrm{yr}^{2}$	13.6	7.5(6.9-8.1)	48.1(44.6-51.6)	34.7(33.0-36.4)	0.847(0.821-0.873)	243.6(229.8-257.4)	

$/ 1 /$ Sea level residents tested during brief stay at altitude. / / / Residents born in the Andean altiplano and living at $13,090 \mathrm{ft}$ for 6 yr or more.

Contributor: Swann, H. G.
Reference: Chiodi, H., J. Appl. Physiol. 10:82, 1957.

110. BLOOD GASES: RESIDENTS AND NEWCOMERS AT 1HIGH ALTITUDES

Values in parentheses are ranges, estimate " b " of the 95% range (cf introduction).

Altitude				Oxygen				Carbon Dioxide		Reference
	ft	m	mm Hg	$\begin{gathered} \text { Pressure } \\ \text { mm Hg } \end{gathered}$	$\begin{aligned} & \text { Content }^{2} \\ & \mathrm{ml} / 100 \mathrm{ml} \end{aligned}$	$\begin{aligned} & \text { Capacity } \\ & \mathrm{ml} / 100 \mathrm{ml} \end{aligned}$	$\begin{gathered} \text { Saturation } \\ \% \end{gathered}$	Pressure mm 11 g	$\begin{gathered} \text { Content } \\ \mathrm{ml} / 100 \mathrm{ml} \end{gathered}$	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
(Permanent Residents										
1	492	150	746	90	20.7	21.7	95.4	41	46	D-1,1
2	7840	2390	568	68	21.2(18.5-24)	23.1(19-27.5)	$91.7(86.5-97)$	37.8(34-42)	41.1(37-45)	D-1,2
3	10,300	3140	517	66	21.8(19-25)	24.0(22-26)	91.0(87-95)	36.4(31-42)	39.3(34.5-44)	D, 1; E-1,2
4	12,238	3730	479	57	21.9(18.5-25)	25.0(21.5-28.5)	87.6(84.5-91.5)		36.0(33-39)	$\begin{gathered} \text { D, } 1 ; E-G, \\ 1,2 \end{gathered}$
5	14,896	4540	431	47	23.0(19.5-26.5)	28.3(24-32.5)	81.4(75.5-87)	34.7(29-40)	33.5(32-35)	D, 1; E-1,2
6	15,950	4860	413	46	23.4(20.5-26.5)	29.0(25-33)	$80.7(76-85)$	33.0(28-38)	34.0(31-37)	D, 1; E-1,2
7	17,521	5340	387	43	23.0	30.2	76.2	29.3	31.8	D-1, 3
	Newcomers ${ }^{3}$									
8	11,319	3450	496	55	20.5	24.1	85	31	41	D-1,4
9	15,421	4700	429	44	18.74	24.14	78	29.3	38.3	D,G-I, 3
10	17,521	5340	387	43	18.64	24.54	76.2	27.7	35.0	$\text { D,G-I, } 3$
11	20,145	6140	347	35	16.34	24.94	65.6	24.2	30.2	D, G-1, 3

/1/U.S. standard atmosphere. /2/Combined O_{2} only; does not include physically dissolved O_{2}. / /3/ Up to 16 da. /4/ Derived by interpolation.
Contributors: (a) Adler, H. F., and Luft, U. C., (b) Penrod, K. E., (c) Swann, H. G.
References: [1] National Research Council CAM Report, "Handbook of Respiratory Data in Aviation, "Charts A-1, B-1, B-3, prepared from data of the Aero-Medical Laboratory, Wright Field, and The Johnson Foundation,
Washington, D. C., 1944, [2] Hurtado, A., and Aste-Salazar, 11., J. Appl. Physiol. 1:304, 1948. [3] Dill, D. B., Christensen, E, H., and Edwards, H. T., Am. J. Physiol. 115:530, 1936. [4] Becker-Freysend, H., Loeschcke,
H. H., Luft, U. C., and Opitz, E., Luftfahrtmedizin 7:160, 1942.

Eight trained subjects, seated and breathing air through a face mask from a Pioneer demand valve, in a high altitude chamber. After 20 -minute period at ground level (540 feet above sea level), during which control measurements were made, ascent to desired altitude occurred at rate of 4500 feet per minute. Each subject was exposed from ground level to experimental level, with at least a one-day interval between successive exposures. Values are averages.

	Exposure Time min	$\begin{gathered} \text { Alveolar } \\ \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \text { Alveolar } \\ \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Ilg} \end{gathered}$	Alveolar$\text { R.Q. }{ }^{1}$	Minute Volume ${ }^{2}$ $\mathrm{L} / \mathrm{min}$	Respiratory Rate breaths/min	Arterial HbO_{2}		O_{2} Consumption ${ }^{5}$ $\mathrm{L} / \mathrm{min}$	Heart Rate ${ }^{6}$ \%
							$\begin{gathered} \text { Calc. }{ }^{3} \\ \% \end{gathered}$	$\begin{gathered} \text { Oxim. } 4 \\ \% \end{gathered}$		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)
Ground Level ($\mathrm{B}=746 \mathrm{~mm} \mathrm{Hg}$)										
1	5	102.2	37.0	0.82	8.80	13			0.314	
2	10	100.8	37.2	0.80	9.10	14			0.334	
3	15	101.5	36.8	0.81	9.02	14			0.327	82^{7}
4	20	101.1	37.6	0.81	8.85	13		98	0.324	100
	$12,000 \mathrm{ft}(\mathrm{B}=483 \mathrm{~mm} \mathrm{Hg})$									
5	5	54.5	35.1	0.95	10.60	16	89	89	0.312	
6	10	52.1	35.4	0.89	9.45	14	88	87	0.302	113
7	15	51.2	35.1	0.86	9.82	14	87	85	0.327	
8	20	51.0	35.1	0.85	9.48	13	87	86	0.319	115
9	25	50.0	35.2	0.83	9.42	14	86	85	0.321	
10	30	50.4	34.9	0.85	9.50	14	87	85	0.313	113
11	35	49.5	35.3	0.83	9.53	14	86	84	0.326	
12	40	51.4	34.5	0.83	9.66	14	88	85	0.325	106
13	45	51.2	34.3	0.83	9.72	14	87	85	0.326	
14	50	50.9	34.3	0.83	9.61	14	87	85	0.317	104
15	55	49.4	35.1	0.81	9.80	15	86	85	0.336	
16	60	50.7	34.0	0.82	9.77	14	87	85	0.331	99
	Ground Level ($\mathrm{B}=751 \mathrm{~mm} \mathrm{Hg}$)									
17	5	107.1	35.1	0.86	8.69	11			0.301	
18	10	107.9	34.6	0.87	8.69	12			0.281	
19	15	107.0	34.9	0.83	8.61	12			0.297	817
20	20	106.1	34.9	0.83	8.25	13			0.275	100
	$16,000 \mathrm{ft}(\mathrm{B}=412 \mathrm{~mm} \mathrm{Hg})$									
21	5	46.1	32.4	1.11	9.50	12	85	82	0.233	
22	10	45.6	30.8	1.03	9.32	12	85	80	0.225	111
23	15	44.4	30.8	0.99	8.98	11	84	78	0.244	
24	20	44.8	30.0	0.96	9.14	11	84	79	0.244	110
25	25	46.1	28.5	0.98	9.40	11	85	79	0.236	
26	30	45.4	28.6	0.95	9.74	13	85	79	0.248	103
27	35	44.4	28.9	0.91	9.36	12	84	80	0.248	
28	40	43.2	29.4	0.87	8.79	12	83	78	0.250	103
29	45	44.2	28.6	0.89	9.76	12	84	80	0.270	
30	50	44.4	28.2	0.87	9.39	12	85	81	0.254	101
31	55	43.5	27.9	0.82	8.90	13	84	79	0.258	
32	60	44.2	28.0	0.86	10.50	11	84	82	0.306	105
	Ground Level ($B=751 \mathrm{~mm} \mathrm{IIg}$)									
33	5	108.2	34.6	0.88	8.55	12			0.275	
34	10	105.3	34.9	0.82	8.45	11			0.304	
35	15	105.5	34.8	0.82	8.49	12			0.294	82^{7}
36	20	107.1	35.0	0.86	8.42	12			0.279	100

/1/ As calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. 146:639, 1946. $/ 2 /$ Calculated at BTPS. $/ 3 /$ Per cent saturation of arterial blood as estimated from alveolar pCO_{2} and pO_{2} with the/ nomogram of L. J. Henderson, 1928. /4/Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/ Ai STP, calculated from O_{2} consumption $=\frac{\mathrm{Va} \times \mathrm{pC}}{0.864 \times \mathrm{Q}}$, where $\mathrm{Va}=$ alveolar ventilation in $\mathrm{L} / \mathrm{min}, \mathrm{BTPS}$; $\mathrm{pC}=\mathrm{alveo}$ lar pCO_{2} in $\mathrm{mm} \mathrm{Hg} ; Q=$ alveolar respiratory quotient; $0.864=\frac{310}{273} \times \frac{760}{1000}$. A constant dead space of 210 cc was assumed in computing Va from total ventilation (150 cc personal dead space, plus 60 cc apparatus dead space). $/ 6 /$ As per cent of resting heart rate at ground level. These values are averages based on several measurements during each indicated $10-\mathrm{min}$ period. $/ 7 /$ Average value for control rate in beats $/ \mathrm{min}$.
111. EFFECT OF REDUCED BAROMETRIC PRESSURES ON PULMONARY FUNCTION AND HEART RATE: MAN (Concluded)

	Exposure Time min	Alveolar$\begin{gathered} \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \text { Alveolar } \\ \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Alveolar R. Q. ${ }^{1}$	Minute Volume ${ }^{2}$ L/min	Respiratory Rate breaths/min	Arterial HbO_{2}		O_{2} Consumption ${ }^{5}$ $\mathrm{L} / \mathrm{min}$	Heart Rate ${ }^{6}$ \%
							$\begin{gathered} \text { Calc. } \\ \% \end{gathered}$	$\begin{gathered} \text { Oxim. } 4 \\ \% \\ \hline \end{gathered}$		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)
$18,000 \mathrm{ft}(\mathrm{B}=379 \mathrm{~mm} \mathrm{Hg})$										
37	5	44.1	28.8	1.23	11.38	11	84	80	0.246	
38	10	43.1	28.4	1.15	10.90	11	84	79	0.246	107
39	15	41.8	28.0	1.06	11.02	11	82	77	0.266	
40	20	41.3	28.3	1.02	11.24	12	82	78	0.271	109
41	25	41.5	26.6	0.99	11.24	12	82	75	0.271	
42	30	40.1	27.0	0.94	11.06	11	81	75	0.292	108
43	35	40.1	26.7	0.93	11.10	11	81	76	0.292	
44	40	40.8	26.2	0.93	11.73	11	82	76	0.307	111
45	45	40.2	25.7	0.90	11.43	12	81	77	0.296	
46	50	39.8	26.2	0.88	10.66	12	81	77	0.282	108
47	55	40.3	25.4	0.88	10.63	12	82	76	0.272	
48	60	41.1	25.1	0.90	10.83	11	83	78	0.275	104
	Ground Level ($B=745 \mathrm{~mm} \mathrm{Hg}$)									
49	5	104.1	36.5	0.85	8.30	13			0.278	
50	10	104.2	35.1	0.85	8.71	12			0.297	
51	15	100.7	37.0	0.79	8.12	11			0.315	847
52	20	104.8	35.5	0.85	8.40	11			0.296	100
	$20,000 \mathrm{ft}(\mathrm{B}=349 \mathrm{~mm} \mathrm{Hg})$									
53	5	39.8	27.1	1.21	13.77	11	81	78	0.298	
54	10	37.6	26.6	1.03	12.36	11	79	74	0.301	124
55	15	36.8	26.3	0.97	12.66	11	78	74	0.325	
56	20	36.7	24.4	0.94	11.76	11	78	73	0.284	112
57	25	36.4	25.6	0.93	12.23	12	78	72	0.310	
58	30	36.4	24.4	0.94	12.46	12	80	74	0.299	117
59	35	36.8	24.5	0.89	12.60	12	79	75	0.321	
60	40	37.9	23.4	0.89	13.44	13	80	77	0.326	107
61	45	39.0	23.2	0.84	12.56	13	79	76	0.315	
	Ground Level ($\mathrm{B}=747 \mathrm{~mm} \mathrm{Hg}$)									
62	5	105.0	34.7	0.83	8.72	10			0.321	
63	10	103.9	35.2	0.81	8.18	11			0.296	
64	15	102.9	35.5	0.82	8.57	11			0.315	
65	20	103.3	35.3	0.81	8.64	11			0.320	100
	$22.000 \mathrm{ft}(\mathrm{B}=321 \mathrm{~mm} \mathrm{Hg})$									
66	5	36.1	24.4	1.26	16.79	14	78	73	0.311	
67	10	34.0	25.1	1.11	14.61	12	75	68	0.317	131
68	15	33.6	23.8	1.05	15.82	14	75	69	0.338	
69	20	32.7	24.6	1.01	15.21	14	73	66	0.347	126
70	25	31.8	24.1	0.95	14.15	14	72	63	0.330	
71	30	32.0	23.5	0.95	15.31	15	72	64	0.359	124

/1/As calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. 146:639, 1946.
$12 /$ Calculated at BTPS. $/ 3 /$ Per cent saturation of arterial blood as estimated from alveolar pCO_{2} and pO_{2} with the nomogram of L. J. llenderson, 1928. /4/Per cent saturation of arterial blood as indicated by the Millikan oximeter. $15 / \mathrm{At} \mathrm{STP}$; calculated from O_{2} consumption $=\frac{\mathrm{Va} \times \mathrm{pC}}{0.864 \times \mathrm{Q}}$, where $\mathrm{Va}=$ alveolar ventilation in $\mathrm{L} / \mathrm{min}$. BTPS ; $\mathrm{pC}=$ alveolar pCO_{2} in $\mathrm{mm} \mathrm{Hg} ; \mathrm{Q}=$ alveolar respiratory quotient; $0.864=\frac{310}{273} \times \frac{760}{1000}$. A constant dead space of 210 cc was assumed in computing Va from total ventilation (150 cc personal dead space, plus 60 ce apparatus dead space). $/ 6 /$ As per cent of resting heart rate at ground level. These values are averages based on several measurements during each indicated 10 -min period. $/ 7 /$ Average value for control rate in beats/min.

Contributors: (a) lvy, A. C., (b) Marbarger, J. P., (c) Swann, H. G., (d) Wechsberg, P.
Reference: Air Force Tech. Rept. No. 6528, Aug. 1951.

Four trained subjects, seated and breathing air through a face mask from a Pioneer demand valve in a high altitude chamber at simulated altitude of 16,000 feet. After control period of 10 minutes, subjects breathed $6 \% \mathrm{CO}_{2}$ in air for 15 minutes, followed by 10 -minute recovery period also at 16,000 feet. Values are averages.

Condition		Exposure Time min	$\begin{gathered} \text { Alveolar } \\ \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \text { Alveolar } \\ \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Alveolar R. Q. ${ }^{1}$	Minute	Respiratory	Arterial $\mathrm{Hb} \mathrm{O}_{2}$		$\begin{gathered} \text { Heart } \\ \text { Rate } 5 \\ \% \\ \hline \end{gathered}$	
		Volume ${ }^{2}$ $\mathrm{L} / \mathrm{min}$				Rate breaths/min	$\begin{gathered} \text { Calc. }^{3} \\ \% \end{gathered}$	$\begin{gathered} \text { Oxim. } \\ \% \end{gathered}$			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)
1	Control	2	49.0	32.0	1.22	13.87	II	88	87		
2		4	47.8	30.9	I. 13	12.36	12	87	86		
3		6	47.2	30.9	1.11	12.73	11	86	85		
4		8	47.9	30.0	1.09	13.87	10	87	86		
5		10	46.4	30.5	1.05	12.14	10	85	84	87	
6	$6 \% \mathrm{CO}_{2}$	2	46.1	36.3	0.89	12.79	11	84	84		
7		4	47.4	40.0	0.72	13.80	12	84	85		
8		6	47.7	40.2	0.77	15.16	14	84	85		
9		8	48.1	41.4	0.82	15.10	12	83	85		
10		10	48.9	41.2	0.82	15.45	13	84	84		
11		12	49.3	41.4	0.86	15.09	14	85	84		
12		14	49.2	41.5	0.85	15.96	14	85	84		
13		15	49.4	41.5	0.85	15.37	13	85	84	79	
14	Recovery	2	47.9	35.7	1.39	14.95	13	86	85		
15		4	46.4	32.2	1.12	12.56	12	86	82		
16		6	46.2	31.9	1.13	12.07	11	85	82		
17		8	45.4	31.9	1.07	12.10	11	85	81		
18		10	45.9	31.7	1.08	11.83	10	85	81	83	
		Summary									
19	Control		47.9	30.9	1.12	12.99	11	87	85	87	
20	$6 \% \mathrm{CO}_{2}$		48.3	40.4	0.82	14.84	13	84	84	79	
21	Recovery		46.4	32.7	1.16	12.70	11	85	82	83	

/1/ Alveolar respiratory quotient as calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. 146:639, 1946. /2/Calculated at BTPS. /3/Per cent saturation of arterial blood as estimated from alveolar pCO_{2} and pO_{2} with the nomogram of L. J. Henderson, 1928. /4/Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/As per cent of resting heart rate at ground level. Values are averages based on several measurements during each period.

Contributors: (a) lvy, A. C., (b) Marbarger, J. P., (c) Swann, H. G., (d) Wechsberg, P.
Reference: Air Force Tech. Rept. No. 6528, Aug. 1951.

Eight trained subjects, seated and breathing air through a face mask from a Pioneer demand valve, in a high altitude chamber. At ground level and at simulated altitude of 16,000 feet, subjects engaged in muscular work, pushing feet alternately against pedals constructed from flat pieces of spring steel, at rate of 30 times a minute for each foot. The mechanical work required for this task was calculated to be 49.4 kilogram-meters per minute. Work period of 10 minutes was preceded by a 10 -minute control period and followed by a 10 -minute recovery period. Values are averages.

/1/ Alveolar respiratory quotient as calculated by equation from Fenn, W. O., Rahn, H., and Otis, A. B., Am. J. Physiol. 146:639, 1946. /2/Calculated at BTPS. /3/Per cent saturation of arterial blood as estimated from alveolar pCO_{2} and pO_{2} with the nomogram of L . J. Henderson, 1928. /4/Per cent saturation of arterial blood as indicated by the Millikan oximeter. /5/ At STP, calculated from O_{2} consumption $=\frac{\mathrm{Va} \times \mathrm{PC}}{0.864 \times \mathrm{Q}}$, where $\mathrm{Va}=$ alvealar ventilation in L / \min, BTPS; $p C=$ alveolar $p C O_{2}$ in $m m H g ; ~ Q=$ alveolar respiratory quotient; $0.864=\frac{310}{273} \times \frac{760}{1000}$. A constant dead space of 210 cc was assumed in computing Va from total ventilation (150 cc personal dead space, plus 60 cc apparatus dead space). $16 /$ As per cent of resting heart rate at ground level. These values are averages based on several measurements during each indicated $10-\mathrm{min}$ period.

Contributors: (a) lvy, A. C., (b) Marbarger, J. P., (c) Swann, H. G., (d) Wechsberg, P.
Reference: Air Force Tech. Rept. No. 6528, Aug. 1951.
Contributor：Swann，H．G．
Reference：Houston，C．S． altitudes above 20

Day of Ascent	$\begin{aligned} & \text { Altitude } \\ & x \\ & 1000 \mathrm{ft} \end{aligned}$	Pressure mm Hg	Respiratory Rate breaths／min		Pulmonary Ventilation L／min		Ventilation Ratios		Arterial Blood						Respiratory Quotient	
					$\begin{gathered} \text { PV at Altitude } \\ \text { PV at Sea Level } \\ \text { (At Rest) } \end{gathered}$	PV in Exercise PV at Rest （At Altitude）	$\begin{gathered} \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$		$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$		pH					
			Rest	Exercise			Rest	Exercise								
（A）	（B）	（C）	（D）	（E）	（F）	（G）	（H）	（I）	（J）	（K）	（L）	（M）	（N）	（O）	（P）	（Q）
10	Sea level	760	12.0	18.0	6.8	24.0		3.5	90	94	42	44	7.40	7.39	0.831	0.910
2 6－9	9－12	543－483	11.5	22.8	9.3	36.8	1.4	4.0	60	54	30	33	7.46	7.47	0.834	0.950
$311-14$	14－16	446－412	12.5	20.8	10.3	41.3	1.5	4.0	46	41	28	28	7.50	7.47	0.830	0.924
$416-19$	17．5－18．5	388－370	13.0	24.5	11.8	47.3	1.7	4.0	40	34	22	24	7.52	7.47	0.809	0.941
5 $19-22$	19－20	364－349	10.8	24.5	12.3	49.8	1.8	4.0	37	32	22	22	7.51	7，48	0.838	0.948
$6 \quad 24-26$	21－22	335－321	15.3	21.3	14.3	47.3	2.1	3.3	32	31	22	21	7.51	7.52	0.854	0.937
Contributor：Swann，H．G．																
Reference：	Houston，	C．S．，a	Rile	R．L．，	Am．	Physio	149：565， 1947.									

115．EFFECT OF REDUCED BAROMETRIC PRESSURES AND EXERCISE ON VENTILATION：MAN
Ratio $A=$ Ioad performance at given altitude to rest performance at sea level；Ratio B＝load performance at given altitude to rest performance at same
Ventilation Ratios
Load

Reference
ミーーーーーNNーーー・

운 $\cdots \overrightarrow{i n}=\infty$ 7.0
1.5 1.4
4.4 \square
-
0

1947
116. EFFECT OF ACUTE EXPOSURE TO $2.43 \% \mathrm{O}_{2}$ ON PULMONARY FUNCTION: DGG

Death results in $8-20$ minutes. Values are averages of 4 dogs for first five minutes of breathing time, and of 3 dogs thereafter.

Breathing Time min		Respiratory Rate breaths/min	Ventilation Ratios		Arterial Blood			
		$\begin{gathered} \frac{\text { Experimental }}{\text { Control }} \\ \text { (at rest) } \end{gathered}$	$\frac{\text { Experimental }{ }^{2}}{\text { Control }} \text { (at start) }$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{Sat} . \\ \% \end{gathered}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	pH		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	0^{3}	16	1.5		93	44	7.32	
2	1	32	8.3	5.5	32	23	7.54	
3	2	34	6.9	4.6	21	23	7.53	
4	5	21	4.0	2.7	17	14	7.47	
5	9	19	2.8	1.9	14	14	7.37	
6	Terminal ${ }^{4}$	0			12	26	7.16	

/1/ Ratio of experimental ventilation to ventilation of healthy dog at rest. /2/Ratio of experimental ventilation to ventilation of same dogs at start (minute before anoxia). /3/ Minute before anoxia. /4/ Observations taken a few seconds before cardiac failure.

Contributor: Swann, H. G.
Reference: Swann, H. G., and Brucer, M., Texas Repts. Biol. M. 7:539, 1949.

117. EFFECT OF PROGRESSIVE ANOXIA ON PULMONARY FUNCTION: DOG

Rebreathing through soda lime into a spirometer of 3.52 liter capacity; death resulting in $15-28$ minutes. Values are averages of 4 dogs for first 14 minutes of breathing time, and of 3 dogs thereafter. In this type of anoxia, increase in ventilation is apparently due to increase in respiratory rate (compare Columns B and D).

Breathing Time min		Respiratory Rate breaths/min	Ventilation Ratios		Arterial Blood			
		$\begin{gathered} \text { Experimentall } \\ \text { Control } \\ \text { (at rest) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Experimental }{ }^{2} \\ \text { Control } \\ \text { (at start) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{Sat} . \\ \% \end{gathered}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	pH		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	0^{3}	22.8	2.2		87	39	7.31	
2	3-5	25.2	2.9	1.1	74	41	7.31	
3	8-9	42.0	5.6	1.8	62	32	7.41	
4	12-14	30.8	5.0	1.4	36	24	7.42	
5	17-19	26.4	3.7	1.2	25	18	7.47	
6	22-23	17.2	3.5	0.8	20	16	7.37	
7	Terminal ${ }^{4}$	0			11	23	7.14	

$/ 1 /$ Ratio of experimental ventilation to ventilation of healthy dog at rest. / / / Ratio of experimental ventilation to ventilation of the group of 4 dogs during minute before anoxia. /3/Minute before anoxia. /4/ Observations taken a few seconds before cardiac arrest.
Contributor: Swann, H. G.
Reference: Swann, 11. G.. and Brucer, M., Texas Repts. Biol. M. 7:553, 1949.
118. EFFECT OF HYI'ERVENTILATION ON BLOOD CO 2 CARIRIAGE: MAN

Values are averages of 3 subjects, hyperventilated in a body respirator for 24 hours.

Hyperventilation		Minute Volume L/min (B)	Plasma			
		CO_{2} Content vol \%	pH	$\begin{gathered} \mathrm{CO}_{2} \text { Capacity } \\ \text { vol } \% \end{gathered}$		
	(A)		(C)	(D)	(E)	
1	Before During		7.5	61.2	7.37	62.3
2	At 1 hr	17.7	52.3	7.48	62.6	
3	At 12 hr	19.1	46.0	7.53	61.0	
4	At 24 hr	18.9	44.6	7.50	58.6	
	After					
5	At 1 hr	8.7	51.5	7.38	56.8	
6	At 24 hr	7.0	53.5	7.38	58.1	

/1/ At pCO_{2} of 40 mm Hg .
Contributors: (a) Vandam, L. D., (b) Swann, H. G.
Reference: Brown, E. B., Campbell, G. S., Johnson, M. N., Hemingway, A., and Visscher, M. B.. J. Appl. Physiol. 1:33, 1948.

Part I: TABULAR

$\Delta \mathrm{pCO}_{2}=$ difference between ambient and alveolar $\mathrm{pCO}_{2} ; \Delta \mathrm{pO}_{2}=$ difference between ambient and alveolar $\mathrm{pO} \mathrm{O}_{2}$.

	Subjects no.	Exposure Time min	Ambient Air				Alveolar Air				$\triangle \mathrm{pCO}_{2}$	$\triangle \mathrm{pO}_{2}$
			CO_{2}	O_{2}	pCO_{2}	pO_{2}	CO_{2}	O_{2}	pCO_{2}	pO_{2}		
				\%		Hg				Hg	mm Hg	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)
1	4	Rest	0.03	20.94	0.2	150.1	5.76	14.18	40.8	100.4	40.6	49.7
2		4	1.28	19.62	9.2	140.5	5.49	14.60	39.3	103.7	30.1	36.8
3		10	2.41	18.32	17.3	131.2	5.94	13.75	42.3	98.5	25.0	32.7
4		23	3.84	16.63	27.5	119.1	5.81	13.28	43.5	95.0	16.0	22.1
5		28	4.79	15.50	34.3	111.0	6.50	13.01	46.4	92.5	12.1	18.5
6		34	5.95	14.18	42.6	101.5	7.08	12.55	50.4	89.3	7.8	12.2
7	4	Rest	0.03	20.94	0.2	150.1	5.92	14.55	41.9	103.0	41.7	47.0
8		4	0.75	20.23	5.3	143.4	4.90	16.05	33.7	112.8	26.6	30.6
9		10	1.79	18.97	12.6	134.4	5.74	14.20	40.4	100.0	27.8	34.4
10		22	3.15	17.48	22.3	123.7	5.95	13.49	42.2	95.2	19.9	28.5
11		28	4.07	16.42	28.8	116.3	6.22	13.09	44.1	92.9	15.3	23.4
12		34	4.83	15.50	34.1	109.6	6.61	12.95	46.3	89.0	12.2	20.0
13		46	5.66	14.52	40.0	102.8	6.93	12.39	49.3	88.2	12.3	18.4
14		51	6.54	13.45	46.2	95.2	7.87	11.45	55.8	81.4	9.6	13.8
15	4	Rest	0.03	20.94	0.2	150.1	5.81	13.85	41.1	98.1	39.9	52.0
16		18	2.21	19.34	15.9	138.5	5.85	14.84	41.4	105.6	25.5	32.9
17		34	4.32	20.57	31.0	147.5	6.57	17.79	46.8	127.0	15.8	20.5
18		42	5.41	19.54	38.8	140.0	7.10	16.86	50.7	123.7	11.9	16.3
19		51	6.72	20.52	48.2	147.2	7.92	18.98	56.7	135.8	8.5	11.4
20	4	Rest	0.03	20.94	0.2	148.5	4.95	15.08	35.5	108.2	35.3	40.3
21		17.5	2.47	18.13	17.4	127.5	5.39	14.50	38.0	102.2	20.6	25.3
22		28	4.19	16.25	29.4	114.4	6.14	13.53	42.9	95.0	13.4	19.4
23		42	4.60	15.22	32.3	106.8	6.54	13.01	46.0	91.2	13.5	15.6
24		52	4.98	13.27	35.0	93.2	6.64	10.85	46.5	76.1	11.5	17.1
25		58	4.78	12.45	33.6	87.3	6.54	10.73	45.9	73.5	12.3	13.8
26		66	4.36	13.21	30.6	92.6	6.33	10.04	44.4	70.5	13.8	22.1
27		72	5.13	10.45	36.2	73.5	6.35	8.72	44.5	60.7	8.3	12.8
28	10	Rest	0.03	20.94	0.2	148.8	5.96	13.77	42.3	97.6	42.0	51.2
29	8	19	3.07	17.53	22.2	122.7	6.38	12.73	45.5	90.6	22.3	32.1
30	10	31	4.32	15.50	30.7	110.0	6.98	11.91	49.6	84.4	18.9	25.6
31	7	54	4.98	12.83	35.2	90.8	6.88	10.23	48.5	72.1	13.3	18.7

Contributors: (a) Behnke, A. R., (b) Swann, 11. G.

Reference: Consolazio, W. V., Fisher, M. B., Pace, N., Pecora, L. J., Pitts, G. C., and Behnke, A. R., Am. J. Physiol. 151:479, 1947.
119. EFFECT OF COMBINED ANOXIA AND HYPERCAPNIA ON ALVEOLAR CO C_{2} AND O 2_{2} : MAN (Concluded)

Part II: GRAPHIC

Contributors: (a) Behnke, A. R., (b) Swann, H. G.

Reference: Consolazio, W. V., Fisher, M. B., Pace, N., Pecora, L. J., Pitts, G. C., and Behnke, A. R., Am. J. Physiol. 151:479, 1947.
Values in parentheses are ranges, estimate "c" of the 95% range (cf introduction) Part 1: ON VENTILATION: MAMMALS

		Exposure			Observe	Change (\% of Resting	Value)		
	Subjects nо.	Time min	Method of Administration	CO_{2} Concentration	Minute Volume \%	Respiratory Rate $\%$	Tidal Volume \%	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
Man Mal									
1	28	1	Box bag	4\% in air	20(1-39)			Maximum minute volume claimed in most cases.	1
2		2			55(20-120)				
3		3			68(34-190)				
4		4			78(56-300)				
5		5			84(56-370)				
6	23	1	Box bag	4\% in air	16(1-30)			Subjects with emphysema, ${ }^{1}$	1
7		2			33(9-74)				
8		3			41(16-84)				
9		4			47(17-85)				
10		5			51(23-96)				
11	7	1	Box bag	4\% in air	20(1-37)			Subjects with asthma.	1
12		2			59(40-83)				
13		3			67(47-98)				
14		4			77(53-102)				
15		5			95(70-126)				
16	42	2.5-8.5	Regulator, 10 -liter reservoir and mask	7.6\% in O 2	544(201-1178)	103(14-413)	269(51-448)	"Plateau" of not more than 10% variation in four $30-$ sec periods, shown by 27/42 and 13/31.	2
17	31			10.4\% in O_{2}	857(402-1530)	150(43-531)	331(146-542)		
18	18	Up to 5	Spirometer	2% in $12 \% \mathrm{O}_{2}$	38.9(14-94)			Effects of hypoxia and hypercapnia are additive.	3
19				2% in $17 \% \mathrm{O}_{2}$	31.0(21-57)				
20				2% in $21 \% \mathrm{O}_{2}$	27.8(16-42)				
21	41	5	Special mask and plethysmograph	2\% in air	60			Normal and premature infants.	4
22	45			$2 \% \text { in } 15 \% \mathrm{O}_{2}$	50				
23	42			$2 \% \text { in } 15 \% \mathrm{O}_{2}$	50				
24	41			$0.5 \% \text { in } 15 \% \mathrm{O}_{2}^{2}$	7				
$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$	25	5	Box bag	4\% in air	$\begin{aligned} & 76(23-157) \\ & 6+(30-101) \\ & 38.5(26-52) \end{aligned}$			Subjects with pneumoconiosis, grade 111 to grade V.	5
28	22	5-20	Spirometer and mouthpiece	5\% in air	234(144-391)			Subjects followed "until ventilation became uniform."	6
29	8	8-10	Mouthpiece and demand valve	2.16\% in air	36.1(32-40)	No significant change.	43.2(21.5-116)		7
30				4.31% in air	146(112-190)	20.6(-18 to +37$)$	106(83.5-190)		
31				5.48\% in air	266(211-300)	34.0(22-53)	175(133-214)		
32	17	8-15	Tissot and SiebeGorman mask	1\% in air	14.2(4-31)			Effects of O_{2} and CO_{2} additive.	8
33				1% in O_{2}	28.4(14-61)				
34	12			2\% in air	34.3(18-44)				
35				2% in O_{2}	52.8(41-74)				
36	15			4\% in air	98.6(63-146)				
37				4% in O_{2}	128.5(88-202)				
38	22	10	Special mask and plethysmograph	0.5\%	12			Normal and premature infants.	4

 figure from graph. /4/11lness. /5/ Recovery. /6/ Maximum response. /7/Response reduced by airway obstruction. /8/ Results compared with controls breathing $\mathrm{O}_{2} \cdot / 9 / 3 \% \mathrm{CO}_{2}$ in air. $/ 10 / 5 \% \mathrm{CO}_{2}$ in air. /11/Acclimatized. /12/ Unacclimatized.
120. EFFECTS OF BREATHING CO_{2} (Continued)
Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).
Part 1: ON VENTILATION: MAMMALS (Concluded)

/13/ Normal. /14/Vagotomized. /15/4 hamsters and 2 squirrels. /16/ Hibernating.
References: [1] Donald, K. W., and Christie, R. V., Clin. Sc., Lond. 8:33, 1949. [2] Dripps, R. D., and Comroe, J. 11., Am. J. Physiol. 149:43, 1947. $5]$ Donald, K. W., Clin. Sc., Lond. 8:45, 1949. [6] Heller, E., Killiches, W., and Drinker, C. K., J. Indust. Hyg. 11:293, 1929. [7] Lambertsen, C. J., M. Am. J. Physiol 130.777 1940. [9] Schou, H. 1., Trolle, C., and Фstergaard, T. Acta psychiat, neur., Kbh. 17:189, 1942. [10] Cherniak, R. M., and Snidal, D. P., J. Clin. Invest. 35:1286, 1956. [11] Shephard, R. J., J. Physiol., Lond. 129:142, 1955. [12] Keys, A., Stapp, J. P., and Violante, A., Am. J. Physiol. 138:763, 1943. [13] Prime, F. J., and Westlake, E. K., Clin. Sc.. Lond. 13:321, 1954. [14] Alexander, J. K., West, J. R., Wood, J. A.,
and Richards, D. W., J. Clin. Invest. $34: 511,1955$. [15] Alexander, J. K.. Spalter, H. F., and West, J. R., ibid 34:533, 1955. [16] Nielsen, M., Skand.
Arch. Physiol., Berl. $74:$ (suppl.) $10,87,1936$. [17] Chapin, J. L., Otis, A. B., and Rahn, H., U. S. Air Force, WADC Tech. Rept. 55-357, P 250, 1955.
[18] Häbisch, H., Pflügers Arch. $251: 594$, 1949. [19] Leuken, B., and Timm, C. 1., Pflügers Arch. 249:241, 1947. [20] Hesser, C. M., Acta physiol.

scand. 18: (suppl.) 64,1949 . [21] Eichenberger, E., Helvet, physiol. pharm. acta 7:55, 1949. [22] Schäfer, K. E.. Storr, H., and Scheer, K., Pflügers Arch. $2 \overline{51}: 741,1949$. [23] Lyman, C. P., Am. J. Physiol. 167:638, 1951. [24] Biōrck, G., Johansson. B., and Schmid, H., Acta physiol. scand. 37:71, 1956, Part 11: ON BLOOD GASES AND ALVEOLAR CO_{2} THRESHOLD: MAN $A=$ arterial, $V=$ venous. Remarks $\quad \begin{gathered}\text { Refer } \\ \text { ence }\end{gathered}$ - - - (K) | Samples obtained from |
| :---: |
| pulmonary veins at |
| cardiac catheterization. | cardiac catheter

Subjects with
arteriosclero Subjects with es A
$A=$ arterial, $V=$ venous. -
120. EFFECTS OF BREATHING CO_{2} (Continued)
Values in parentheses are ranges, estimate " c " of the 95% range (cf introduction).
Part 1I: ON BLOOD GASES AND ALVEOLAR CO2 THRESHOLD: MAN (Concluded)

	Subjects no.	Exposure Time min	Method of Administration	CO_{2} Concentration	Blood	Observed Change (\% of Resting Value)				Remarks	Reference
						$\begin{gathered} \mathrm{CO}_{2} \text { Content } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \text { Content } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{pH} \\ \% \end{gathered}$	$\underset{\%}{\mathrm{pCO}_{2}}$		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
Alveolar CO_{2} Threshold (concluded)											
30	4	5-10	Spirometer	$\begin{gathered} 4-6 \% \text { in } 8-12 \% \\ \mathrm{O}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~V} \end{aligned}$	-0.4 No change	$\begin{aligned} & -1.2 \\ & 0.9 \end{aligned}$			Epileptic subjects.	7
32 33	8	7	Pressure chamber	2% in O_{2}	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 13.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & -0.4 \\ & 21.9 \end{aligned}$	$\begin{aligned} & -1.89 \\ & -1.09 \end{aligned}$	57	3-5 atmospheres pressure. ${ }^{6}$	8
34 35	8	8-10		2.16\% in air	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.1(0.8-6.1) \\ & 0.4(0.1-0.6) \end{aligned}$	$\begin{aligned} & 2.4(1.0-3.7) \\ & 14.0(4.8-24.1) \end{aligned}$	$\begin{aligned} & -0.63(-0.38 \text { to }-0.90) \\ & -0.39(-0.18 \text { to }-0.59) \end{aligned}$	$\begin{aligned} & 14.8(8.1-21.7) \\ & 7.3(3.1-10.9) \end{aligned}$		9
36 37	4	15-20		2.5\%	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~V} \end{aligned}$			$\begin{aligned} & -0.67 \\ & -0.67 \end{aligned}$	$\begin{aligned} & 10.6 \\ & 7.4 \end{aligned}$	Convalescent hospital patients.	10
38 39	8			3.5\% in air	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~V} \end{aligned}$			$\begin{aligned} & -0.68(-1.09 \text { to }-0.13) \\ & -0.41(-0.82 \text { to }-0.13) \end{aligned}$	$\begin{aligned} & 13.4(2.3-28.6) \\ & 10.2(2.2-21.3) \end{aligned}$		

$16 /$ Results compared with previous experiments of subjects breathing O_{2} at 3.5 atmospheres
 Invest. 32:696, 1953. [3] Kety, S. S., and Schmid., C. F., ibid 27:484, 1948. [4] Prime, F. J., and Westlake, E. K., Clin. Sc., Lond. $13: 321,1954$. , ibid 34:533. 1955. [7] Lennox, W. G., and Gibbs, E. L., ibid 11:1155, 1932. [8] Lambertsen, C. J., Ewing, J. H., Kough. R. H., Gould, R., and Stroud, M. W., J. Appl. Physiol. 8:255, 1956. [9] Lambertsen, C. J., Kough, R. H., Cooper, D. V., Emmel, G. L., Loeschcke, H. H., and Schmidt, C. F.. ibid
$5: 471,487,803,1952$. [10] Patterson, J. L., Heyman, A., Battey, L. L., and Ferguson, R. W., J. Clin. Invest. $34: 1857$, 1955 . Part Ill: ON OTHER RESPIRATORY VARIABLES: MAMMALS

	Animal	Subjects no.	$\begin{gathered} \text { Exposure } \\ \text { Time } \\ \text { min } \end{gathered}$	Method of Administration	CO_{2} Concentration	Effect on Variable	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Alveolar CO_{2} Concentration ${ }^{1}$								
1 2	Man	2	0-1	BLB mask	$\begin{aligned} & 5 \% \text { in air } \\ & 5 \% \text { in } \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & 13-21 \% \\ & 16-22 \% \end{aligned}$		1
3 4			1-5		$\begin{aligned} & 5 \% \text { in air } \\ & 5 \% \text { in } \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & 9-17 \% \\ & 3-10 \% \end{aligned}$		
5		1	1.5	Exposure chamber	3.48\% in air	11.8\%		2
6			5			8.9\%		
7		5	10		$\begin{gathered} 5.53-5.96 \% \text { in } \\ 20-60 \% \mathrm{O}_{2} \end{gathered}$	24(14.8-31.5)\%		a
8		3	5-8 da		1-5\% in air	$\begin{aligned} & 9.2(1-14) \%_{0}^{2} \\ & 6.4(-3 \text { to }+11.1) \%^{3} \end{aligned}$		3
O_{2} Consumption during Hypercapnia ${ }^{4}$								
10	Man		$\begin{array}{r} 0-2 \text { and } \\ 10-15 \end{array}$			$2.1 \mathrm{ml} / \mathrm{L}$	Continuous analysis of expired gas by Rein method; events of first 2 min analyzed.	4
11		3	0-1	Douglas bag	5\% in air	$31.8(10-54) \%$ I	Allowance for effects due to change of cardiac output and O_{2} stores.	5
12			1-5			0.9-1.2 ml/ $; 3.6(-4$ to +9$) \% 1$		
13			10-15	Douglas bag	2-5\%	$0.6-2.5 \mathrm{ml} / \mathrm{L}$	"Steady state" measurements.	6

Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).

18/ In minutes.
Contributor: Shephard, R. J.
References: [1] Shephard, R. J., J. Physiol., Lond. 129:142, 1955. [2] Campbell, J. M., Douglas, C. G., Haldane, J. S., and Hobson, F. G., J. Physiol., Lond. 46:301, 1913. [3] Häbisch, H., Pflügers Arch. 251:594, 1949. [4]. E. A., Arbeitsphysiologie 12:192, 1942. [7] Liljestrand. G., Skand. Arch. Rhysiol., Berl. 35:199, 1918. [8] Adolph, E. F., Nance, F. D., and Shiling, M. S., Am. J. Physiol. 87:532, 1929. [9] Nielsen, M., Skand. Arch. Physiol. Berl. 74: (suppl.) 10, 87, 1936. [10] Grollman, A., Am. J. Physiol. 94:287, 1930. [11] Lambertsen, C. J., Ewing, J. H., Kough, Rarris, A. S., Am. J. Stroud, M. W., Appl. 163:111 1950. (16] Alexander, J. K., West, J. K., Wood, J. A., and Richards, D. W., J. WM. The Freeman, Smith. H., Acta physiol. scand. $24: 293,1951$. [18] Farhi, L. E., and Rahn, H., U. S. Air Force, WadC Tech. Rept. Sy WADC Tech. Rept. 55-357, p 255, 1955.
121. EFFECTS OF BREATHING O_{2}
All controls breathing air, unless otherwise specified. Values in parentheses are ranges, estimate " c " of the 95% range (cf lntroduction) Part I: ON VENTILATION: MAMMALS

Subjects no.		Exposure Time min	Method of Administration	$\stackrel{\mathrm{O}_{2}}{\text { Concentration }}$	Observed Change (\% of Resting Value)			Special Conditions	Reference	
		Minute Volume \%			Respiratory Rate $\%$	Tidal Volume \%				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Man Man										
1	33	1-2	Facepiece and demand valve	100\%	-3.1(-22 to +23)				1	
2	20	1	Special mask	100\%	-15.8	-9.5	-6.3	Premature infants.	2	
3		2			0					
4		1			-34.6	-27.7		Premature infants, preceding		
5		2			0			hypoxia.		
6	31	1			-25.0		-18.0	Normal infants, preceding hypoxia.		
7		2			-					
8	36	1	Special mask	60\%	-11	-0.6	-8.7	Newborn infants.	3	
9		2			0	12.4	-11.3			
10		1		100\%	-12	3.6	-16.0			
11		2			3	5.2	-2.0			
12	20	3	Special mask	100\%	11.2			Premature infants.	2	
13		4			16.0					
14		5			13.5					
15		3, 4, 5			15.8-25.0	Almost entirely change of rate.		Premature infants, preceding hypoxia.		
16	36	3	Special mask	60\%	3	13.6	-5.3	Newborn infants.	3	
17		4			11	13.9	-0.7			
18		5			5	13.6	-4.7			
19		3		100\%	14	11.0	4.0			
20		4			11	12.8	2.0			
21		5			5	8.5	-2.0			
22	31	3	Special mask	100\%	44.6			Normal infants, preceding hypoxia.	2	
23		4			36.8					
24		5			25.2					
25	33	6-8	Facepiece and demand valve	100\%	$7.6(-29$ to +39$) 1$	14.3(-24 to +24) ${ }^{2}$			1	
26	5	10	Douglas bag	100\%	18	$\begin{aligned} & \text { No significant } \\ & \text { change. } \end{aligned}$	18	Normal.	4	
27	6				32		32	Pregnant.		
28	4	10-20	Rotometers and reservoir	33\%	$-8(-5 \text { to }-14)^{3}$			Severe muscular work.	5	
29				66\%	$-13(-2$ to -28$)$					
30				100\%	$-15(-11$ to -23)					
31	1	12-14	Douglas bag	100\%	-35 ${ }^{4}$			Severe muscular work.	6	
32	33	15-20	Tissot spirom- eter	100\%	13.6(-8 to +33)				7	
33	7	15-20	Anesthesia mask	100\%	16.0(4-35)				8	
34	9	15-30		100\%	16.4(8.5-29.8)			Anemia. ${ }^{5}$ Control breathing unspecified.	9	

$11 /$ Assuming normal minute volume $=7.9 \mathrm{~L} / \mathrm{min}$. $/ 2 /$ Assuming normal respiratory rate $=14 \mathrm{breaths} / \mathrm{min}$. /3/Approximate figures from graphs. $/ 4 / \mathrm{At}$ O_{2} consumption of $3 \mathrm{~L} / \mathrm{min}$. $/ 5 /$ Four patients showed less hyperventilation as hemoglobin level increased,
121. EFFECTS OF BREATHING O_{2} (Continued)
All controls breathing air, unless otherwise specified. Values in parentheses are ranges, estimate " c " of the 95% range (cf Introduction).
Part 1: ON VENTILATION: MAMMALS (Concluded)

Subjects no.		Exposure Time min	Method of Administration	$\frac{\mathrm{O}_{2}}{\text { Concentration }}$	Observed Change (\% of Resting Value)			Special Conditions	Reference	
		Minute Volume \%			$\begin{gathered} \text { Respiratory } \\ \text { Rate } \\ \% \\ \hline \end{gathered}$	Tidal Volume \%				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
Man (concluded)										
35	8	15	Douglas bag and compression chamber	350\% ${ }^{6}$	23.4	-6.3 33.8 14.8			10	
36		30			42.0	14.8	20.2			
37	10	20-30	Oxygen tent	42-74\%	$30(-15 \text { to }+134)$		17.6(-20.4 to +75)	Newborn infants?. Discontinuous readings; neck seal plethysmograph.	11	
38	15	20-30	Spirometer	100\%	15.4	11.9	2.9		12	
39	6	30	Spirometer	100\%	5.5				13	
40	2	30	BLB mask ${ }^{8}$	100\% ${ }^{9}$	14.2	9.7	1.8		14	
41	13	30	BLB mask ${ }^{8}$	100\%9	13.6			Acyanotic congenital heart disease.	14	
42	14				5.4			Cyanotic congenital heart disease.		
43	13	30-40	Douglas bag	100\%	7.4(-10 to +36$)$			Normal.	15	
44	35				-5.3(-28 to +24)			Emphysema.		
45		Up to 90		100\%	20.0			Alveolar pCO_{2} also lowered.	16	
46	10	80-240	Mask and spirom eter	96-99\%	Pneumograph records; hyperpnea in only 1 subject.	$\begin{aligned} & \text { Increase in } 1 \\ & \text { subject during } \\ & 4 \mathrm{th} \mathrm{hr} \text {. } \end{aligned}$		Control breathing unspecified.	17	
	Cat and Dog									
47	1310	1-4	Rubber bag	100\%	Decrease towards end of test; return to normal.	Reduction of frequency and amplitude.		Chloralose; body plethysmograph.	18	
	Dog									
48	7	1	Douglas bag	$100 \% 11$	-31 to -11			Effect abolished by denervation of carotid and aortic bodies.	19	
49	283	10		100\%	$\begin{aligned} & -18.2^{12} \\ & -13.6^{13} \\ & 8.0^{14} \\ & 2.0^{15} \end{aligned}$			Varying periods of chloral anesthesia.	20	
					Rab	bit				
50	4	0.5-1		100\%	Decrease.	Typical reduction amplitude and	of respiratory rate.	Urethane anesthesia.	21	

[^21]Contributor: Shephard, R. J.
References: [1] Dripps, R. D., and Comroe, J. H., Am. J. Physiol. 149:277, 1947. [2] Cross, K. W., and Oppé, T. E., J. Physiol., Lond. 117:38, 1952.] Bannister, R. G., and Cunningham, [7] Shock, N. W., and Soley, M. H., Fasciolo, J. C., Alveryd, A.,
Invest. 25:413 Pde. Aman. Watt, J. G., Dumke, P. R., and
1947. [21] Hejneman, E., Acta
Part 11: ON OTHER RESPIRATORY VARIABLES: MAN

	Subjects no.	Exposure Time min	Method of Administration	Concentration	Arterial Blood	Special Conditions	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Arterial Blood							
1	6	15-30		85-100\%	No change observed in CO_{2} content, pCO_{2}, or pH .		1
3 4 5 6 7 8 9 10 11 12	8	60	Mouthpiece and demand valve	100% 350%	$\begin{aligned} & \mathrm{O}_{2} \text { content }=10.5 \\ & \mathrm{CO}_{2} \text { content }=-1.4 \\ & \mathrm{pCO}_{2}=-5.0 \\ & \mathrm{Hb} \text { saturation }=3.7 \\ & \mathrm{pH}_{2}=0.13 \\ & \mathrm{O}_{2} \text { content }=39.1 \\ & \mathrm{CO}_{2} \text { content }=-6.2 \\ & \mathrm{pO}_{2}=2000 \\ & \mathrm{pCO}_{2}=-12.8 \\ & \mathrm{Hb} \text { Saturation }=3.9 \\ & \mathrm{pH}=0.4 \end{aligned}$	Some experiments at pressure of 3.5 atmospheres.	2
13	28	1440	Demand mask ${ }^{2}$	100\%	No change in CO_{2} content. pCO_{2}, or plI .		3
Cerebral Venous Blood							
$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	8	60	Mouthpiece and demand valve	100\%	$\begin{aligned} & \mathrm{O}_{2} \text { content }=4.7 \\ & \mathrm{CO}_{2} \text { content }=0.5 \\ & \mathrm{pO}_{2}=8.1 \\ & \mathrm{pCO}_{2}=2.0 \\ & \mathrm{Hb} \text { saturation }=4.6 \\ & \mathrm{pH}=\text { no change } \end{aligned}$	Some experiments at pressure of 3.5 at mospheres.	2

[^22]121. EFFECTS OF BREATHING O_{2} (Concluded)
All controls breathing air, unless otherwise specified. Values in parentheses are ranges, estimate "c" of the 95% range (cf introduction).

Subjects no.	$\begin{gathered} \text { Exposure } \\ \text { Time } \\ \text { min } \\ \hline \end{gathered}$	Method of Administration	$\stackrel{\mathrm{O}_{2}}{\text { Concentration }}$	Effect on Variable ${ }^{1}$	Special Conditions	Reference
(A)	(B)	(C)	(D)	(E)	(F)	(G)
Cerebral Venous Blood (concluded)						
' 8	60	Mouthpiece and demand valve	350\%	$\begin{aligned} & \mathrm{O}_{2} \text { content }=39.6 \\ & \mathrm{CO}_{2} \text { content }=-0.9 \\ & \mathrm{pO}_{2}=97.0 \\ & \mathrm{pCO}_{2}=6.0 \\ & \mathrm{Hb} \text { saturation }=37.0 \\ & \mathrm{pH}=-4.1 \end{aligned}$	Some experiments at pressure of 3.5 atmospheres.	2
Alveolar CO_{2} Pressure						
2	5	Douglas bag	100\%	-3.4	Heavy exercise.	4
4	10-20	Rotometers and reservoir	33\%	2^{3}		5
			66\%	53		
			100\%	10^{3}		
1	12-14	Douglas bag	100\%	25^{4}	Heavy exercise.	6
2	30	BLB mask ${ }^{5}$	100\% 6	-11.2		7
2	660	Decompression chamber	90\%	-25	Decrease occurs mainly during first 2 hr .	8
O_{2} Consumption						
	15-30	Spirometer	90\%	No change.		9
4	20-240	Helmet	97\%	$14-24^{7}$	Large correction for N_{2} elimination from $0-20 \mathrm{~min}$. Control breathing unspecified.	10
2	30	BLB mask ${ }^{5}$	100\% 6	No change in one subject, 8% increase in other.		7
2	168 hr	O_{2} chamber	45\%	No change.		11
				ital Capacity		
12	30-40	Spirometer	100\%	-3.0(-6.9 to 77.5)		12
80	24 hr	Mask and demand valve	50-100\%	$\begin{aligned} & \text { Decreases } 0-1480 \mathrm{ml} \\ & \text { mainly } 200-300 \mathrm{ml} \text {. } \end{aligned}$	Complaints of substernal distress after 14 hr with 75% and 100%. Not seen in controls breathing air.	3
2	65 hr	Decompression chamber	90\%	5\% decrease in one subject and 30% decrease in other.	Control breathing unspecified.	8

[^23]122. PULMONARY N_{2} WASHOUT: MAN
Nitrogen reduction, by inhalation of O_{2} at constant tidal volume, can be measured by following continuously the N_{2} concentration of respired gas with a nitrogen meter.
Each plateau represents the N_{2} concentration of expired alveolar gas. The resulting washout curve is a single exponential curve, assuming the lungs function as a
Expiration

Reference: Comroe, J. II., Jr., Forster, R. E., II, DuBois, A. B., Briscoe, W. A., and Carlsen, E., "The Lung," Chicago: The Year Book Publishers,
123. EFFECT OF BREATHING O_{2} AT 3-4

Venous blood from internal jugular vein. $C=$ control period of air breathing at one

Inspired O_{2} Pressure atm			$\begin{gathered} \mathrm{O}_{2} \text { Content } \\ \text { vol } \% \end{gathered}$				Dissolved O_{2} vol \%		Hb Saturation \%		$\begin{gathered} \mathrm{O}_{2} \text { Pressure } \\ \mathrm{mm} \mathrm{Hg} \end{gathered}$	
			C	E	C	E	C	E	C	E	C	E
	C	E	Arterial		Venous		Arterial		Venous		Venous	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)
1	0.2	4.0	19.6	27.4	12.5	18.1	0.3	8.1	64.0	92.0		
2	0.2	4.0	18.3	25.8	11.4	18.0	0.3	6.8	63.4	92.9	36	82
3	0.2	4.0	18.0	25.2	9.4	19.0	0.3	6.4	51.3	100.0	27	100
4	0.2	3.5	18.9	26.1	10.2	19.0	0.3	6.2	54.5	93.6	32	85
5	0.2	3.5	18.2	25.5	12.3	18.0	0.3	6.5	64.2	89.7	35	79
6	0.2	3.5	19.3	25.6	11.7	17.5	0.3	6.6	61.0	90.8	35	72
7	0.2	3.5	16.5	23.9	9.4	12.0	0.3	6.4	56.9	67.6	36	41
8	0.2	3.5	18.0	24.8	11.5	17.0	0.3	6.0	62.1	88.7	37	70
9	0.2	3.5	19.1	26.5	12.9	18.0	0.3	6.6	64.6	88.5	38	66
10	0.2	3.5	18.6	25.7	13.0	17.4	0.3	7.2	69.3	89.1	40	64
11	0.2	3.5	18.7	25.7	13.7	18.4	0.3	6.6	73.2	96.0	42	97
12	0.2	3.5	18.2	25.7	13.2	18.4	0.3	5.6	65.1	89.7	36	67
13	0.2	3.5	18.9	26.4	12.9	19.6	0.3	6.5	64.7	96.8	36	100
14	0.2	3.5	20.7	28.5	14.5	18.5	0.3	6.9	66.8	84.5	39	58
15	0.2	3.5	19.5	27.3	16.4	20.2	0.3	6.8	79.9	96.7	50	100
16	0.2	3.4	17.9	25.7	12.0	16.7	0.3	6.6	66.8	86.4	38	61
17	0.2	3.0	20.5	26.8	13.6	17.8	0.3	5.7	63.9	84.3	37	59

Contributor: Behnke, A. R.
Reference: Lambertsen, C. J., Kough, R. H., Cooper, D. Y., Emmel, G. L., Loeschcke, H. H., Schmidt, C. F..
124. EFFECT OF BREATHING AIR AT ONE ATMOSPHERE

Gas		Pressure atm	Exposure Time min	O_{2} Content		O_{2} Capacity		CO_{2} Content		CO_{2} Capacity ${ }^{1}$		
		Arterial vol \%		$\begin{gathered} \text { Venous } \\ \text { vol } \% \end{gathered}$	$\begin{gathered} \text { Arterial } \\ \text { vol } \% \end{gathered}$	Difference vol \%	$\begin{gathered} \text { Arterial } \\ \text { vol } \% \end{gathered}$	$\begin{gathered} \text { Venous } \\ \text { vol } \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Arterial } \\ \text { vol } \% \\ \hline \end{gathered}$	Difference vol \%		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
1	Air	1	132			19.6				42.5		
2	O_{2}	3.00	132	25.6	20.4	20.5	+0.89	45.9	51.7	43.9	+1.4	
3	Air	1	100	20.5	12.1	20.3		44.3	49.1	41.0		
4	O_{2}	3.84	100	26.1	20.5	19.6	-0.76	42.3	48.5	40.0	-1.0	
5	Air	1	64			23.1				40.2		
6	O_{2}	3.36	64	28.9	21.6	23.0	-0.03	39.9	44.3	40.2	0.0	
7	Air	1	67	19.0	14.3	19.1		42.4	45.5	43.8		
8	O_{2}	3.92	67	25.1	20.1	18.4		42.5	47.0	45.0	$+1.2$	
9	Air	1	193	21.7	16.7	23.5		45.3	48.6	41.5		
10	O_{2}	3.84	193	30.9	25.6	24.4	+1.11	38.8	41.7	41.0	-0.5	
11	Air	1	92	21.3	15.8	23.8		51.7	55.2	44.2		
12	O_{2}	3.89	92	31.9	24.5	25.4	+1.64	50.9	55.5	44.2	0.0	
13	Air	1	119	23.7	19.6	25.8		32.9	37.6	39.5		
14	O_{2}	3.88	119	31.5	24.6	24.6	-1.17	39.1	46.3	39.2	-0.3	
15	Air	1	62	20.3	18.9	22.4		45.0	46.6	44.25		
16	O_{2}	3.89	62	29.3	25.9	22.8	$+0.33$	44.0	46.6	44.25	0.0	
17	Air	1	165	18.9	13.6	20.8		43.9	46.2	43.0		
18	O_{2}	3.88	165	24.6	16.2	20.8	-0.02	41.4	48.6	43.5	+0.5	

/1/ At 40 mm Hg . $/ 2 /$ To calculate arterial volume, convert pO_{2} values from mm Hg to atmospheres and multiply

Contributor: Behnke, A. R.
Reference: luehnke, A. R., Shaw, L. A., Shilling, C. W., Thomson, R. M., and Messer, A. C., Am. J. Physiol.

ATMOSPHERES ON BLOOD GASES: MAN
atmosphere, $\mathrm{E}=$ experimental period of O_{2} breathing at increased ambient pressure.

CO_{2} Content vol \%				CO_{2} Pressure mm Hg				pH				
C	E	C	E	C	E	C	E	C	E	C	E	
Arterial		Venous		Arterial		Venous		Arterial		Venous		
(M)	(N$)$	(O)	(P)	(Q)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	
50.8	46.3	57.0	55.7									1
46.1	42.1	51.4	50.0	38	32	48	50	7.36	7.40	7.31	7.28	2
46.9	48.0	55.3	55.3	35	35	42	52	7.45	7.42	7.40	7.31	3
46.2	47.2	54.6	53.2	32	37	45	52	7.45	7.40	7.37	7.30	4
51.8	50.7	57.0	57.4	39	38	50	55	7.41	7.42	7.34	7.31	5
52.6	50.1	59.8	58.8	40	36	53	58	7.41	7.43	7.34	7.29	6
52.1	45.7	57.1	56.3	43	33	53	56	7.36	7.42	7.30	7.28	7
49.5	45.4	55.5	54.2	43	36	53	60	7.35	7.39	7.30	7.24	8
48.6	45.5	54.8	54.5	38	33	52	53	7.40	7.43	7.31	7.30	9
49.1	44.0	54.4	53.5	38	29	48	46	7.40	7.47	7.34	7.35	10
50.2	47.4	55.4	55.0	38	32	47	49	7.41	7.46	7.36	7.34	11
48.2	46.0	53.0	53.2	37	32	45	50	7.40	7.45	7.36	7.32	12
53.0	49.5	59.2	56.9	42	39	52	55	7.40	7.40	7.35	7.31	13
48.7	43.9	54.7	54.6	40	33	53	54	7.38	7.43	7.31	7.30	14
49.7	47.4	53.0	54.5	40	35	47	51	7.39	7.43	7.34	7.32	15
51.1	48.1	57.4	56.6	39	35	49	54	7.40	7.43	7.35	7.31	16
48.4	44.8	54.6	53.6	40	36	49	57	7.38	7.39	7.34	7.26	17

J. Appl. Physiol. 5:471, 1953.

AND O O_{2} AT 3-3.92 ATMOSPHERES ON BLOOD GASES: DOG
ventricle via jugular vein cannula.

O_{2} in Physical Solution						pCO_{2}		pH		
Arterial				Venous						
```Observed vol %```	$\begin{gathered} \text { Calculated } 2 \\ \text { vol } \% \end{gathered}$	$\begin{gathered} \text { Difference } \\ \text { vol } \% \end{gathered}$	$\begin{gathered} \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{lig} \end{gathered}$	$\begin{gathered} \text { Observed } \\ \text { vol } \% \end{gathered}$	$\begin{gathered} \mathrm{pO}_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Arterial mm Hg	Venous   mm Hg	Arterial	Venou	
(L)	(M)	(N)	(O)	(P)	(Q)	(R)	(S)	(T)	(U)	
5.47	5.61	-0.14	2190	0.36	130	44.5	59.7	7.35	7.26	1
						47.0	54.0	7.33	7.30	3
6.95	7.07	-0.12	2827	1.39	555	45.0	60.0	7.35	7.28	4
6.29	6.16	+0.13	2462		80	39.0	48.0	7.36	7.31	6
						37.0	41.0	7.40	7.37	7
7.18	7.22	-0.04	2888	2.22	880	34.0	45.0	7.43	7.34	8
						48.0	51.0	7.32	7.31	9
6.90	7.07	-0.17	2827	1.63	645	35.0	41.5	7.41	7.36	10
						54.5	58.5	7.33	7.31	11
7.01	7.16	-0.15	2865		90	55.0	67.0	7.32	7.26	12
						24.8	31.5	7.50	7.47	13
7.31	7.14	+0.17	2857		160	40.0	59.0	7.36	7.27	14
						45.0	48.0	7.34	7.33	15
6.97	7.16	-0.19	2865	3.60	1440	43.5	50.0	7.35	7.31	16
						40.0	41.5	7.38	7.38	17
4.22	7.16	-2.94			45	35.0	47.0	7.41	7.35	18

by 1.9 .

107:20, 1934. PULSE RATE, AND BLOOD PRESSURE: MAN
$\mathrm{C}=$ control period of air breathing at one atmosphere; $\mathrm{E}=$ experimental period of $\mathrm{O}_{2}$ breathing at increased ambient pressure. Signs and symptoms: $P=$ pallor, $M=$ mental confusion, $S=s w e a t i n g, T=t w i t c h i n g$ movements of a myoclonic nature, $G=$ generalized type of convulsions, $O=$ no discernible signs or symptoms.

Inspired $\mathrm{O}_{2}$ Pressure atm			Respiratory Rate breaths/min		Pulse Rate beats/min		Blood Pressure				Signs and Symptoms		
			Arterial mm Hg	Internal Jugular mm Hg									
	C	E			C	E	C	E	C	E	C -	E	E
	(A)	(B)	(C)	(D)			(E)	(F)	(G)	(H)	(I)	(J)	(K)
1	0.2	4.0	7	12	63	59	79	86	6.0	4.8	PM		
2	0.2	4.0	19	19	79	78	85	89	6.5	5.4	PSTC		
3	0.2	4.0	13		79	66	78	85	5.5		STM		
4	0.2	3.5	20	12	75	51	87	91	10.0	9.6	PSTC		
5	0.2	3.5	13	11	58	56	59	82	11.3	10.0	O		
6	0.2	3.5	13	13	57	57	77	78	8.6	8.4	0		
7	0.2	3.5	11	10	49	48	77	79	9.6	7.4	P		
8	0.2	3.5	12	11	53	49	97	108	9.4	7.9	0		
9	0.2	3.5	15	20	79	71	78	88	17..	1 C .2	0		
10	0.2	3.5	17	32	71	62	72	76	8.0	3.7	T		
11	0.2	3.5	17	19	73	63	70	75	7.4	5	0		
12	0.2	3.5	19	19	87	61	78	80	8.2	7.4	$\bigcirc$		
13	0.2	3.5	10	10	56	61	79	81	8.2	1.4	T		
14	0.2	3.5	14	18	62	53	85	89	12.8	13.2	$\bigcirc$		
15	0.2	3.5	16	20	76	66	85	82	8.7	4.1	T		
16	0.2	3.4	14		73		88	88	9.5		T		
17	0.2	3.0	10	11	73	61	96	102	11.3	9.0	0		

Contributor: Behnke, A. R.
Reference: Lambertsen, C. J., Kough, R. H., Cooper, D. Y., Emmel, G. L., Loeschcke, H. H., and Schmidt, C. F., J. Appl. Physiol. 5:471, 1953.
126. EFFECT OF BREATHING AIR, $6 \% \mathrm{O}_{2}$ in $\mathrm{N}_{2}$, AND $100 \% \mathrm{O}_{2}$ AT 3.5 ATMOSPHERES ON RESPIRATORY EXCHANGE: MAN

Values are for six subjects.

	Inspired Gas	Ambient Pressure atm	Respiratory Rate breaths/min	Tidal Volume L, BTPS	Minute Volume L/min, BTPS	$\begin{gathered} \text { Alveolar } \\ \mathrm{pCO}_{2} \\ \mathrm{~mm} \mathrm{lig} \end{gathered}$	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1	Air	1.0	12.8	0.401	5.15	41	176
2	$6 \% \mathrm{O}_{2}$	3.5	12.7	0.483	6.12	42	214
3	Air	3.5	12.5	0.463	5.78	38	190
4	$100 \% \mathrm{O}_{2}$	3.5	10.3	0.677	7.00	35	213
5	Air	1.0	12.5	0.511	6.34	38	216
6	$6 \% \mathrm{O}_{2}$	3.5	12.7	0.468	5.95	36	188
7	Air	3.5	12.7	0.529	6.73	35	204
8	$100 \% \mathrm{O}_{2}$	3.5	10.9	0.722	7.84	32	245
9	Air	1.0	20.5	0.346	7.33	40	272
10	$6 \% \mathrm{O}_{2}$	3.5	16.1	0.389	6.25	38	201
11	Air	3.5	18.1	0.388	7.03	42	205
12	$100 \%$ Oz	3.5	18.4	0.487	8.97	32	262
13	Air	1.0	13.2	0.433	5.69	43	201
14	$6 \% \mathrm{O}_{2}$	3.5	13.2	0.382	5.05	41	164
15	Air	3.5	13.6	0.424	5.78	42	196
16	$100 \% \mathrm{O}_{2}$	3.5	11.9	0.532	6.30	38	206
17	Air	1.0	12.0	0.529	6.26	39	223
18	6\% O2	3.5	12.1	0.562	6.82	38	225
19	Air	3.5	12.3	0.393	4.82	40	151
20	$100 \% \mathrm{O}_{2}$	3.5	11.7	0.729	8.56	32	267
21	Alr	1.0	15.6	0.487	7.57	30	223
22	$6 \% \mathrm{O}_{2}$	3.5	12.0	0.524	6.28	34	173
23	Air	3.5	15.3	0.528	8.10	32	212
24	$100 \% \mathrm{O}_{2}$	3.5	17.7	0.546	9.65	28	215

Contributor: Behnke, A. 12 .
Refcrence: Lambertsen, C. J., Stroud, M. W., II1; Gould, R. A., Kough, R. H., Ewing, J. H., and Schmidt, C. F., J. Appl. Physiol. 5:487, 1953.

As a result of rapid decompression, from a gauge pressure of $65 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. of air for 105 minutes' duration, nascent gas bubbles became macroscopically visible in the circulation. Massive embolization and tachypnea supervened after reduction of pressure to normal in 5-6 seconds (asphyxial period). Dogs were then recompressed at a gauge pressure of $30 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. of air or oxygen for 84 minutes (recompression period), and finally decompressed by stages for 30 minutes until pressure was again normal (post-recompression period). Data for asphyxial period taken immediately prior to recompression; data for post-recompression period taken after breathing normal air for one hour.

Period		$\mathrm{O}_{2}$ Content		$A-V$   Difference vol \%	$\mathrm{O}_{2}$Capacityvol $\%$	$\mathrm{O}_{2}$ Saturation		$\mathrm{pCO}_{2}$   Arterial mm Hg
		$\begin{gathered} \text { Arterial } \\ \text { vol } \% \end{gathered}$	$\begin{aligned} & \text { Venous } \\ & \text { vol \% } \end{aligned}$			$\begin{gathered} \text { Arterial } \\ \% \\ \hline \end{gathered}$	Venous $\%$	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Air Inhalation								
1	Control		7.3		15.7			
2	Asphyxial	6.8						
3	Recompression	17.8	12.0	5.8				
4	Post-recompression	10.5						
5	Control	19.3	15.2	4.1	22.4	86	68	
6	Asphyxial	18.4	8.7	9.7				
7	Recompression	25.8	11.5	14.3				
8	Post-recompression	24.3	8.8	15.5	29.0	84	30	
9	Control	15.9	10.1	5.8	17.7	90	57	45.0
10	Asphyxial	5.4	0.5	4.9	22.4	24	2	59.0
11	Recompression	17.9	7.9	10.0	20.3	88	39	
12	Post-recompression	5.9	2.3	3.6	22.8	26	10	
13	Control	14.6	12.0	2.6	15.9	92	75	38.0
14	Asphyxial	6.9	2.8	4.1	18.7	37	15	51.0
15	Recompression	16.0	11.3	4.7	16.8	95	70	
16	Post-recompression	Death						
$\mathrm{O}_{2}$ Inhalation								
17	Control	20.9	16.7	4.2	23.1	91	72	37.0
18	Asphyxial	23.5	17.1	6.4	26.7	88	64	46.0
19	Recompression		20.5					
20	Post-recompression	26.7	16.9	9.8	28.5	94	59	
21	Control	20.6	17.0	3.6	22.8	90	75	
22	Asphyxial	14.6	7.7	6.9	26.1	56	30	
23	Recompression	31.7	20.0	11.7	31.51	100	64	
24	Post-recompression	26.9	7.3	19.6	29.8	90	24	
25	Control	19.3	14.6	4.7	22.2	$\overline{8} 7$	66	50.0
26	Asphyxial	18.3	10.7	7.6	26.7	70	40	60.0
27	Recompression	29.0	15.9	12.1	29.61	95	54	
28	Post-recompression	22.0	11.4	10.6	24.5	90	47	

/1/4.2 vol \% added to normal capacity by $\mathrm{O}_{2}$ in physical solution.
Contributor: Behnke, A. R.
Reference: Behnke, A. R., Shaw, L. A., Messer, A. C.. Thomson, R. M.. and Motley, E. P., Am. J. Physiol. 114:526, 1936.
128. EFFECT OF DECOMPRESSION $1 N 5$ SECONDS FROM HIGH PRESSURE ATMOSPHERES ON RESPIRATORY RATE AND BLOOD PRESSURE: DOG


[^24]128. EFFECT OF DECOMPRESSION IN 5 SECONDS FROM HIGH PRESSURE ATMOSPHERES ON RESPIRATORY RATE AND BLOOD PRESSURE: DOG (Concluded)

/1/ Recorded from a manometer connected to a cannula in femoral artery.
Contributor: Behnke, A. R.
Reference: Behnke, A. R., Medicine 24:381, 1945.

## 129. EFFECT OF DECOMPRESSION AND RECOMPRESSION ON BLOOD PRESSURE, RESPIRATORY RATE, AND PULSE RATE: DOG

Alterations in blood pressure, respiratory rate and pulse rate of dog decompressed in ten seconds from a gauge pressure of 65 lb after $1 \frac{1}{2}$ hours' exposure, followed by recompression (interval of ten minutes) to a pressure of 30 lb (oxygen) for twenty-five minutes. Pressure was then lowered to atmospheric in twelve minutes, and oxygen inhalation continued for seventeen minutes. Preceded by period of oxygen breathing (thirty minutes), compression of dog was again repeated at a pressure of 65 lb for period of forty-five minutes, followed by ten seconds' decompression. After interval of twelve minutes, dog was recompressed to a pressure of 30 lb for twenty minutes (oxygen inhalation).

$G P=$ gauge pressure
$B P=$ blood pressure
$R R=$ respiratory rate
$P R=$ pulse rate.
Contributor: Behnke, A. R.
Reference: Behnke, A. R., U. S. Nav. M. Bull. 35:61. 1937.

Unprotected dogs decompressed from 100-200 ft equivalent depth with trachea closed, developed pulmonary interstitial emphysema and air embolism when intratracheal pressure reached a critical level of approximately 80 mm Hg . However, it appears that the critical factor in this development is a transpulmonic pressure of $60-70 \mathrm{~mm} \mathrm{Hg}$, or a transatrial pressure in excess of $55-65 \mathrm{~mm} \mathrm{Hg}$, rather than an absolute level of the intratracheal pressure. Overdistension of the lung was prevented by application of thoraco-abdominal binders, but not by abdominal binders alone. Group $A=$ animals without binders that developed air embolism; Group $B=$ animals without binders that did not develop air embolism; Group $C=$ animals with abdominal binders that developed air embolism; Group $D=$ animals with thoraco-abdominal binders that did not develop air embolism. Values represent pressures in mm Hg based on means of all animals weighted by the number of ascents.

Pressure		Group A					Group B				
		Subjects no.	$\begin{gathered} \text { Ascents } \\ \text { no. } \end{gathered}$	Compressed	Decompressed	$\begin{gathered} \text { Gradient } \\ \text { max. } \end{gathered}$	Subjects no.	$\begin{gathered} \text { Ascents } \\ \text { no. } \end{gathered}$	Compressed	Decompressed	Gradient max.
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
1	Intratracheal	7	8	1.9	88.6		5	9	2.0	59.0	
2	Intrapleural	4	5	-3.0	9.4		3	5	-6.3	7.9	
3	Intra-abdominal	4	4	-1.5	18.8		4	6	0.9	11.8	
4	Pulmonary arterial	6	7	9.8	54.9		4	8	3.8	27.2	
5	Left atrial	6	7	1.7	19.8		4	6	-5.3	13.8	
6	Systemic arterial	7	8	103.2	22.8		5	9	90.7	36.0	
7	Systemic venous	5	6	1.1	17.1		5	9	-1.9	18.7	
8	Transpulmonaryl	4	5			68.1	3	5			54.2
9	Transatrial ${ }^{2}$	5	7			63.6	4	6			43.3
10	Transcapillary ${ }^{3}$	5	6			31.2	3	5			13.7


Pressure		Group C					Group D				
		Subjects no.	$\begin{gathered} \text { Ascents } \\ \text { no. } \end{gathered}$	Compressed	Decompressed	Gradient max.	Subjects no.	$\left\lvert\, \begin{gathered} \text { Ascents } \\ \text { no. } \end{gathered}\right.$	Compressed	Decompressed	Gradient max.
	(A)	(L)	(M)	(N)	(0)	(P)	(Q)	(R)	(S)	(T)	(U)
1	Intratracheal	2	2	5.0	130.0		2	8	3.6	82.1	
2	Intrapleural	2	2	-4.0	31.0		2	8	-4.2	55.4	
3	Intra-abdominal	1	1	5.0	30.0		2	8	4.2	42.0	
4	Pulmonary arterial	2	2	13.0	55.0		2	8	8.2	68.5	
5	Left atrial	2	2	-3.0	36.0		2	8	2.4	56.1	
6	Systemic arterial	2	2	97.5	43.0		2	8	125.4	104.1	
7	Systemic venous	2	2	9.5	30.0		2	8	5.4	71.8	
8	Transpulmonaryl	2	2			99.0	2	8			29.2
9	Transatrial ${ }^{2}$	2	2			94.0	2	8			26.0
10	Transcapillary ${ }^{3}$	2	2			19.0	2	8			12.5

/1/ Transpulmonary = intratracheal minus intrapleural. /2/Transatrial = intratracheal minus left atrial.
13/ Transcapillary = pulmonary arterial minus left atrial.

Contributor: Schaefer, K. E.

Reference: Schaefer, K. E., McNulty, W. P., Jr., Carey, C., and Liebow, A. A., J. Appl. Physiol., in press.
131. EFFECT OF DRUGS ON PULMONARY Drugs are listed alphabetically, using a well-known name. Use of trade names is for informative purposes only and is expressed as \% increase or decrease from the control value ( $100 \%$ ). In a few instances only + or - signs are used wise indicated. When no significant difference exists over a dosage range, the data are averaged over the range.

Drug		Dose	Mode of Administration	Species	Premedication	Respiratory Rate		
		Control breaths/min				$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1 2 3 4	Acetazolamide	$\begin{aligned} & 25 \\ & 25 \\ & 5-100 \\ & 5-100 \end{aligned}$	Oral   Oral   IV   IV	Man   Dog   Dog   Dog	Morphine and pentobarb. $15 \% \mathrm{O}_{2}$	$\begin{aligned} & 9 \\ & 6 \end{aligned}$	$\begin{aligned} & +11 \\ & 0 \\ & -7 \\ & -32 \end{aligned}$	
5	Acetic acid	$10 \operatorname{cc} 0.1 \mathrm{~N}$	IV	Rabbit	Urethane	60	-20	
6 7 8	Acetone	$\begin{aligned} & 15 \operatorname{cc} 15 \% \\ & 15 \operatorname{cc} 20 \% \\ & 10 \operatorname{cc~} 30 \% \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	Rabbit Rabbit Rabbit	Urethane Urethane Urethane	$\begin{aligned} & 42 \\ & 48 \\ & 65 \end{aligned}$	$\begin{aligned} & +67 \\ & +150 \\ & +31 \end{aligned}$	
9 10	2-Acetoxyphenanthrene	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	Oral Oral	$\begin{aligned} & \text { Cat } \\ & \text { Cat } \end{aligned}$		$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & +3 \\ & +17 \end{aligned}$	
11	$\begin{aligned} & \text { 3-Acetoxy- } \\ & \text { phenanthrene } \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { Oral } \\ & \text { Oral } \end{aligned}$	$\begin{aligned} & \text { Cat } \\ & \text { Cat } \end{aligned}$		$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	
13 14 15 16	Acetylcodeine HCl	$\begin{aligned} & 0.05-1.0 \\ & 0.05-1.0 \\ & 2.0-10.0 \\ & 2.0-10.0 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \\ & \text { SC } \\ & \text { SC } \end{aligned}$	Rabbit   Rabbit   Rabbit   Rabbit	$\begin{cases}8 \% & \mathrm{CO}_{2} \\ 8 \% & \mathrm{CO}_{2}\end{cases}$		$\begin{aligned} & -17 \\ & -16 \\ & -39 \\ & -37 \end{aligned}$	
17 18 19 20	Acetyldihydrocodeine HCl	$\begin{aligned} & 0.2-2.0 \\ & 0.2-2.0 \\ & 5-20 \\ & 5-20 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \\ & \text { SC } \\ & \text { SC } \end{aligned}$	Rabbit   Rabbit   Rabbit   Rabbit	$\begin{aligned} & 8 \% \mathrm{CO}_{2} \\ & 8 \% \mathrm{CO}_{2} \end{aligned}$		$\begin{aligned} & -10 \\ & -6 \\ & -25 \\ & -25 \end{aligned}$	
21 22 23 24	Acetyldihydroisocodeine acid tartrate	$\begin{aligned} & 0.2-1.0 \\ & 0.2-1.0 \\ & 2.0-10.0 \\ & 2.0-10.0 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	Rabbit Rabbit Rabbit Rabbit	$\begin{aligned} & 8 \% \mathrm{CO}_{2} \\ & 8 \% \mathrm{CO}_{2} \end{aligned}$		$\begin{aligned} & -11 \\ & -8 \\ & -52 \\ & -55 \end{aligned}$	
25	Acetylguanidine HCl	5.0	SC	Rabbit	Urethane	68	+53	
26 27 28 29 30 31	Acetylhydroxycodeinone HCl	$\begin{aligned} & 0.3-1.0 \\ & 0.3-1.0 \\ & 3.0 \\ & 3.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \end{aligned}$	Rabbit   Rabbit   Rabbit   Rabbit   Rabbit   Rabbit	$\begin{array}{lll} 8 \% & \mathrm{CO}_{2} \\ 8 \% & \mathrm{CO}_{2} \\ 8 \% & \mathrm{CO}_{2} \end{array}$		$\begin{array}{\|l\|} \hline-19 \\ -14 \\ -50 \\ -50 \\ -75 \\ -68 \\ \hline \end{array}$	
32 33 34 35 36 37	Acetylisocodeine HCl	$\begin{aligned} & 0.1-0.5 \\ & 0.1-0.5 \\ & 1.0-2.0 \\ & 1.0-2.0 \\ & 5.0-10.0 \\ & 5.0-10.0 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	Rabbit   Rabbit   Rabbit   Rabbit   Rabbit   Rabbit	$\begin{aligned} & 8 \% \mathrm{CO}_{2} \\ & 8 \% \mathrm{CO}_{2} \\ & 8 \% \mathrm{CO}_{2} \end{aligned}$		$\begin{aligned} & -12 \\ & -7 \\ & -39 \\ & -29 \\ & -62 \\ & -56 \\ & \hline \end{aligned}$	
38	Alcohol (ethyl, 95\%)	$1.5-5 \mathrm{cc}$	1 P	Rabbit		$5 \overline{6}$	-4	
39	Allopseudocodeine HCl	$\begin{aligned} & 5-30 \\ & 5-30 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	Rabbit Rabbit	$\mathrm{CO}_{2}$	$\begin{aligned} & 56 \\ & 66 \end{aligned}$	$\begin{aligned} & -11 \\ & -3 \end{aligned}$	
41	Aminoguanidine HCl	2	SC	Rabbit	Urethane	180	$+24$	
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}$	Aminophylline	$\begin{aligned} & 3 \\ & 3 \\ & 6 \\ & 6 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	IV   IV   IV   1V   SC   SC   SC	Man   Man   Man   Man   Man   Man   Man	$\begin{aligned} & 2.1-6 \% \mathrm{CO}_{2} \\ & 2.1-6 \% \mathrm{CO}_{2} \\ & 3 \% \mathrm{CO}_{2} \\ & 5 \% \mathrm{CO} 2 \end{aligned}$	$\begin{aligned} & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & -12 \\ & +18 \\ & +32 \\ & +8 \\ & 0 \\ & -19 \end{aligned}$	
49 50 51	```p-(2-Aminopropyl) phenol Amobarbital```	$\begin{aligned} & 70 \mathrm{mg} \\ & 15-20 \mathrm{mg} \\ & 2.9-10.0 \end{aligned}$	$\begin{aligned} & \text { Oral } \\ & 1 \mathrm{M} \\ & \text { Oral } \\ & \hline \end{aligned}$	Man Man Man		$\begin{aligned} & 11 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & +27 \\ & +10 \\ & +14 \end{aligned}$	
$\begin{aligned} & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 56 \end{aligned}$	Amphetamine sulfate	10 mg   30 mg   10 mg   5-50   5\%	Oral   Oral   IM   Oral   Aerosol	Man Man Man Man Man		$13$   7 8	$\begin{aligned} & -2 \\ & +5 \\ & -21 \\ & -34 \\ & -27 \end{aligned}$	
$\begin{aligned} & 57 \\ & 58 \\ & 59 \end{aligned}$	Amyldihydromorphinone 11 Cl	$\begin{aligned} & 0.0001-0.005 \\ & 0.0001-0.005 \\ & 0.01-0.02 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$		$8 \% \mathrm{CO}_{2}$		$\begin{aligned} & -7 \\ & -6 \\ & -37 \\ & \hline \end{aligned}$	

/1/ Arterial. /2/ Alvcolar.

FUNCTION: MAN AND LABORATORY ANIMALS
in no way implies endorsement by The National Academy of Sciences-The National Research Council. Drug response to indicate increase or decrease when quantitative data are not available. Dose is expressed in mg/kg, unless other-
Values enclosed in parentheses show the highest and lowest \% change for that particular dosage level.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in \% increase or decrease from the control

Drug		Dose	Mode of Administration	Species	Premedication	Respiratory Rate		
		Control breaths/min				Drug $\%$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
60	Amyldihydro-	0.01-0.02	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-32	
61	morphinone HCl	0.05-0.50	SC	Rabbit			-79	
62	(concluded)	0.05-0.50	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-86	
63	Apomorphine	1.0	SC	Rabbit		28	+164	
64	Atropine sulfate	0.05 mg	SC	Man				
65		0.05 mg	1 V	Man				
66		1.29 mg	Oral	Man				
67		1\%	Aerosol	Man		13	-52	
68		$1 \%$	Aerosol	Man		6	-4	
69		0.4-2.0 mg	IV	Dog	Chloralose			
70	Azure A	0.1-0.5	IV	Rabbit	Urethane			
71		1.0-5.0	1V	Rabbit	and		+19	
72		7.5-10.0	IV	Rabbit	pentobarb.		+7	
73	Barbital sodium	5-19	Oral	Man		12	+15	
	2-(Benzhydryloxy)$\mathrm{N}, \mathrm{N}$-dimethylethylamine HCl	100 mg	IV	Dog	Pentobarb.			
75	2-(-N-Benzylanilino-methyl)-imidazoline	100 mg	IV	Dog	Pentobarb.			
76		50	IM	Mice	20\% O2		0	
77		50	IM	Mice	$16 \% \mathrm{O}_{2}$		-6	
78		50	IM	Mice	$14-10 \% \mathrm{O}_{2}$		-23	
79	Benzyldihydrodesoxy-morphine-D HCl	0.2-5.0	SC	Rabbit			$-8(+3$ to -16$)$	
80		0.2-5.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		$-7(-2$ to -12$)$	
81		10.0-40.0	SC	Rabbit			$-14(-11$ to -17$)$	
82		10.0-40.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		$-19(-14$ to -26)	
83	Benzyldihydromorphine HCl	0.2-5.0	SC	Rabbit			$-7(-3$ to -13$)$	
84		0.2-5.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		$-5(-3$ to -6$)$	
85		10-20	SC	Rabbit			-15	
86		10-20	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-16(-13 to -19)	
87		40	SC	Rabbit			+40	
88		40	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		+7	
89	Benzyldihydromorphinone HCl	0.01-0.2	SC	Rabbit			-11(-2 to-23)	
90		0.01-0.2	SC	Rabbit	$\mathrm{CO}_{2}$		-8(+0.4 to -19)	
91		0.5-2.0	SC	Rabbit			-41(-35 to -47)	
92		0.5-2.0	SC	Rabbit	$\mathrm{CO}_{2}$		$-37(-32$ to -43$)$	
93	Benzylethylmethylamine	10\%	Aerosol	Man		9	-78	
94		5\%	Aerosol	Man		8	-47	
95	Benzylmorphine HCl	0.1-3.0	SC	Rabbit			$-3(+2$ to -10$)$	
96		0.1-3.0	SC	Rabbit	$\mathrm{CO}_{2}$		+0.2(+4 to -6)	
97		5.0-10.0	SC	Rabbit			$-9(-6$ to -12)	
98		5.0-10.0	SC	Rabbit	$\mathrm{CO}_{2}$		$-9(-4$ to -14)	
99		20	SC	Rabbit			+16	
100		20	SC	Rabbit	$\mathrm{CO}_{2}$		$+12$	
101	Benzylmorphine6 -methyl ether acid sulfate	0.5-20.0	SC	Rabbit			-10(-4 to -16)	
102		0.5-20.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		$-7(-4$ to -11$)$	
103		50.0	SC	Rabblt			+14	
104		50.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$			
105	Bromocodeinone	0.05-1.0	SC	Rabbit			$-2(+6$ to -12$)$	
106		0.05-1.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		$-3(+3$ to -9$)$	
107	Butallylonal sodium	42	IV	Dog		24	-17	
108	Butethal	200 mg	Oral	Man			+3	
109		300 mg	Oral	Man			+44	
110		400 mg	Oral	Man			$+10$	
111	Caffelne	5-10\%	Aerosol	Man		11	+36	
112		250 mg	SC	Man	$3 \% \mathrm{CO}_{2}$		+23	
113		250 mg	SC	Man	$5 \% \mathrm{CO}_{2}$		+52	
114		10	1 M	Man	Morphine	9	$+23$	
115		25 mg	1M	Man		12	+10	
116		25 mg	1M	Man	$3 \% \mathrm{CO}_{2}$		+1	
117		25 mg	IM	Man	5\% CO2		$+12$	
118		30	IV	Cat	Phenobarb.		+68	
119		30	IV	Cat	Chlorbutanol		+31	

MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in $m g / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION:

Drug response is expressed in \% increase or decrease from the control

	Drug	Dose	Mode of Administration	Species	Premedication	Respiratory Rate	
						Control breaths/min	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
120	Caffeine (concluded)	30	IV	Dog	Phenobarb.		
121		130	IV	Dog	Pentobarb.		+61
122		200 mg	IV	Rabbil	Tribromoethanol		+150
123	Carbachol	0.5-2\%	Aerosol	Man		7	+165
124	Carbon dioxide	2\%	Inhaled	Man		14	+6
125		3.5\%	Inhaled	Man			+10
126		5.0\%	Inhaled	Man			+28
127		3.0\%	Inhaled	Man		15	+53
128		5-7\%	lnhaled	Man			
129		2.0\%	Inhaled	Cat		30	+3
130		4.0\%	Inhaled	Cat			+3
131		6.0\%	Inhaled	Cat			+17
132		8.0\%	Inhaled	Cat			+23
133	Chlorallyl-nor-codeine chlorhydrate	1.0\%	Inhaled	Dog	Amytal	13	+123
		20	SC	Rabbit		23	+130
135	Chloralose	89.5	IV	Dog		18	-22
136		75	1 P	Cat		34	-67
137		75	IP	Cat	$2 \% \mathrm{CO}_{2}$		-71
138		75	IP	Cat	$4 \% \mathrm{CO}_{2}$		-70
139		75	IP	Cat	$6-8 \% \mathrm{CO}_{2}$		-70
140	Chlorprophenpyridaminemaleate	0.4 mg	IV	Dog	Pentobarb.	13	-2
141	Codeine sulfate and HCl	20 mg	SC	Man			
142		60 mg	SC	Man			
143		120 mg	SC	Man			
144		2-5	SC	Rabbit			-21
145		2-5	SC	Rabbit	$\mathrm{CO}_{2}$		-19
146		10-20	SC	Rabbit			-22
147		10-20	SC	Rabbit	$\mathrm{CO}_{2}$		-19
148		30	SC	Rabbit		30	+33
149	Cyclobarbital	200 mg	Oral	Man			
150		$400 \mathrm{mg}$	Oral	Man			+9
151		$600 \mathrm{mg}$	Oral				+1
152	d-Desoxyephedrine   HCl	0.5-1.0	SC	Rat		143	+32
153		1.5-2.0	SC	Rat			+45
154		2.5-3.0	SC	Rat			+44
155		0.5-10.0	SC	Guinea pig		75	+19
156		20.0	SC	Guinea pig			$+92$
157	Diacetyldihydro-hydroxycodeine-B acid tartrate	$0.3-1.0$	SC	Rabbit			
158		0.3-1.0 ${ }^{\circ}$	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-6
159		3.0-5.0	SC	Rabbit			-40
160		3.0-5.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-27
161		10.0-20.0	SC	Rabbit			-58
162		10.0-20.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-52
163	Diacetyldihydro-hydroxycodeine-C acid tartrate	0.05-1.0	SC	Rabbit			-11
164		0.05-1.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-6
165		3.0-5.0	SC	Rabbit			-57
166		3.0-5.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-43
167		10.0	SC	Rabbit			-76
168		10.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-77
169	Diacetyldihydromorphine HCl	0.1-0.3	SC	Rabbit			-18
170		0.1-0.3	SC	Rabbit	$\mathrm{CO}_{2}$		$-2(0$ to -4$)$
171		0.5-2.0	SC	Rabbit			-52
172		0.5-2.0	SC	Rabbit	$\mathrm{CO}_{2}$		-46
173		3.0-10.0	SC	Rabbit			-81
174		3.0-10.0	SC	Rabbit	$\mathrm{CO}_{2}$		-82
175	Diacetylmorphine HCl	0.01-0.1	SC	Rabbit			$-28(-8$ to -40$)$
176		0.01-0.1	SC	Rabbit	$\mathrm{CO}_{2}$		-15
177		0.3-10.0	SC	Rabbit			-84
178		0.3-10.0	SC	Rabbit	$\mathrm{CO}_{2}$		-81
179	Diallylbarbiturlc acid	3.0	Oral	Man		11	+6

MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION:

Drug response is expressed in \% increase or decrease from the control

	Drug	Dose	Mode of Administration	Species	Premedication	Respiratory Rate	
						Control breaths/min	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
180 181	Diallylbarbituric acid (concluded)	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \text { Oral } \\ & \text { Oral } \end{aligned}$	$\begin{aligned} & \text { Man } \\ & \text { Man } \end{aligned}$			$\begin{aligned} & -17 \\ & +9 \end{aligned}$
182	6,7-Diethoxy tetrahydroisoquinoline	0.6-2.6	IV	Cat. dog	Anesthetized		0
183 184 185 186	1,2,3-tri-( $\beta$-Di-ethylaminoethoxy) benzene triethiodide (Flaxedil)	$\begin{aligned} & 0.5 \mathrm{mg} \\ & 1.0 \mathrm{mg} \\ & 1.5 \mathrm{mg} \\ & 2.0 \mathrm{mg} \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	Man   Man   Man   Man	Cyclopropane Cyclopropane Cyclopropane Cyclopropane		
187 188	Diethylaminomethyl benzodioxane	$\begin{aligned} & 10 \% \\ & 1-30 \% \end{aligned}$	Aerosol Aerosol	Man Man		$\begin{aligned} & 11 \\ & 9 \end{aligned}$	$\begin{aligned} & -29 \\ & -21 \end{aligned}$
189	Ac-2,2-Diethyl- aminomethyl tetrahydronaphthol HCl	50	SC	Rabbit		37	$+16$
190	Digitolal	100 mg	IV	Man			
$\begin{aligned} & 191 \\ & 192 \\ & 193 \\ & 194 \end{aligned}$	Digitoxin	$\begin{aligned} & 1.4 \mathrm{mg} \\ & 1.4 \mathrm{mg} \\ & 2.2 \mathrm{mg} \\ & 2.2 \mathrm{mg} \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	Man   Man   Man   Man	$\begin{aligned} & \mathrm{CO}_{2} \\ & \mathrm{CO}_{2} \end{aligned}$		
$\begin{aligned} & 195 \\ & 196 \\ & 197 \\ & 198 \end{aligned}$	Dihydro-allopseudocodeine acid tartrate	$\begin{aligned} & 5.0-20.0 \\ & 5.0-20.0 \\ & 30.0-40.0 \\ & 30.0-40.0 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	Rabbit   Rabbit   Rabbit   Rabbit	$\begin{gathered} \mathrm{CO}_{2} \\ \mathrm{CO}_{2} \end{gathered}$		$\begin{aligned} & -21 \\ & -21 \\ & -42 \\ & -32 \end{aligned}$
$\begin{aligned} & 199 \\ & 200 \\ & 201 \\ & 202 \\ & 203 \\ & 204 \\ & 205 \\ & 206 \\ & 207 \\ & 208 \end{aligned}$	Dihydrocodeine acid tartrate	$\begin{aligned} & 30 \mathrm{mg} \\ & 30 \mathrm{mg} \\ & 2.0-3.0 \\ & 2.0-3.0 \\ & 5.0-10.0 \\ & 5.0-10.0 \\ & 15.0-30.0 \\ & 15.0-30.0 \\ & 50.0 \\ & 50.0 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \end{aligned}$	Man   Man   Rabbit	$\begin{aligned} & 5 \% \mathrm{CO}_{2} \\ & \mathrm{CO}_{2} \\ & \mathrm{CO}_{2} \\ & \mathrm{CO}_{2} \\ & \mathrm{CO}_{2} \end{aligned}$		$\begin{aligned} & -10 \\ & -65 \\ & -30 \\ & -28 \\ & -48 \\ & -47 \\ & -28 \\ & -19 \end{aligned}$
$\begin{aligned} & 209 \\ & 210 \\ & 211 \\ & 212 \\ & 213 \\ & 214 \\ & 215 \end{aligned}$	Dihydrocodeinone bitartrate	$\begin{aligned} & 5 \mathrm{mg} \\ & 0.1-0.5 \\ & 0.1-0.5 \\ & 1.0-5.0 \\ & 1.5-5.0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \end{aligned}$	Man   Rabbit   Rabbit   Rabbit   Rabbit   Rabbit   Rabbit	$\begin{gathered} \mathrm{CO}_{2} \\ \mathrm{CO}_{2} \\ \mathrm{CO}_{2} \end{gathered}$		$\begin{aligned} & -19 \\ & -14 \\ & -40 \\ & -39 \\ & -63 \\ & -57 \end{aligned}$
$\begin{aligned} & 216 \\ & 217 \\ & 218 \\ & 219 \\ & 220 \\ & 221 \end{aligned}$	Dihydrocodeinone enol acetate	$\begin{aligned} & 0.1-0.2 \\ & 0.1-0.2 \\ & 0.5-2.0 \\ & 0.5-2.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \end{aligned}$	Rabbit   Rabbit   Rabbit   Rabbit   Rabbit   Rabbit	$\begin{array}{ll} 8 \% & \mathrm{CO}_{2} \\ 8 \% & \mathrm{CO}_{2} \\ 8 \% & \mathrm{CO}_{2} \end{array}$		$\left\lvert\, \begin{aligned} & -11 \\ & -4 \\ & -37 \\ & -30 \\ & -62 \\ & -68 \end{aligned}\right.$
222	Dihydrohydroxy-codeine-A	$\begin{aligned} & 0.5-50.0 \\ & 0.5-50.0 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	Rabbit   Rabbit	$6-10 \% \mathrm{CO}_{2}$		$\begin{aligned} & -3(+3 \text { to }-10) \\ & -4(+4 \text { to }-8) \end{aligned}$
$\begin{aligned} & 224 \\ & 225 \\ & 226 \\ & 227 \\ & 228 \\ & 229 \\ & 230 \\ & 231 \end{aligned}$	Dihydrohydroxy-codeine-B	$\begin{aligned} & 0.05-0.2 \\ & 0.05-0.2 \\ & 0.5-1.0 \\ & 0.5-1.0 \\ & 3.0-5.0 \\ & 3.0-5.0 \\ & 10.0-20.0 \\ & 10.0-20.0 \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	Rabbit   Rabbit	$\begin{aligned} & 6-10 \% \mathrm{CO}_{2} \\ & 6-10 \% \mathrm{CO}_{2} \\ & 6-10 \% \mathrm{CO}_{2} \\ & 6-10 \% \mathrm{CO}_{2} \end{aligned}$		$\begin{aligned} & +3 \\ & +1 \\ & -18 \\ & -13 \\ & -43 \\ & -34 \\ & -70 \\ & -65 \end{aligned}$
$\begin{aligned} & 232 \\ & 233 \\ & 234 \\ & 235 \\ & 236 \\ & 237 \end{aligned}$	Dihydrohydroxy-codelne-C	$\begin{aligned} & 0.1-1.0 \\ & 01-1.0 \\ & 3.0-10.0 \\ & 3.0-10.0 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { SC } \\ & \text { SC } \end{aligned}$	Rabbit Rabbit Rabbit Rabbit Rabbit Rabbit	$\begin{aligned} & 6-10 \% \mathrm{CO}_{2} \\ & 6-10 \% \mathrm{CO}_{2} \\ & 6-10 \% \mathrm{CO}_{2} \end{aligned}$		$\begin{aligned} & -5 \\ & -4 \\ & -38 \\ & -37 \\ & -55 \\ & -56 \end{aligned}$

/1/ Alveolar.

MAN AND LABORATORY ANLMALS (Continued)
value ( $100 \%$ ). Dose ls expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

Tidal Volume		Minute Volume		Alveolar Ventilation		$\mathrm{O}_{2}$ Consumption		$\mathrm{pCO}_{2}$		Reference	
$\begin{gathered} \hline \text { Control } \\ \text { cc } \\ \hline \end{gathered}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	Control L/min	$\begin{gathered} \text { Drug } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Control } \\ \mathrm{L} / \mathrm{min} \\ \hline \end{gathered}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	Control $\mathrm{cc} / \mathrm{min}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	$\begin{aligned} & \text { Control } \\ & \mathrm{mm} \mathrm{Hg} \end{aligned}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)	(P)	(Q)	(R)	
							$\begin{aligned} & +11 \\ & +5 \end{aligned}$			$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 180 \\ & 181 \end{aligned}$
	-		-							44	182
			$\begin{aligned} & -11 \\ & -35 \\ & -50 \\ & -88 \end{aligned}$							$\begin{aligned} & 78 \\ & 78 \\ & 78 \\ & 78 \end{aligned}$	$\begin{aligned} & 183 \\ & 184 \\ & 185 \\ & 186 \end{aligned}$
$\begin{aligned} & 775 \\ & 648 \end{aligned}$	$\begin{aligned} & +32 \\ & +42 \end{aligned}$	$\begin{aligned} & 8.14 \\ & 5.73 \end{aligned}$	$\begin{aligned} & -6 \\ & -8 \end{aligned}$	4.12	-1					$\begin{aligned} & 15 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 187 \\ & 188 \end{aligned}$
29	+3	1.069	$+20$			30	+93			46	189
						241	+2			47	190
			$\begin{aligned} & -1 \\ & -16 \\ & -1 \\ & -30 \\ & \hline \end{aligned}$					$\begin{aligned} & 42.01 \\ & 42.01 \end{aligned}$	$\begin{aligned} & +11 \\ & 01 \\ & +41 \\ & 01 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \\ & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 191 \\ & 192 \\ & 193 \\ & 194 \end{aligned}$
	$\begin{aligned} & +6 \\ & 0 \\ & +22 \\ & 0 \end{aligned}$		$\begin{aligned} & -17 \\ & -21 \\ & -28 \\ & -33 \end{aligned}$				$\begin{aligned} & +7(+3 \text { to }+9) \\ & -5(0 \text { to }-9) \end{aligned}$			$\begin{aligned} & 43 \\ & 43 \\ & 43 \\ & 43 \end{aligned}$	$\begin{aligned} & 195 \\ & 196 \\ & 197 \\ & 198 \end{aligned}$
	$\begin{aligned} & +2 \\ & +4 \\ & +15 \\ & -3 \\ & +32 \\ & -7 \\ & +43 \\ & -11 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 16.7 \end{aligned}$	$\begin{aligned} & -4 \\ & -10 \\ & -8 \\ & -3 \\ & -20 \\ & -30 \\ & -33 \\ & -51 \\ & +4 \\ & -28 \end{aligned}$				$\left[\begin{array}{l} 0 \\ 0 \\ +4 \\ +40 \end{array}\right.$			42 42 43 43 43 43 43 43 43 43	$\begin{aligned} & 199 \\ & 200 \\ & 201 \\ & 202 \\ & 203 \\ & 204 \\ & 205 \\ & 206 \\ & 207 \\ & 208 \end{aligned}$
	$\begin{aligned} & +12 \\ & -1 \\ & +15 \\ & -16 \\ & +71 \\ & +2 \end{aligned}$		-4				$\begin{aligned} & 0 \\ & +9 \\ & +14 \end{aligned}$			$\begin{aligned} & 39 \\ & 41 \\ & 41 \\ & 41 \\ & 41 \\ & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & 209 \\ & 210 \\ & 211 \\ & 212 \\ & 213 \\ & 214 \\ & 215 \end{aligned}$
			$\begin{aligned} & -5 \\ & -7 \\ & -23 \\ & -34 \\ & -48 \\ & -76 \end{aligned}$				$\begin{aligned} & +0.2 \\ & -8 \\ & -17 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 216 \\ & 217 \\ & 218 \\ & 219 \\ & 220 \\ & 221 \end{aligned}$
			$\begin{aligned} & -0.2(+3 \text { to }-7) \\ & -0.5(+15 \text { to }-9) \end{aligned}$				$+3(-9$ to +17$)$			$\begin{aligned} & 4 \\ & 4 \end{aligned}$	222
			$\begin{aligned} & +7 \\ & +6 \\ & -9 \\ & -12 \\ & -33 \\ & -42 \\ & -50 \\ & -67 \end{aligned}$				$+5$   $+3$   $-2$   $-11$			$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 224 \\ & 225 \\ & 226 \\ & 227 \\ & 228 \\ & 229 \\ & 230 \\ & 231 \end{aligned}$
			$\begin{aligned} & +6 \\ & -2 \\ & -30 \\ & -46 \\ & -52 \\ & -69 \end{aligned}$				$\begin{aligned} & +3(+9 t 0-3) \\ & -3 \\ & -22 \end{aligned}$			$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in \% increase or decrease from the control

Drug		Dose	Mode of Administration	Species	Premedication	Respiratory Rate		
		Control breaths/min				$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
238	Dihydrohydroxycodeinone HCl	0.01-0.1	SC	Rabbit			-7	
239		0.01-0.1	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		- 3	
240		0.3-1.0	SC	Rabbit			-30	
241		0.3-1.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-28	
242		3.0-5.0	SC	Rabbit			-73	
243		3.0-5.0	SC	Rabbit	6-10\% $\mathrm{CO}_{2}$		-76	
244		10	SC	Rabbit			-84	
245		10	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		-94	
246	Dihydroisocodeine acid tartrate	30 mg	SC	Man				
247		30 mg	SC	Man	$5 \% \mathrm{CO}_{2}$			
248		1.0-2.0	SC	Rabbit			-22	
249		1.0-2.0	SC	Rabbit	$\mathrm{CO}_{2}$		-12	
250		5.0-20.0	SC	Rabbit			-55	
251		5.0-20.0	SC	Rabbit	CO 2		-50	
252		35.0-50.0	SC	Rabbit			-61	
253		35.0-50.0	SC	Rabbit	$\mathrm{CO}_{2}$		-62	
254	Dihydromorphine HCl	0.1-2.0	SC	Rabbit			$-25(+1$ to -37)	
255		0.1-2.0	SC	Rabbit	$\mathrm{CO}_{2}$		-22	
256		3.0-10.0	SC	Rabbit			-56	
257		3.0-10.0	SC	Rabbit	$\mathrm{CO}_{2}$		-50	
258	Dihydromorphinone HCl	0.01-0.25	SC	Rabbit			-27(-8to-44)	
259		0.01-0.25	SC	Rabbit	$\mathrm{CO}_{2}$		-19(-3t0-39)	
260		0.5-10.0	SC	Rabbit			-62	
261		0.5-10.0	SC	Rabbit	$\mathrm{CO}_{2}$		-61	
262	Dihydropseudocodeine HCl	50.0-150.0	SC	Rabbit			$-7(+20$ to - 19$)$	
263		50.0-150.0	SC	Rabbit	$\mathrm{CO}_{2}$		$-9(-2$ to -14)	
264	5,6-Dihydroxy tetrahydroisoquinoline	0.24-4.5	IV	Cat, dog	Anesthetized		-	
265	6, 7-Dihydroxy tetrahydroisoquinoline	0.24-4.5	IV	Cat, dog	Anesthetized		-	
266	Dimenhydrinate	10 mg	IV	Dog	Pentobarb.	11	$+10$	
267	5,6-Dimethoxy tetrahydroisoquinollne	1.0-5.1	IV	Cat, dog	Anesthetized		-	
268	6,7-Dimethoxy tetrahydroisoquinoline	1.0-5.1	IV	Cat, dog	Anesthetized		-	
	Ac-2, 2-Dimethylaminomethyl tetrahydronaphthol HCl	150	SC	Rabbit		35	+9	
270	Dimethyl guanidine HCl	5	SC	Rabbit	Urethane	70	$+26$	
271	Dimethyltoluthionine Cl	$0.1$					0	
272		0.5-2.0	IV	Rabbit	and		+4	
273		5.0-7.5	IV	Rabbit	urethane		+18	
274		10.0	IV	Rabbit	Pentobarb. and urethane		-6	
275	Dinitrophenol	10.0-20.0	SC	Dog	Pentobarb.	16	$+275$	
276		10.0	SC	Rabbit	Morphine		+11	
277		20.0	SC	Rabbit	Morphine		+96	
278		40.0	SC	Rabbit	Morphine		+43	
279		20.0	SC	Rabbit	Chloral		+59	
280		20.0	SC	Rabbit	Alcohol		+49	
281		20.0	SC	Rabbit	Pentobarb.		+36	
282		5.0	IM	Rabbit			+6	
283		10.0	1 M	Rabbit			+8	
284		20.0-60.0	IM	Rabbit			+50	
285		80.0	IM	Rabbit			+23	
286	2,4-Dinltrophenylmorphine HCl	0.02-0.50	SC	Rabbit			-15(-2 to -35)	
287		0.02-0.50	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		$-8(-120-24)$	
288		1.0-20.0	SC	Rabbit			$-39(-28$ to-55)	
289		1.0-20.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		$-34(-15$ to -56$)$	
290	Diphenyl guanldine symm. HCl	1	SC	Rabbit	Urethane	136	$+10$	
291	Ephedrine	$5.0-50.0$	Oral   SC	Man Man		$8$	$\begin{aligned} & -3 \\ & +28 \end{aligned}$	
292		$0.5$	SC	Man	Morphine	7	$+28$	

MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION:

Drug response is expressed in \% increase or decrease from the control

	Drug	Dose	Mode of Administration	Species	Premedication	Respiratory Rate	
						Control breaths/min	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
293	Ephedrine (concluded)	0.5-1.0	IM	Fox			
294		0.05	IM	Dog			
295		0.25-0.85	IM	Dog			
296	Epinephrine HCl	0.1-1.0\%	Aerosol	Man		7	-30
297		$20 \mu \mathrm{~g}$	IV	Man			
298		$160 \mu \mathrm{~g} / \mathrm{kg}$	SC	Fox			
299		$160 \mu \mathrm{~g} / \mathrm{kg}$	1 P	Fox			
300		$5 \mu \mathrm{~g} / \mathrm{kg}$	IM	Dog			
301		$10-20 \mu \mathrm{~g} / \mathrm{kg}$	IM	Dog			
302		$50 \mu \mathrm{~g} / \mathrm{kg}$	IM	Dog			
303		$80 \mu \mathrm{~g} / \mathrm{kg}$	1M	Dog			
304		$125 \mu \mathrm{~g} / \mathrm{kg}$	IM	Dog			
305	Ergotamine	0.05	IV	Cat	Chloralose		
306		0.05	IV	Cat	Chloralose and $\mathrm{CO}_{2}$		
307	Ethalolguanidine HCl	5.0	SC	Rabbit	Urethane	40	$+20$
308	Ether (Diethyl)		Inhaled	Dog		24	+242
309	Ethinamate	1.5 g	Oral	Man		20	-5
	$\begin{aligned} & 6 \text { - Ethoxy-6-methoxy } \\ & \text { tetrahydro- } \\ & \text { isoquinoline } \end{aligned}$	0.7-3.0	IV	Cat, dog	Anesthetized		0
310	$\begin{aligned} & \hline 6 \text { - Ethoxy-7-methoxy } \\ & \text { tetrahydro- } \\ & \text { isoquinoline } \\ & \hline \end{aligned}$	0.7-2.4	IV	Cat, dog	Anesthetized		-
312	$\begin{aligned} & \text { 2- Ethoxy } \\ & \text { phenanthrene } \end{aligned}$	200	Oral	Cat		45	+18
313		300	Oral	Cat		48	-8
314	$\begin{aligned} & \text { 3-Ethoxy } \\ & \text { phenanthrene } \end{aligned}$	300	Oral	Cat		39	-10
315		400	Oral	Cat			+8
316	6-Ethoxy tetrahydroisoquinoline	0.6-2.1	IV	Cat, dog	Anesthetized		-
317	Ethyldihydromorphinone HCl	0.01-0.1	SC	Rabbit			-10
318		0.01-0.1	SC	Rablit	$8 \% \mathrm{CO}_{2}$		-9
319		0.2-0.5	SC	Rabbit			-41
320		0.2-0.5	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-38
321		1.0	SC	Rabbit			-64
322		1.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-65
323	Ethylguanidine HCl	10.0	SC	Rabbit	Urethane	168	$+21$
324	Ethylmorphine HCl	0.5-20.0	SC	Rabbit			-18(+2 to -23)
325		0.5-20.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-14(0 to -32$)$
326	Glycerine	20\%	Aerosol	Man		7	+133
327	Guanidine HCl	20	SC	Rabbit	Urethane		+8
328	Hexobarbital	60	IV	Dog		14	0
329	Histamine	$1 \%$	Aerosol	Man		7	-55
330	Hordenine sulfate	0.6-1.2	IV	Cat, dog	Anesthetized		0
331	$\begin{aligned} & \text { 1-3-Hydroxy-N-allyl- } \\ & \text { morphinan } \end{aligned}$	0.0108	IV	Man			
332		1.0-4.0	IV	Rabbit			
333		10.0	IV	Rabbit			
334	Hydroxycodeinone HCl	0.05-3.0	SC	Rabbit			$+5(-0.5$ to +14$)$
335		0.05-3.0	SC	Rabbit	$6-10 \% \mathrm{CO}_{2}$		$-1(+6$ to -9$)$
336	1-3-Hydroxy-Nmethylmorphinan	0.054	IV	Man		10	-2
337		0.5-1.0	IV	Rabbit	Pentobarb.		
338	```3-Hydroxy-N-methyl- morphinan hydrobromide```	5 mg	1M	Man		11	-25
339		5 mg	1 M	Man	$\mathrm{CO}_{2}$		-17
340		7.5 mg	IM	Man			-6
341		7.5 mg	1 M	Man	$\mathrm{CO}_{2}$		-4
342		0.5	IV	Rabbit			-12
343		1.0	IV	Rabbit			-48
344		2.0	IV	Rabbit			-76
345		1.5-20.0	IV	Rabbit	Local anesth.		-83
346	$\begin{aligned} & \text { 2-11ydroxy } \\ & \text { phenanthrene } \end{aligned}$	300	Oral	Cat		40	-8
347	3-11yd roxy phenanthrenc	300	Oral	Cat		41	-3

/1/ Expired

MAN AND LABORATORY ANIMALS (Continued)
value ( $200 \%$ ). Dose is expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION:

Drug response is expressed in \% increase or decrease from the control


MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in \% increase or decrease from the control

/1/ Alveolar. /2/ Arterial.

MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in $m g / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in \% increase or decrease from the control

Drug		Dose	Mode of Administration	Species	Premedication	Respiratory Rate		
		Control breaths/min				$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
445	Morphine sulfate	0.75-3.0	SC	Rabbit			-43	
446	(concluded)	0.75-3.0	SC	Rabbit	$\mathrm{CO}_{2}$		-42	
447		5.0-10.0	SC	Rabbit			-55	
448		5.0-10.0	SC	Rabbit	$\mathrm{CO}_{2}$		-63	
449	Nalorphine HCl	$1.0-5.0 \mathrm{mg}$	IV	Man			-10	
450		10.0 mg	IV	Man			$-3(+12$ to -18)	
451		5.0 mg	IV	Man	$5 \% \mathrm{CO} 2$			
452		2.0 mg	IV	Man		11	-6	
453		2.0 mg	IV	Man	$100 \% \mathrm{O}_{2}$	12	-5	
454		2.0 mg	IV	Man	2.8\% CO2	13	-1	
455		2.0 mg	IV	Man	4.3\% CO2	15	-9	
456		30.0	IV	Dog	Pentobarb.		+80	
457	```Neutral red (2-Methyl, 3-amino, 6-dimethylamino- phenazine HCl```		IV	Rabbit	Pentobarb.			
458		0.5	IV	Rabbit	and		+41	
459		1.0-10.0	IV	Rabbit	urethane		+37	
460	Neutral violet (2-Dimethylanilino, amino, 3-amino,6dimethyl aminophenazine HCl	0.1-2.0	IV	Rabbit	Pentobarb.		+4	
461		5.0-10.0	IV	Rabbit	and urethane		$-5(+7$ to-16)	
462	Nikethamide	250.0 mg	SC	Man				
463		7.5	1M	Man	Morphine		$+26$	
464	Norepinephrine	$20 \mu \mathrm{~g}$	IV	Man				
465	$\beta$-Oxybutyrate sodium	10 cc 0.10 N	IV	Rabbit	Urethane		+1	
466	$\beta$-Oxybutyric acid	20 cc 0.15 N	IV	Rabbit	Urethane		+28	
467		10 cc 0.10 N	IV	Rabbit	Urethane		+18	
468		20 cc 0.10 N	IV	Rabbit	Urethane		$+22$	
469	Oxygen	100\%	Inhaled	Man			+7	
470		33\%	Inhaled	Man				
471		8-100\%	Inhaled	Man			-	
472	Papaverine HCl	0.4-1.0	IV	Cat, dog	Anesthetized		$\pm$	
473	Pentobarbital sodium	10.0	1 P	R. monkey		43	-5	
474		30.0	IV	Dog				
475		35.0	IP	Cat	$2 \% \mathrm{CO}_{2}$		-38	
476		35.0	IP	Cat	4-8\% $\mathrm{CO}_{2}$		-37	
477		200	SC	Rabbit			-56	
478		5.0	IV	Rabbit fetus			-54	
479		10.0	IV	Rabbit fetus			-62	
480	Pentylenetetrazol	$7-100 \mathrm{mg}$	SC	Man				
481		100 mg	SC	Man				
482		10\%	Aerosol	Man			+150	
483		5.0	IM	Man	Morphine		+50	
484		5.0-7.0	IV	Dog	Alcohol		$+4500$	
485	Peptone	20\%	Aerosol	Man			+59	
486	Phenobarbital	3.1-8.0	Oral	Man		10	+6	
487	Phenyldihydromorphinone HCl	0.01-0.05	SC	Rabbit			-7	
488		0.01-0.05	SC	Pabbit	$8 \% \mathrm{CO}_{2}$		-1	
489		0.1-0.2	SC	Rabbit			-13	
490		0.1-0.2	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-16	
491		0.5-1.0	SC	Rabbit			-45	
492		0.5-1.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-42	
493		2.0	SC	Rabbit			-72	
494		2.0	SC	Rabbit	$8 \% \mathrm{CO}_{2}$		-73	
495	Phenyl-methylaminopropane	5\%	Aerosol	Man		6	-61	
496	Phosgene	1.38 mg	IV	R. monkey			-23	

/1/ Arterial. /2/ Alveolar.

MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in mg/kg, unless otherwise incicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION:

Drug response is expressed in \% increase or decrease from the control

Drug		Dose	Mode of Administration	Species	Premedication	Respiratory Rate		
		Control breaths/min				$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
497	Picrotoxin	0.3	IV	Dog	Phenobarb.		-13	
498		0.6	IV	Cat	Phenobarb.		+6	
499		0.7	IV	Cat	Phenobarb. and morphine		$+10$	
500		0.7	IV	Cat	Chlorbutanol		+7	
501	Pilocarpine	5.3\%	Aerosol	Man		53	+190	
	Ac-2, 2-Piperidino methyltetra-hydronaphthol HCl	100	SC	Rabbit		44	+27	
503	Plperidione	105 mg	Oral	Man				
504	$\begin{aligned} & \text { Piperoxan } \mathrm{HCl} \\ & (\mathrm{~F}-933) \end{aligned}$	20\%	Aerosol	Man		8.5	+76	
505		0.1-30\%	Aerosol	Man		9.5	-9	
506	Placebo	2 cc	1V	Man		12	+9	
507		2 cc	IV	Man				
508		2 cc	SC	Man				
509		2 cc	SC	Man	$5 \% \mathrm{CO}_{2}$			
510		$\mathrm{H}_{2} \mathrm{O}$	Aerosol	Man			+16	
511	Prisilidene HCl	60 mg	SC	Man			-15	
512	Probarbital sodium	100 mg	Oral	Man			$+37$	
513		200 mg	Oral	Man			+12	
514		300 mg	Oral	Man			-11	
515		400 mg	Oral	Man			$+18$	
516	Procaine	1\%	Aerosol	Man		6	-58	
517		2\%	Aerosol	Man		6	-29	
518	Pseudocodeine HCl	20.0-40.0	SC	Rabbit			0	
519		20.0-40.0	SC	Rabbit	$\mathrm{CO}_{2}$		+4	
520		60.0-80.0	SC	Rabbit			-4	
521		60.0-80.0	SC	Rabbit	$\mathrm{CO}_{2}$		-4	
522		100.0-300.0	SC	Rabbit			-15	
523		100.0-300.0	SC	Rabbit	$\mathrm{CO}_{2}$		-20	
524	Pyribenzamine		IV		Pentobarb.		+60	
525		$100 \mathrm{mg}$	IV	$\mathrm{Dog}$	Pentobarb.			
526	$\begin{aligned} & \text { Pyruvic acid } \\ & \text { cyanohydrin } \end{aligned}$	$\begin{gathered} 0.15 \mathrm{cc} \\ 0.1 \mathrm{M} / \mathrm{kg} \end{gathered}$	IV		Pentobarb.		$+48$	
527		$\begin{gathered} 0.15 \mathrm{cc} \\ 0.1 \mathrm{M} / \mathrm{kg} \\ \hline \end{gathered}$	IV	Cat	Phenobarb.		$+50$	
528	Scopolamine	0.65 mg	Oral	Man				
529	Seconal sodium	300 mg	Oral	Man		20	-3	
530	Sodium acetate	10 cc 0.1 N	IV	Rabbit	Urethane		0	
531	Sodium nitrite	1-10\%	Aerosol	Man			-41	
532	Sodium phosphate	10\%	Aerosol	Man		13	-35	
533	Sodium salicylate	2 g	1V	Man		8	+1	
534		2 g	1V	Man	$3-5 \% \mathrm{CO}_{2}$		+12	
535		3 g	Oral	Man			$+17$	
536		3 g	Oral	Man	$3-5 \% \mathrm{CO}_{2}$		+30	
537		100 g	1V	Dog	Pentobarb.	10	$+25$	
538	Strychnine nitrate	$1-2 \mathrm{mg}$	SC	Man				
	Tetrahydro- isoquinoline HCl	0.55-4.8	IV	Cat, dog	Anesthetized		-	
540	Thiopental	500 mg	IV	Dog				
541		20-30	IV	Dog			-45	
542		40	IV	Dog			-80	
543		100	IV	Monkey			+76	
544		20	IV	Cat			-82	
545		20	IV	Rabbit			-75	
546	Tribromoethanol	710 mg	Rectal	Rabbit			-50	
547	Trichloroacetaldehyde	500-1000	SC	Rabbit			-19	
548	Triphenylguanidine HCl	2	SC	Rabblt	Urethane		+9	

/1/Arterial. /2/ Alveolar.

MAN AND LABORATORY ANIMALS (Continued)
value ( $100 \%$ ). Dose is expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

131. EFFECT OF DRUGS ON PULMONARY FUNCTION: Drug response is expressed in \% increase or decrease from the control

Drug		Dose	Mode of Administration	Species	Premedication	Respiratory Rate		
		Control breaths/min				$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
$\begin{aligned} & 549 \\ & 550 \end{aligned}$	d-Tubocurarine	$\begin{aligned} & 0.23 \\ & 0.11 \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { IV } \end{aligned}$	Man   Man	Cyclopropane Ether			
$\begin{array}{r}551 \\ 552 \\ \hline\end{array}$	Urethane	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { IP } \\ & \text { IP } \end{aligned}$	$\begin{aligned} & \text { Cat } \\ & \text { Cat } \end{aligned}$	$2-8 \% \mathrm{CO}_{2}$		$+9(+6 \text { to }+15)$	

Contributors: (a) Huggins, R. A., (b) Deavers, S.

References: [1] Gollwitzer-Meier, K., Arch. exp. Path., Lpz, 125:278, 1927. [2] Eddy, N. B., J. Pharm. Exp. Oswald, H. R., ibid 73:229, 1941. [5] Alles, G. A., ibid 28:251, 1926. [6] Tainter, M. L., and Cutting, W. C., Kough, R. H., Gould, R. A., and Schmidt, C. F., ibid 114:461, 1955. [9] Richmond, G. H., J. Appl. Physiol. 2:16, M. Y., and Leake, C. D., ibid $40: 215,1930$. [12] Rikl, A., Arch. exp. Path., Lpz. 127:173, 1928.

Anesthesiology 3:24, 1942. [15] Dautrebande, L., and Stalport, J., Arch. internat. pharm. dyn., Par. 76:213, 1948. T. J., and Leitch, J. L., ibid 93:341, 1953. [18] Altschule, M. D., and Iglauer, A., J. Clin. Invest. 19:497, 1940. Par. 68:451, 1942. [20] Dautrebande, L., Phillippot, E., Charlier, R., Dumoulin, E., and Nogarede, F., ibid 1957. [22] Salomon, A., Marcus, P. S., Herschfus, J. A., and Segal, M. S., Am. J. M. 17:214, 1954. [23] N. England J. M. 249:886, 1953. [25] Vivante, A., Kao, F. F., and Belford, J., J. Pharm. Exp. Ther. 111:436, and Szebehelyi, J., Arch. internat. pharm. dyn., Par. 76:397, 1948. [28] Sumwalt, M., Wright, C. I., and Miller, 259:177, 1954. [30] Richmond, G. H., Fed. Proc. 8:327, 1949. [31] Handley, C. A., and Ensberg, D. L., Deut. med. Wschr. 54:1044, 1928. [34] Loeschcke, H. H., and Wendel, H., Arch. exp. Path., Lpz. 215:241, 1952. Sc., Lond. 13:321, 1954. [37] Wang, S. C., and Nims, L. F., J. Pharm. Exp. Ther. 92:187. 1948. [38] Von [39] Trendelenburg, U., Acta physiol. scand. 2]:174, 1950. [40] Lasagna, L., and Beecher, H. K., J. Pharm. Exp. G. M., Sphire, R. D., Isaacs, J. P. and Beecher, H. K., N. England J. M. 254:877, 1956. [43] Wright, C. I., J. and Barbour. F. A., ibid 54:25, 1935. [46] Woods, G. G., and Eddy, N. B., ibid 48:175, 1933. [47] Liljestrand, 125:80, 1955. [49] Blume, W., and Zoliner, R., Arch. exp. Path., Lpz. 202:21, 1943. [50] Hall, V. E., Field, J., Cutting, W. C., J. Pharm. Exp. Ther. 48:410, 1933. [52] De Moerloose, J., Arch. internat. pharm. dyn., Par. 67:1, scand. 15:198, 1948. [55] Gruber, C.M., Jr., Kohlstaedt, K. G., Moore, R. B., and Peck, F. B., Jr., J. Pharm. [57] Thomas, D. V., and Tenney, S. M., J. Pharm. Exp. Ther. 113:250, 1954. [58] Yim, G. K., Keasling, H. H., ibid 115:350, 1955. [60] Eckenhoff, J. E., Helrich, M., Hege, M. J., and Jones, R. E., ibid 113:332, 1954. [61] 78:808, 1951. [63] Marshall, W. R., Arch. Int. M. 42:180, 1928. [64] Epling, G. P., and Rankin, A. D., Am. J. [66] Loeschcke, H. H., Sweel, A., Kough, R. H., and Lambertsen, C. J., J. Pharm. Exp. Ther. 108:376, 1953. [68] McCrea, F. D., and Taylor, H. M., ibid 68:41, 1940. [69] Gruninger, U., Arch. Exp. Path., Lpz. 126:77, Soley, M. H., Proc. Soc. Exp. Biol. 44:418, 1940. [72] Shephard, R. J., J. Physiol. 127:498, 1955. [73] 149:277, 1947. [75] Karel, L., and Weston, R. D., Proc. Soc. Exp. Biol. 61:291, 1946. T76] Susking, M., and [78] Artusio. J. F.. Jr., Marbury, B. E., and Crews, M. A., Ann. N. York Acad. Sc. 54:512, 1951/52. [79] E. K., Jr., and Rosenfeld, M., ibid 59:222, 1937. [81] Tenney, S. M., and Miller, R. M.. Am. J. M. 19:498, 1955 . P. A., French, D. M., and Rhodes, C., J. Pharm. Exp. Ther. 98:207, 1950. [84] Gruber, C. M., ibid 60:143, 1937.

MAN AND LABORATORY ANIMALS (Concluded)
value ( $100 \%$ ). Dose is expressed in $\mathrm{mg} / \mathrm{kg}$, unless otherwise indicated.

Tidal Volume		Minute Volume		Alveolar Ventilation		$\mathrm{O}_{2}$ Consumption		$\mathrm{pCO}_{2}$		Reference	
$\begin{gathered} \text { Control } \\ \mathrm{cc} \end{gathered}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	Control   L/min	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	Control   $\mathrm{L} / \mathrm{min}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	Control $\mathrm{cc} / \mathrm{min}$	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$	Control mm Hg	$\begin{gathered} \text { Drug } \\ \% \end{gathered}$		
(H)	(I)	(J)	(K)	(L)	(M)	(N)	(0)	(P)	(Q)		
			$\begin{aligned} & -70 \\ & -70 \end{aligned}$							78 78	549 550
	-13		-13							37	551
			-15							37	552

Ther. 51:75, 1934. [3] Sumwalt, M., Oswald, H. R., and Lush, H. A., ibid 73:274, 1941. [4] Sumwalt, M., and ibid 49:187, 1933. [7] Wright, C. I., ibid 51:327, 1934. [8] Strond, M. W., 1ll, Lambertsen, C. J., Ewig, J. H. 1949- [10] Sumwalt, M., and Oswald, H. $\bar{R} .$, J. Pharm. Exp. Ther. 73:258, 1941. [11] Anderson, H. H., Chen, [13] Severinghouse, J. W., and Stupfel, M., J. Appl. Physiol. 8:81, 1955. [14] Wangeman, C. P., and Hawk, M. H., [16] Dautrebande, L., Philippot, E., Charlier, R., Dumoulin, E., and Nogarede, F., ibid 68:117, 1942. [17] Haley, [19] Dautrebande, L., Philippot, E., Charlier, R., Dumoulin, E., and Nogarede, F., Arch. internat. pharm. dyn., 68:247, 1942. [21] Huggins, R. A., Spencer, W. A., Geddes, L. A., Deavers, S., and Moyer, J. H., ibid 111:275, Lasagna, L., and Beecher, H. K., J. Pharm. Exp. Ther. 112:356, 1954. [24] Tenney, S. M., and Mithofer, J. C., 1954. [26] Burkhardt, W. L., Eastman, B. R., and Hale, H. B., J. Appl. Physiol. 3:29, 1950. [27] Fabinyi, M., A. T., J. Pharm. Exp. Ther. $73: 246,1941$. [29] Brendel, W., Koppermann, E., and Thauer, R., Pflügers Arch. Anesthesiology 6:561, 1945. [32] Le Messurier, D. H., J. Pharm. Exp. Ther. 57:458, 1936. [33] Herzberg. M. H. [35] Holman, J., and Shire, G. T., Am. Heart. J. 37:1101, 1949. [36] Prince, F. S., and Westlake, E. K., Clin. Oettingen, W. F., Donahue, D. D., Valaer, P. J., and Miller, J. W., Pub. Health Bull. 274:1, 1941. Ther. $112: 306,1954$. [41] Wright, C. I., and Barbour, F. A., ibid 53:34, 1935. [42] Gravenstein, J. S., Smith, Pharm. Exp. Ther. 51:343, 1934. [44] Fassett, D. W., and Hjort, A. M., ibid 63:253, 1938. [45] Wright, C. 1., G., and Nylin, G., Acta physiol. scand. 1:328, 1940. [48] Riggert, H., and Schwab, M., Zschr. ges. exp. Med. II, Sahyun, M., Cuttlng, W. C., and Tainter, M. L., Am. J. Physiol. 106:432, 1933. [51] Tainter, M. L., and 1942: [53] Whelan, R. F., and Young, 1. M., Brit. J. Pharm. 8:98, 1953. [54] Liljestrand, A., Acta physiol. Exp. Ther. 112:480, 1954. [56] Albers, C., Brendel, W., and Usinger, W., Arch. exp. Path., Lpz. 226:278, 1955. Gross, E. G., and Mitchell, C. W., ibid 115:96, 1955. [59] Miller, J. W., Gilfoil, T. M., and Shideman, F. E., Randall, L. O., and Lehmann, G., ibid 99:163, 1950. [62] Halasey, T. G., and Dille, J. M., Proc. Soc. Exp. Biol. Vet. Res. 15:338, 1954. [65] Orkin, L. R., Egge, R. K., and Rovenstine, E. A., Anesthesiology 16:699, 1955. [67] Winter, C. A., Orahovats, P. D., Flataker, L., Lehman, E. G., and Lehman, J. T., 1bid T11:152, 1954. 1927. [70] Cook, L., Navis, G., and Fellows, E. J., J. Pharm. Exp. Ther. 112:473, 1954. [71] Shock. N. W., and Loeschcke, G. C., Pflūgers Arch. 257:349, 1953. [74] Dripps, R. D., and Comroe, J. H., Jr., Am. J. Physiol. Rahn, H., J. Appl. Physiol. 7:59, 1954. [77] Drelsbach, R., and Snyder, F. F., J. Pharm. Exp. Ther. 79:250, 1943. Marshall, E. K., Jr., Walz1, E. M., and Le Messurier, D. H., J. Pharm. Exp. Ther. 60:472, 1937. [80] Marshall, [82] Ament, R., Suskind, M., and Rahn, H., Proc. Soc. Exp. Biol. 70:401, 1949. [83] Booker, W. M., Molano, [85] Tomashefki, J. F., Chinn, H. 1., and Clark, R. T., Jr., Am. J. Physiol. 177:451, 1954.
132. RESPIRA TORY ACTION OF DRUGS INFLUENCING AFFERENT END-ORGANS: CAT, DOG, RABBIT

Drugs influencing baroreceptors have not been included in this table.
1.v. = intravenous; i.c.a. = intracarotid artery; i.c.b.a. = intracarotid-body artery; rt.at. = right atrium.

	Drug Group	Drug	Test Animal	Dose and Route	End-organ Response	$\begin{array}{\|c\|} \hline \text { Respiratory } \\ \text { Response } \\ \hline \end{array}$	$\begin{gathered} \text { Refer- } \\ \text { ence } \end{gathered}$
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Drugs Influencing Carotid-body Chemoreceptors							
1	Ganglionic stimulants	Nicotine ${ }^{1}$	Dog	0.1-0.2 mg i.c.a.		Stimulation	1
2			Cat	$0.1 \mathrm{mg} \mathrm{i.v}$.	Stimulation		2
3		Lobeline	Dog	0.5 mg i.c.a.		Stimulation	1
4			Cat	1 mg i.v.	Stimulation		2
5		Acetylcholine ${ }^{2}$	Dog	0.1-0.5 mg i.c.a.		Stimulation	3
6			Cat	2-10 $\mu \mathrm{g}$ i.c.b.a.	Stimulation		4,5
7	Metabolic inhibitors and stimulants	Potassium cyanide	Dog	T-2mg i.c.a.		Stimulation	I
8			Cat	$0.02 \%$ infused i.v.	Stimulation	Stimulation	2
9		Sodium sulfide	Dog	$1-2 \mathrm{mg}$ i.c.a.		Stimulation	1
10		2,4-Dinitrophenol ${ }^{3}$	Dog	$0.4 \mathrm{mg} \mathrm{i.c.a}$.		Stimulation	6
11			Cat	$0.4 \mathrm{mg} \mathrm{i.c.a}$.	Stimulation		7
12		Mono-iodoacetic acid	Dog	$3-7 \times 10^{-4} \%$ perfused ${ }^{4}$		Stimulation	8
13		Sodium mono-iodo-acetate	Cat	$2.0 \mathrm{mg} \mathrm{i.c.a}$.	Stimulation		4
14		Adenosine triphosphate	Dog, cat	$1-10 \mathrm{mg}$ i.c.a.	Stimulation		7
15	luns	Potassium (chloride)	Dog, cat	1.2-10 mg i.v.		Stimulation	9,10
16			Cat	20-200 $\mu \mathrm{g}$ i.c.a.	Stimulation	Stimulation	7
17		Citrate (sodium)	Cat	12.5-25 mg i.c.a.	Stimulation	Stimulation	7
18	Veratrumalkaloids	Veratridine ${ }^{5}$	Dog	1-2 $\mu \mathrm{g}$ i.c.a.		Stimulation	11
19		Veratrine	Cat	10-40 $\mu \mathrm{g}$ i.c.a.	Stimulation		7
20	Antichollnesterases	Eserine salicylate ${ }^{6}$	Cat	50-500 $\mu \mathrm{g}$ i.c.a.	Stimulation		12
21		Neostigmine HCl	Dog	0.1-1 mg locally		Stimulation	13
22			Cat	$0.25 \mathrm{mg} \mathrm{i.c.a}$.	Stimulation		12
23		Tetra-ethylpyro $\mathrm{PO}_{4}$	Cat	$0.2 \mathrm{mg} \mathrm{i.c.a}$.	Stimulation		12
24		Diisopropoxyphosphonylfluoride	Cat	0.1 mg i.c.a.	Stimulation		12
25	Miscellaneous	Caffeine ${ }^{7}$	Cat	1.8 mg i.c.b.a.	Stimulation		4
26		Coniline ${ }^{8}$	Cat	$0.05 \mathrm{mg} \mathrm{l.v}$.		Stimulation	14
27		Ethyl alcohol ${ }^{9}$	Cat	$18-76 \mathrm{mg}$ i.c.a.	Stimulation		15
28		Homo-isomuscarine	Dog	$10 \mathrm{mg} / \mathrm{kg}$ i.v.		Stimulation	16
29		5-Hydroxytryptamine ${ }^{11}$	Dog	50-100 $\mu \mathrm{g}$ i.v.		Stimulation	17
30		Isolobinine	Dog	$10 \mu \mathrm{~g} / \mathrm{kg}$ i.v.		Stimulation	18
31		Papaverine	Cat, dog	0.25-1 mg i.c.a.		Stimulation	19
32		Phenyl diguanide ${ }^{12}$	Dog	$10 \mu \mathrm{~g} / \mathrm{kg}$ iv	Stimulation	Stimulation	20
33		Piperidine HCl	Cat	0.3-1 mg i.v.	Stimulation	Stimulation	21
34		Tetramethylammonium iodide ${ }^{13}$	Cat	1:10,000 perfused ${ }^{4}$		Stimulation	14
35		Tetra-ethylammonium chloride	Cat	0.5-1.0 mg i.c.a.	$\begin{aligned} & \text { Sensitiza- } \\ & \text { tion } \end{aligned}$		22
36		Hexamethonium	Cat	0.25-0.5 mg i.c.a.			22
37		Pendiomide ${ }^{1}$	Cat	0.25-0.5 mg i.c.a.			22
38		Pentamethonium	Cat	0.25-0.5 mg i.c.a.			22
	Drugs Influencing Pulmonary Stretch Receptors ${ }^{15}$						
39	Veratrum alkaloids	Veratrine	Rabbit	$50-100 \mu \mathrm{~g} / \mathrm{kg}$	Stimulation		23
40		Veratridine	Cat	$5-10 \mu \mathrm{~g} / \mathrm{kg}$ i.v.	Stimulation	Apnea	24
41		Germitrine, germerine, and neogermitrine	Cat	26-400 $\mu \mathrm{g}$ i.v.	Stimulation		25
42		Veriloid	Cat, dog	10-20 $\mu \mathrm{g} / \mathrm{kg}$ i.v.	Stimulation	Apnea	26
43	Volatile anesthetics	Trichlorethylene	Cat	0.5-2\% inhaled 16	Sensitization ${ }^{17}$	Rapid, shallow	27
44		Chloroform	Cat	$1 \%$ inhaled			27
45		Ethyl ether	Cat	10\% inhaled			27
46		Divinyl ether	Cat	4\% inhaled	$\begin{gathered} \text { Sensitiza- } \\ \text { tion }^{17} \end{gathered}$		27

$/ 1 /$ Also a- and $\beta$-nicotine, $0.1-0.3 \mathrm{mg}$ i.c.a. in dogs, and other nicotine derivatives [ 33,34 ]. /2/ Also many other choline derivatives $[5,35-37] . / 3 /$ Also 2,4-dinitrocresol and p-nitrophenol, 0.4 mg i.c.a. in dogs [6]. /4/ 1 solated perfused carotid sinuses and bodies. /5/Doses possibly excessive[43]. /6/Somewhat controversial [13]. /7/Probably also theophylline ( 1.5 mg l.c.b.a.) and theobromine ( 1 mg i.c.b.a.) in cats [4]. $/ 8 /$ Also cytisine ( 0.2 mg i.v.) and anabasine in cats [14]. /9/Also acetone, ethyl ether and chloroform, and various alcohols [15]. /10/ Also acetylsalicylamide and many derivatives of both substances [16,38]. /11/Creatinine $\mathrm{SO}_{4}$; controversial [39]. /12/ Also 2-a-naphthyl ethyl isothiourea; controversial [40]. /13/ Also various derivatives [35.41.42]. /4/ Tris(diethylaminoethyl)amine tri HCl . / $15 /$ Slowly adapting receptors medlating the "Hering-Breuer inflation reflex." / $16 /$ Also i.v. in unspecificd dose. /17/Greater concentrations cause inhibition. END-ORGANS: CAT, DOG, RABBIT (Concluded)

Drugs influencing baroreceptors have not been included in this table.
i.v. $=$ intravenous; i.c.a. = intracarotid artery; i.c.b.a. = intracarotid-body artery; rt.at. = right atrium.

	Drug Group	Drug	Test   Animal	Dose and Route	End-organ Response	$\begin{gathered} \text { Respiratory } \\ \text { Response } \end{gathered}$	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Drugs Influencing Pulmonary Stretch Receptors (Concluded) ${ }^{15}$							
47	Volatile anesthetics (concluded)	Cyclopropane	Cat	50\% inhaled	$\begin{gathered} \text { Sensitiza- } \\ \text { tion } \end{gathered}$	Slow, shallow	27
48		Nitrous oxide	Cat	80\% inhaled	Sensitization		27
49	Local anesthetics	Novocaine	Rabbit	20-100 mg/kg i.v.	Inhibition	$\begin{array}{\|c\|} \hline \text { Inspiration } \\ \text { prolonged } \\ \hline \end{array}$	28
50		Diphenhydramine HCl	Cat, dog	$6 \mathrm{mg} / \mathrm{kg}$ i.v.	Inhibition		29
	Drugs Influencing Pulmonary Deflation Receptors ${ }^{18}$						
51	Miscellaneous	Phenyl diguanide 19	Cat	$50-100 \mu \mathrm{~g} / \mathrm{kg}$ rt.at.			$24,30$
52		Nicotine 20	Cat	25-100 $\mu \mathrm{g} / \mathrm{kg}$ rt.at.	Sensitiza-	rapid,	30
53		5-Hydroxytryptamine 21	Cat	$1-50 \mu \mathrm{~g} / \mathrm{kg} \mathrm{rt.at}$.		shallow	30,31
54		Urethane	Cat	225 mg rt.at.	$\begin{gathered} \text { Sensitiza- } \\ \text { tion } \end{gathered}$		30
55		Acetylcholine	Cat	$175 \mu \mathrm{~g}$ rt.at.	Sensitization		30
56		$\begin{array}{\|l} 2, \text { a } \text { Naphthyl ethyl } \\ \text { isothiourea } 22,23 \\ \hline \end{array}$	Cat, rabbit	$4-60 \mu \mathrm{~g} / \mathrm{kg}$ i.v.			24
57		Veratridine 23	Rabbit	5-10 $\mu \mathrm{g} / \mathrm{kg}$ i.v.		followed	24
58		Diphenhydramine $\mathrm{HCl} 23,24-$	$\begin{gathered} \text { Cat, dog, } \\ \text { rabbit } \end{gathered}$	0.4-3 mg/kg i.v.		by rapid.	29,32
59		Mepyramine maleate ${ }^{23}$	$\underset{\text { rabbit }}{\text { Cat, dog, }}$	5-10 mg/kg i.v.		shallow	29,32

/15/ Slowly adapting receptors mediating the "Hering-Breuer inflation reflex." /18/ Possibly responsible for the "Hering- Breuer deflation reflex" and the "pulmonary respiratory chemo-reflex"; this has not been established [43]. /19/Probably also 18 other guanides [44]. /20/Sulphate. /21/Creatinine $\mathrm{SO}_{4}$./22/Also 13 other isothioureas. /23/ Not established by nervous action-potential records. /24/Also 20 similar substances in dogs.
Contributors: (a) Widdicombe, J. G., (b) Loew, E. R.
References: [1] Heymans, C., Bouckaert, J. J., and Dautrebande, L., Arch. internat. pharm. dyn., Par. 40:54, 1931. [2] Von Euler, U. S., Liljestrand, G., and Zotterman, Y., Skand. Arch. Physiol., Berl. 83:132, 1939. [3] Heymans, C., Bouckaert, J. J., Farber, S., and Hsu, F. J., Arch. internat. pharm. dyn., Par. 54:129, 1936. [4] Landgren, S., Liljestrand, G., and Zotterman, Y., Acta physiol. scand. 30:149, 1953. [5] Liljestrand, G., and Zotterman, Y., ibid 31:203, 1954. [6] Shen, T. C., and Hauss, W. 11., Arch. internat. pharm. dyrn., Par. 63:251, 1939. [7] Jarisch, A., Landgren, S., Neil, E., and Zotterman, Y., Acta physiol. scand. 25:195, 1952. [ 8] Winder, C. V., Am. J. Physiol. 118:389, 1937. [ 9] Hauss, W. H., and Shen, T. C., Arch. internat. pharm. dyn., Par. 62:411, 1939. [10] Douglas, W. W., J. Physiol. 118:373, 1952. [11] Aviado, D. M., Pontius, R. G., and Schmidt, C. F., J. Pharm. Exp. Ther. 97:420, 1949. [12]Landgren, S., Liljestrand, G., and Zotterman, Y., Acta physiol. scand. 26:264, 1952.
[13] Heymans, C., Delaunois, A. L., Martini, L., and Janssen, P., Arch. internat. pharm. dyn., Par. 96:209, 1953. [14] Anitschkow, S. V., ibid 55:61, 1937. [15] Landgren, S., Liljestrand, G., and Zotterman, Y., Arch. exp. Path., Lpz. 219:185, 1953. [16] Philippot, E., and Dallemagne, M. J., Arch. internat. pharm. dyn., Par. 81:427, 1950. [17] Douglas, W. W., and Toh, C. C., J. Physiol. 117:71P, 1952. [18] Pannier, R., and De Backer, J., Arch. internat. pharm. dyn., Par. 70:110, 1945. [19] Nims, R. G., Severinghaus, J. W., and Comroe, J. H., J. Pharm. Exp. Ther. 109:58, 1953. [20] Dawes, G. S., Mott, J. C., and Widdicombe, J. G., Arch. internat. pharm. dyn., Par. 90:203, 1952. [21] Gernandt, B. E., Acta physiol. scand. $11:($ suppl 35) 1, 1946. [22] Dontas, A. S., and Nickerson, M., Arch. internat. pharm. dyn., Par. 106:312, 1956. [23] Meier, R., Bein, H. J., and Helmich, H., Experientia, Basel 5:484, 1949. [24] Dawes, G. S., Mott, J. C., and Widdicombe, J. G., J. Physiol. 115:258, 1951. [25] Paintal, A. S., íbid 135:486, 1957. [26] Dawes, G. S., Mott, J. C., and Widdicombe, J. G., Brit. J. Pharm. 6:675, 1951.
[27] Whitteridge, D., and Balbring, E., J. Pharm. Exp. Ther. 81:340, 1944. [28] Bucher, K., Helvet. physiol. pharm. acta 5:348, 1947. [29] Jones, J. V., Brit. J. Pharm. 7:450, 1952. [ 30] Paintal, A. S., Quart. J. Exp. Physiol., Lond. 42:56. 1957. [31] Mott, J. C., and Paintal, A. S., Brit. J. Pharm. 8:238, 1953. [32] Aviado, D. M., Pontius, R. G., and Li, T. H., J. Pharm. Exp. Ther. $99: 425,1950$. [ 33] Heymans, 'C., and Bouckaert, J. J., Arch. internat. pharm. dyn., Par. 65:196, 1941. [34] Mercier, F., Rizzo, C., and Delphaut, J., C. rend. Soc. biol. 115:546, 1934.
[ 35] Dallemagne, M. J., and Philippot, E., Arch. internat. pharm. dyn., Par. 79:413, 1949. T36] Philippot, E., ibid 57:357, 1937. [37] Schweitzer, A., Weizmann, M., and Wright, S., Cardiologia, Basel $\underline{2}: 193,1938$. [38] Philippot, E., and Dallemagne, M.J., Arch. internat. pharm. dyn., Par. 80:451, 1949. [39]Heymans, C., and Van den Heuval-Heymans, G., ibid 93:95, 1953. [40] Heymans, C., Hyde, J. E., Terp, P., and De Vleeschhouwer, G., ibid 90:140, 1952.
[41] Dallemagne, M. J., and Philippot, E., ibid 87:127, 1951. [42] Pannier, R., and Verbeke, R., ibid 74:364, 1947.
[43] Dawes, G. S., and Comroe, J. H., Physiol. Rev. 34:167, 1954. [44] Dawes, G. S., and Mott, J. C., Brit. J. Pharm. 5:65, 1950.

## 133. DIRECT ACTION OF DRUGS ON THE BRONCHI

Drugs are listed alphabetically, using a well-known name. Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all "effects" included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Drug actions influencing only anaphylactic or asthmatic bronchospasm, or other pathological states of the bronchi, were also excluded. Concentrations of drugs are given in $\mu \mathrm{g} / \mathrm{ml}$ for local action on isolated preparations, and doses in $\mathrm{mg} / \mathrm{kg}$ for drugs administered systemically. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted. $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates $I=$ inactive.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1	Acacia (Gum arabic)		Guinea pig	17,000	1			1
2	Acetic acid	Dog		$\mathrm{D}^{1}$			2	
3	Acetylcholine	Man	0.2-40	C			3-28	
4		Cat	0.1-10	C	0.002-1.0	C		
5		Dog	0.01-1.0	C	0.002-0.5	C		
6		Guinea pig	0.1-200	C	0.01-0.05	C		
7		Monkey	4-40					
8		Ox	0.7	C				
9		Pig		C				
10		Rabbit	0.5-10	C				
11		Rat	1-10	C				
12		Frog	$10^{-6-100}$	C				
13	Acetylmorphine	Dog				C	29	
14	Aconitine	Frog	300	C	0.1-1.0	C	30	
15		Turtle				C		
16	Adenine ( 6 -Aminopurine)	Guinea pig	10-100	D			15,31	
17		Pig	$<1$	D				
18	Adenosine (9-Adenine ribofuranoside)	Cat			5	D	15,32	
19		Guinea pig	10-100	D	1	D		
20	Adenosine triphosphate	Cat				I	15,33	
21		Guinea pig	200-400	D				
22	Adenylic acid, muscle (Adenosine-5phosphoric acid)	Cat			10	(D)	15,34	
23		Guinea pig	10-200	D				
24	Adenylic acid, yeast (Adenosine-3phosphoric acid)	Cat			10	1	15,32,34	
25		Guinea pig	$<400$	I		D		
26	Agar	Guinea pig	10.000	C	15-50	C	1,35,36	
27	Agaricin	Dog				(D)	37	
28	Agmatine	Guinea pig		C			38	
29	Alcohol (Ethanol)	Cat			500	D	31,39,40	
30		Ox		A				
31		Pig		D				
32	Allantoin	Guinea pig	1-20	I			15	
33	Alloxan (2, 4, 5, 6-Teiraoxopyrimidine)	Guinea pig	20-40	D			15	
34	Alphaprodine (Nisentil; Nu-1196; a-1,3-Dimethyl-4-phenyl-4-propionoxy-piperidine)	Guinea pig		I			41	
35	Alstonine (Chlorogenine)	Dog			3-5	D	42	
36	Althea	Guinea pig	25,000	I			1	
37	Alypin	Pig		D			31	
38	Aminophylline (Theophylline-ethylene diamine)	Man	10-100	D	4-10	D	$\begin{gathered} 17,21,43- \\ 53 \end{gathered}$	
39		Cat	1000	D				
40		Dog	100-500	D	12-75	D		
41		Guinea pig	5-200	D	50-100	D		
42		Rabbit	1,000-10,000	D				
43		Rat	100	D				
44	2-Aminopyrimidine	Guinea pig	10-100	D			15	
45	Aminopyrine (Pyramidon)	Guinea pig	1000	D			54	
46	Ammonium bicarbonate	Rabbit			25	1	55	
47	Ammonium chloride	Ox	1500	D			$\begin{gathered} 10,31,39 \\ 55 \end{gathered}$	
48		Pig	800	C				

/1/ At pll 6.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns D and Findicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
49	Ammonium chloride (concluded)		Rabbit			50	D	10,31,39,55
50		Frog	300-1000	C				
51	Amyl nitrite	Guinea pig	5000	D			56	
52	Anagyrine	Guinea pig	50-100	(C)			16	
53	Andromedotoxin	Guinea pig	20	C			57,58	
54		Rabbit	1-4	C				
55	Antazoline (Antistine; Histostab; N-BenzylN -phenyl-aminomethylimidazoline)	Man	800	D			59,60	
56		Cat			5	C		
57		Guinea pig	5-40	C				
58		Guinea pig	100-1000	D				
59	Antergan (Lergitin; RP2339; N-Benzyl-N-phenyl- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-ethylenediamine)	Cat			0.5-5.0	C	59-61	
60		Dog			1.0	C		
61	Antipyrine (Phenazone; 1,5-Dimethyl-2-phenyl-3-pyrazolone)	Pig		C			31	
62	Apocodeine	Cat			1	C	62	
63		Rabbit			1	C		
64	Apothesin	Pig		I			31	
65	Arecoline	Cat	0.3-2.5	C	0.02-3.0	C	$\begin{gathered} 5,12,19,39 \\ 63-71 \end{gathered}$	
66		Dog		C	0.02-0.5	C		
67		Guinea pig	1	C				
68		Ox	1-170	C				
69		Rabbit		C	0.1-0.45	C		
70	Arsphenamine	Guinea pig	100-200	1			1	
71	Aspidiospermine	Cat -				I	72	
72		Ox		1				
73	Aspidiosamine	Cat				1	72	
74		Ox		1				
75	Atropine	Man	$<10$	1			$\begin{gathered} 6,8,10,24 \\ 26,36,37 \\ 39,43,56 \\ 60,64,68 \\ 73-77 \end{gathered}$	
76		Cat		D				
77		Dog	5	(D)	$<2$	I		
78		Guinea pig	<10	I	-			
79		Guinea pig	100-1000	C	-			
80		Monkey		C	-			
81		Ox	30	D				
82		Rabbit		D				
83		Rat		D		-		
84		Frog	10-20	D		-		
85	Azapetine (llidar; Ro Z-3248; 6-Allyl-6.7-dihydro-5H-dibenz-[c,e]-azepine)	Guinea pig	10	C	-		78	
86	Barbituric acid	Guinea pig	10	(D)			15	
87	Barium chloride	Man		C			$\begin{gathered} 10,15,31,36 \\ 39,43,56 \\ 77,79-85 \end{gathered}$	
88		Cat		C	10-100	C		
89		Dog	50	C	3-20	C		
90		Guinea pig	20-5000	C				
91		Ox	10-30	C		-.		
92		Pig	800	C				
93		Rabbit	30-3000	C				
94		Sheep		C				
95		Frog	25-2500	C				
96	Benzoylcholine	Cat	$<1000$	1			86	
97		Rabbit	$<1000$	1				
98	Benzyl acetate	Pig	5000	D			31	
99	Benzyl alcohol	Pig	400-800	D			31	
100	Benzyl benzoate	Dog				(C)	31,87,88	
101		Pig		D				
102	$\begin{aligned} & 1 \text { - Benzyl-3- } \beta \text {-diethylaminoethyl-5,5-diallyl } \\ & \text { barbituric acid } \end{aligned}$	Cat			6-10	C	61	
103	Benzyl nitrite - - -	Pig	400	D			31	
104	Benzylmorphine (Peronine)	Dog			2	C	29	
105	Benzyltrimethylammonium iodide	Guinea pig		C			89	
106	Betaine hydrazide	Dog				C	90	
107	Bradykynin (Kallidin)	Man		1			15,91	

133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature shoutd be consulted); $C=$ constricts; $D$ - dilates; $I=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
108	Bradykynin (Kallidin) (concluded)		Cat		I			15,91
109		Guinea pig	1-100	C				
110	Bromal hydrate	Dog			20	C	92	
111	Y-Bromohomocholine bromide ( $\gamma$-Bromopropyltrimethylammonium bromide)	Dog				C	93	
112	Cadaverine	Guinea pig		C			38	
113	Caffeine (Theine; Trimethylxanthine)	Cat		D		D	$\begin{gathered} 10,15,37,39 \\ 56,84,95 \\ 96 \end{gathered}$	
114		Dog				D		
115		Guinea pig	20-1000	D	10-1000	D		
116		Ox	1000	D				
117		Pig	400	D				
118		Frog	400	D				
119	Calcium chloride	Guinea pig	5000	C			10,36,39,97	
120		Ox	5000	C				
121		Frog	800	C				
122	Camphor ${ }^{1}$	Ox	100-500	D			98	
123			1000	C				
124	Caramiphen (Parpanit; Diethylaminoethyl 1-phenyl-cyclopentyl-1-carboxylate)	Guinea pig		(C)			99	
125	Carbachol (Doryl; Carbaminoylcholine)	Man	0.1-1	C			17,20	
126		Guinea pig	5-50	C				
127	Carbaminoyl- $\beta$-methylcholine	Cat			0.2-2.0	C	100	
128		Guinea pig		C				
129	Chelidonine	Cat			5-10	D	31.101-103	
130		Dog			5-10	D		
131		Guinea pig		D				
132		Pig	800	D				
133		Rabbit			50	D		
134	Chlorcyclizine (Di-Paralene, Histantin; Perazil; 47-282; N-(4-Chlorbenzhydryl)-N'-methyl-piperazine)	Cat			2-10	C	60	
135		Guinea pig	5-100	C				
136		Guinea pig	100-1000	D				
137	Chloral hydrate	Dog				1	39.92	
138		Ox	100	A				
139	Chloroform	Guinea pig	3000	D			$\begin{gathered} 2,31,39,56 \\ 104 \end{gathered}$	
140		Ox		C				
141		Pig		A				
142	Chloroguanide (Guanatol; Paludrine:   Proguanil; $\mathrm{N}_{1}-(\mathrm{p}-$ Chlorophenyl $)-\mathrm{N}_{5}$ -isopropyl-biguanide)	Guinea pig			0.5-10	I	105	
143	Chlorothen (Chloropyrilene; Tagathen;   N -(5-Chloro-2-thenyl)-N-(2-pyridyl)-   $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-ethylenediamine)	Cat			3	(C)	60	
144		Dog			5	C		
145		Guinea pig	1-160	C				
146		Guinea pig	200-1000	D				
147	Chlorpheniramine (Chlorprophenpyridamine; Chlor-Trimeton; 1-(p-Chlorophenyl)-1-(2-pyridyl)-3-dimethylamino-propane)	Cat			10	C	60	
148		Guinea pig	1-400	C				
149		Guinea pig	1000	D				
150	Choline chloride	Dog				(D)	$\begin{array}{r} 16,37,56 \\ 106,107 \end{array}$	
151		Guinea pig	10-1000	C				
152		Rabbit		(C)	50	C		
153	Choline ethyl ether	Cat				(C)	7	
154	Choline nitrate	Cat				(C)	7	
155	Choline nitrite	Cat				(C)	39	
156		Ox	$>1$	C				
157	Citrinin	Guinea pig		C			108	
158	Clupeine	Guinea pig		C			38	
159	Cocaine	Cat		C			$\begin{gathered} 30,31,37 \\ 39,68 \end{gathered}$	
160		Dog		C		1		
161		Ox	1000	D				
162		Pig		D				
163		Rabbit		C				

See also sodium camphorate.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns D and Findicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Specres	Effect				Reference	
		Lacal	Systemic					
		$\mathrm{\mu g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
164	Cocaine (concluded)		Frog	100-1000	C	0.5-5	C	$\begin{gathered} 30.31,37, \\ 39.68 \end{gathered}$
165		Turtle			0.5-5	(D)		
166	Codeine (Methyl morphine)	Dog		(C)			$\begin{array}{r} 29,31,79 \\ 109,110 \end{array}$	
167		Pig		(C)				
168	Colchiceine	Pig		(D)			31	
169	Colchicine	Pig		(D)			31	
170	Compound 48/80 ((p-M ethoxyphenylethyl)methylamine formaldehyde polymers)	Guinea pig	40	C			111	
171	Congo red	Guinea pig	1000	I			1	
172	Coniine	Guinea pig	10-100	C			16	
173	Cotarnine (Stypticine)	Dog				(D)	29,66	
174	Creatinine	Guinea pig	10-100	I			15	
175	Cryptopeine (Cryptopine)	Dog				I	29,109	
176		Pig		I				
177	Cularine	Guinea pig	20-200	I			112	
178	Curare ${ }^{1}$	Cat				A	$\begin{array}{r} 62.80,96 \\ 114,115 \end{array}$	
179		Dog				C		
180		Guinea pig				C		
181		Rabbit				C		
182	Curarine	Cat	300-600	C			114,116,117	
183		Dog			0.5-2.0	C		
184		Guinea pig				C		
185	Cyanuric acid (s-Triazinetriol)	Guinea pig	10-100	(D)			15	
186	Cytisine	Guinea pig	50-200	C			16	
187	Darmstoff	Ox		1			118	
188	Decamethonium (Eulissin)	Man	10	(D)			15	
189	2,6-Diaminopurine	Guinea pig	20-80	D			15	
190	Dextrin	Guinea pig	10.000	I			1	
191	Dextromethorphan (Ro 1-5470/5; d-3-Methoxy- N -methyl-morphinan)	Cat			1	C	119	
192	Dextrorphan (Ro $1-6794$; d-3-Hydroxy-N-methyl-morphinan)	Cat			1	C	119	
193	Dibenzyline (Dibenyline; SKF 688; N-Phenoxy-isopropyl-N-benzyl- $\beta$-chloroethylamine)	Guinea pig	1-10	1			16	
194	Dicholine chloride (Di-trimethyl ethylenediamine dichloride)	Rabbit		C			107	
195	Diethylaminoethanol	Guinea pig		C			120	
196	Diethylaminoethyl diphenythydroxythioacetate (Ro 3-0226)	Guinea pig	3-5	D			83,121	
197	Diethylaminoethyl diphenylthioacetate (Ro 3-0235)	Guinea pig	10-30	(D)			83	
198	2-(2'- Diethylaminoe thylthio)-1,1-diphenylethanol (Ro 3-0326)	Guinea pig	10-30	D			83.121	
199		Rabbit	1-5	(D)				
200	Diethylmorphine	Cat		C			68,76	
201		Dog		C	1-4	C		
202		Rabbit		1				
203	Digitalin	Cat			1	C	40.80	
204	Dihydroergotamine methanesulphonate	Guinea pig	0.4-1.0	C			16	
205	Dihydro- $\beta$-erythroidine	Dog			2	I	114	
206	Diisopropylfluorophosphate (DFP)	Dog			7-20	C	122-124	
207		Guinea pig		C				
208	N, N-Dimethylhexahydronicotinic acid methyl ester iodide	Cat			0.3	C	125	
209	N-Dimethyl-histamine	Guinea pig	0.2-1.0	C			126	
210	Diphenhydramine (Benadryl; $\beta$-Dimethylaminoethyl benzhydryl ether)	Cat			2-10	C	$43,60.127$	
211		Dog			2	C		
212		Guinea pig	0.3-400	C				
213		Guinea pig	1000	D				
214	Emetine	Guinea pig	10,000	I			39.128	
215		Ox	300	D				
216	Ergot ${ }^{2}$	Cat				I	77,80,129	

/1/ Including introcostrin. /2/ Including ergotine and secacornine.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(C)
217	Ergot ${ }^{1}$ (concluded)		Dog		1		(C)	77,80,129
218		Rabbit			250	C		
219	Ergotamine (Femergin)	Cat		C	2	C	$\begin{array}{r} 16,22,26 \\ 68,76,97 \end{array}$	
220		Dog		C	2	C		
221		Guinea pig	1-10	C				
222		Pig		C				
223		Rabbit		C				
224	Ergotoxine ethanesulphonate ${ }^{2}$	Cal		C	10	C	$\begin{gathered} 15,31,42,62 \\ 68,76 \\ 130-132 \end{gathered}$	
225		Dog		C		(C)		
226		Guinea pig	1-5	C				
227		Pig	80	C				
228		Rabbit		C				
229	Ether (Die thyl ether)	Guinea pig	3000	D			2,31,39,56	
230		Ox		D				
231		Pig		A				
232	Ethylcholine	Dog			1	C	133	
233		Guinea pig		C				
234	Ethylenediamine	Guinea pig	10-250	C			15,50,53	
235		Rabbit		1				
236	N-Ethyl-histamine	Guinea pig			2	C	126	
237	Ethyl- $\beta$-me thylcholine	Dog			1	1	133	
238		Guinea pig		C				
239	Ethylmorphine (Dionine)	Dog			3	C	29.79	
240	Ethyl-urethane (Urethane, q.v.)	Ox		D			39	
241	a-Eucaine	Pig		D			31	
242	$\beta$-Eucaine (Benzamine; Betacaine)	Pig	80	D			31	
243	(a-Furfurylethyl)trimethylammonium iodide	Guinea pig		C			89	
244	Furfuryltrimethylammonium iodide   (Furmethide; Furtrethonium)	Guinea pig		C			89	
245	Gallamine (Flaxedil)	Man	1000	1			15	
246	Gelatin	Guinea pig	10,000	1			1	
247	Gelsemine	Pig		D			31	
248	Gitalín	Cat		1			84	
249	Glyceryl irinitrate (Nitroglycerin: Trinitrin)	Dog				D	129	
250		Rabbit			1.3	D		
251	Glycogen	Guinea pig	1000	1			1	
252	Gold chloride	Cat				C	80	
253	Guanidine	Guinea pig	200-1000	C			15.38	
254	Guanine (2-Amino-6-oxo-purine)	Guinea pig	$<40$	1			15, $\overline{3} 1$	
255		Pig		D				
256	Guanosine (9-Guanine-ribofuranoside)	Guinea pig	20-100	D			15,31	
257		Pig		1				
258	Heptyl aldehyde sodium bisulphite (Hepbisul)	Guinea pig	10,000-20,000	(C)			134	
259	lfeplyl isothiourea	Guinea pig				(C)	135	
260	Heroine (Diacetylmorphine)	Dog			2	C	29,31	
261		Pig		(C)				
262	Hexaethyltetraphosphate (HETP)	Dog			0.6-1.3	C	136	
263	Hexamethonium	Guinea pig	200-800	(C)			16	
264	Histamine (Ergamine; $\beta$ - Imidazolylethylamine	Man	0.1-10	C	0.1	C	$\begin{aligned} & 1,3,4,6,8,10 \\ & 12,15,17 \\ & 21,32,39 \\ & 45,53,55 \\ & 56,62,66 \\ & 68,77,79 \\ & 84,95,102 \\ & 126,128 \\ & 137-151 \end{aligned}$	
265		Man	1000	(D)				
266		Cat	2-10	(C)	0.003-1	C		
267		Dog	1-1000	C	$0.001-4.0$	C		
268		Guinea pig	0.2-100	C	0.0001-1.0	C		
269		Guinea pig	100-10,000	(C)				
270		Monkey		$\overline{\mathrm{C}}$				
271		Ox	10	(C)				
272		Pig		C				
273		Rabbit	<1000	(I)	40	1		
274		Rabbit			0.04-2.0	C		
275		Rat		(1)				
270		Frog	0.01-20	C	1-10	C		

/1/ Including ergotine and secacornine. ./2/ Mainly ergocornine, plus a little ergocristine and ergocryptine.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns D and Findicate action is slight, irregular, or doubtful, and the original Literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
277	Homatropine (Tropine mandelate)		Dog			0.2	D	74
278	Homatropine methylbromide (Novatropine; Tropine- N -methylbromide mandelate)	Guinea pig	10	I			43	
279	Hydantoin	Guinea pig	10-100	I			15	
280	Hydrastine	Guinea pig		1			112	
281	Hydrastinine	Dog			1	D	66	
282	Hydrochloric acid	Guinea pig		${ }^{\text {C }}$			10,31,36,39	
283		Ox		(D)			60,152	
284		Pig		C				
285		Frog		D				
286	Hydrocyanic acid	Cat				D	80	
287	Hydroquinone	Dog			15	(D)	131	
288	d-3-Hydroxy-N-allylmorphinan (Ro 1-7059)	Cat			1	1	119	
289	1-3-Hydroxy-N-allylmorphinan (Ro 1-7700)	Cat			1	I	119	
290	m-Hydroxybenxyldimethylamine methylcarbamate	Cat				(C)	27	
291	p-Hydroxybenzyldimethylamine methylcarbamate	Cat				(C)	27	
292	o-Hydroxybenzyldimethylamine methylcarbamate methiodide	Cat				(C)	27	
293	(2-Hydroxy-5-phenylbenzyl)trimethylammonium dimethylcarbamate (Nu-683)	Dog			0.5	C	122	
294	(m-Hydroxyphenyl)diethylmethylammonium bromide (Ro 2-2980)	Guinea pig	<100	1			153	
295	(m-Hydroxyphenyl)dimethylethylammonium bromide (Ro 2-3198)	Guinea pig	<100	I			153	
296	$\begin{aligned} & \text { [a-(m-Hydroxylphenyl)-ethyl] dimethylamlne } \\ & \text { methylcarbamate (Mlotine) } \end{aligned}$	Cat			0.4	C	27,154	
297	(m-Hydroxyphenyl)(rimethylammonium bromide (Ro 2-2561)	Guinea pig	<100	1			153	
298	5-Hydroxytryptamine creatinine sulphate (Serotonin)	Man		D			$\begin{gathered} 13.91,119 \\ 144,155- \\ 160 \end{gathered}$	
299		Cat		C	0.003-1.0	C		
300		Guinea pig	5	C	0.003-0.2	C		
301		Rabbit		C				
302	Hypoxanthine (6-Oxo-purine)	Guinea pig	4-40	1			15,31	
303		Pig		D				
304	Kallikrein (Padutin)	Cat		D			34.85	
305	Kalmia angustifolia 2 extract	Guinea pig		C			161	
306	Kaolin	Guinea pig	10,000	C			36	
307	Khellin	Cat			40-70	D	44,162	
308		Guinea pig	2-10	D				
309	Lactic acid	Guinea pig		D			152	
310	Levomethorphan (Ro 1-7788; 1-3-MethoxyN -me thyl-morphinan)	Cat			1	1	119	
311	Levorphan (Ro 1-5431/7; Levo-dromoran; 1-3-Hydroxy-N-methyl-morphinan)	Cat			1	D	119	
312	Lithium chloride	Pig		I			39	
313	Lobelanidine	Cat			3	D	163	
314	Lobelanine	Cat				(D)	163	
315	Lobeline	Cat			1	(D)	$\begin{gathered} 5,16,31,80 \\ 97,163 \\ 164 \end{gathered}$	
316		Dog			3	(A)		
317		Guinea pig	10-50	C				
318		Guinea pig	80-100	D				
319		Ox	150-250	D				
320		Pig		D				
321	Magnesium chloride	Dog		D			2,10,39,97	
322		Guinea pig		D				
323		Ox		D				
324		Frog	3000	(C)				
325	Magnesium sulphate	Guinea pig		D			165	

$/ 1 / \mathrm{pH} 5$ to $\mathrm{pH} 2.12 /$ Lambkill.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive Parentheses in Columns D and Findicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Symonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
326	Melamine ( $2,4,6$-Triaminotriazine)		Guinea pig	200-800	D			15
327	Meperidine (Demerol; Dolantal; Dolantin; Dolosal; Pethidine; Ethyl-1-methyl-4-phenylpiperidine-4-carboxylate)	Guinea pig		D			166	
328	Methacholine (Amechol; Mecholyl; Acetyl- $\beta$-methylcholine)	Man		C	0.5	C	$\begin{array}{r} 2,114,133 \\ 167-169 \end{array}$	
329		Cat		C				
330		Dog	1	C	0.001-0.1	C		
331		Guinea pig		C				
332		Rat		C				
333	Methaphenilene (Diatrine: N -(2-Thenyl)-N-phenyl- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-ethylenediamine)	Cat			1-5	C	60	
334		Dog			2	C		
335		Guinea pig	1-140	C				
336		Guinea pig	200-1000	D				
337	```Methapyrilene (Histadyl; Thenylene; N-(z- Thenyl)-N-(2-pyridyl)-N',N'-dimethyl- ethylenediamine)```	Cat			2.5-10	C	60	
338		Dog			2	C		
339		Guinea pig	0.2-200	C				
340		Guinea pig	1000	D				
341	Methenamine (Cystogen; Cystomine; Formin; Hexamine; Uritone; Urotropine; Hexamethylenetetramine)	Dog				D	15,37	
342		Guinea pig	200-1000	I				
343	2-Methyl-4-amino-5-cyano-pyrimidine	Guinea pig	10	(D)			15	
344	2-Methyl-4-amino-5-methylamino-pyrimidine ( $\mathrm{B}_{1}$-pyrimidine; Grewe diamine)	Guinea pig	100	(D)			15	
345	$\beta$-Methylcholine ethyl ether	Dog				C	167	
346	2-Methyl-4,6-dihydroxy-pyrimidine	Guinea pig	<100	I			15	
347	(5-Methylfurfuryl)trimethylammonium iodide   (Methyl-furmethide)	Guinea pig			5-50	C	20	
348	N-Methyl-histamine	Guinea pig			0.1-0.3	C	126	
349	Methyl-isothiourea	Guinea pig			2-5	(1)	135	
350	Morphine	Cat		C	20	C	$2,31,39,40$$56,68,76$79,80170,171	
351		Dog		C	0.8-5.0	C		
352		Guinea pig	1000	I	25	(I)		
353		Ox	1000	D				
354		Pig	200	(C)				
355		Rabbit		1				
356	$\beta$-Morpholinoethyl diphenylhydroxy thioacetate (Ro 3-0368)	Rabbit	20	(D)			83.121	
357	Y-Morpholinopropyl diphenylhydroxy thioacetate (Ro 3-0299)	Guinea pig		D			83.121	
358		Rabbit	20-50	(D)				
359	Muscarine	Cat				C	$\begin{gathered} 10,70,80,82 \\ 84,87,96 \\ 113,129 \\ 143,172- \\ 174 \end{gathered}$	
360		Dog		C		C		
361		Guinea pig	0.007-0.05	C		C		
362		Ox		C				
363		Pig		C				
364		Rabbit	0.007	C		C		
365		Frog		C				
366		Turtle				C		
367	2-a-Naphthylethyl isothiourea	Cat			0.01-0.02	C	127	
368	Narceine	Dog				I	29,31.110	
369		Pig	200	D				
370	Narcotine (Gnoscopine)	Dag			3	C	29.31.110	
371		Pig				D		
372	Neopine	Dog				C	29	
373	Neurine (Vinyltrimethylammonium hydroxide)	Cat				C	80	
374	Nicotine ${ }^{1}$	Man		1			$\begin{gathered} 2,10,16,31 \\ 37,40,56 \\ 62,77,80 \\ 84,130 \\ 137,175 \\ 176 \\ \hline \end{gathered}$	
375		Cat		(C)	3	C		
376		Cat			10	D		
377		Dag	5-2000	C		A		
378		Guinea pig	20-1000	A				
379		Ox	1000	1				

/1/ See also sodium nicotinate.
133. DIRECT ACTION OF DRUGS ON THE BRONCH1 (Contlnued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
380	Nicotine ${ }^{1}$ (concluded)		Pig	80	A			
381		Frog	0.1-1.0	D		A		
382	Nucleic acid, thymus	Pig		1			31	
383	Nucleic acid, yeast	Pig		1			31	
384	Ovalbumin	Guinea pig		1			97	
385	Pantopium (Oranopon; Pastopon) ${ }^{2}$	Dog			3	C	29,31	
386		Pig	20	D				
387	Papaverine	Cat	4-20	D			$\begin{array}{r} 2,10,11,15, \\ 31,43,48 \\ 83,84,98 \\ 109,171, \\ 177-181 \end{array}$	
388		Dog		D	1-2	D		
389		Guinea pig	0.5-5	D	25-80	D		
390		OX	50-100	D				
391		Pig	50	D				
392		Rabbit	<100	(I)				
393		Frog	50-200	D				
394	Pavatrine ( $\beta$-Dimethylaminoethyl fluorene-9-carboxylale)	Guinea pig			$<50$	I	171	
395	Pentamidine isethionale	Guinea pig			25	C	14	
396	Pentylenetetrazole (Cardiazol; Metrazol; Pentamethylene (etrazole)	Guinea pig		1			10.97	
397		Frog	0.4	C				
398	Peptone	Cat	$<50$	1	20-50	C	$\begin{gathered} \hline 1,6,12,39, \\ 40,56,84, \\ 94,96 \\ 114,127, \\ 143,180 \\ 182-184 \end{gathered}$	
399		Dog			0.1-0.2	C		
400		Guinea pig	300-10,000	C	7	C		
401		Ox		1				
402		Frog	<100	1				
403	Phenacaine (Holocaine)	Pig		D			31	
404	Phenindamine (Thephorin; Nu 1504; 2-Methyl-9-phenyl-2,3,4,9-tetrahydro-1-pyridindene)	Cat			1-10	C	60	
405		Dog			1	C		
406		Guinea pig	1-400	C				
407		Guinea pig	1000	D				
408	1-Phenoxy-2-dimethylamino-ethane	Guinea pig		C			185	
409	Phenoxyethyldiethylamine (928 F)	Guinea pig		1			186	
410	```Phentolamine (Regitine; Rogitine; C 7337; 2-[N-p'-Tolyl-N-(m'-Hydroxyphenyl)- aminomethyl]-imadazoline)```	Rabbit		1			187	
411	$\mathbf{N}$-Phenyl- $\mathbf{N}^{-e t h y l-} \mathbf{N}^{\prime}$. $\mathbf{N}^{\prime \prime}$-diethylethylenediamine (1571F)	Guinea pig		C			188	
412	(a-Phenylethyl)trimethylammonium iodide	Guinea pig		1			89	
413	Physostigmine (Eserine)	Man	20-100	C			$2,4,9,10,15$$17,31,39$,$40,56,62-$$64,68,71$,$76,80,84$,122,129,$171,189-$191	
414		Cat		C	0.1-2.0	C		
415		Dog		C	0.1-2.5	C		
416		Guinea pig	100	C	0.75	C		
417		Ox		I				
418		Pig		C				
419		Rabbit		C	0.3	C		
420		Frog	10-200	C				
421	Pilocarpine	Man	0.1-1.0	C	<0.1	1	$\begin{aligned} & 2,5,16,17, \\ & 19,31,37, \\ & 39,47,54, \\ & 56,57,62, \\ & 64,68,71, \\ & 73,76,80- \\ & 82,84,94, \\ & 129,131, \\ & 149,174, \\ & 192-200 \\ & \hline \end{aligned}$	
422		Cat	0.2	C	0.1-12.0	C		
423		Dog	0.1-1.0	C	0.05-2.0	C		
424		Guinea pig	1-1000	C				
425		Ox	1-75	C				
426		Pig	30-40	C				
427		Rabbit	10	C	2	C		
428		Turtle			10	C		
429	$\psi$-Piperidinoamyl diphenylhydroxythioacetate (Ro 3-0320)	Guinea pig	1-10	D			83,121	
430		Rabbit	5-20	(D)				
431	$\beta$-Piperidinoethyl diphenylhydroxythioacetate (Ro-0348)	Guinea pig		D			83.121	
432		Rabbit	2-10	(D)				

/1/ See also sodium nicotinate. /2/ Mixed opium alkaloids.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A_{0}=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
433	Y-Piperidinopropyl diphenyihydroxythioacetate (Ro 3-0290)		Guinea pig		(D)			121
434	Piperoxan (Benodaine; 933 F; Piperidinomethylbenzodioxane)	Dog			10	I	22,186	
435		Guinea pig		C				
436	Potassium chloride	Man		C			$\begin{gathered} 3,10,31,36 \\ 39,201 \end{gathered}$	
437		Cat		C				
438		Dog		C				
439		Guinea pig	1000-2500	C				
440		Ox	2000	C				
441		Pig	2500	(D)				
442		Rabbit		C				
443		Rat		C				
444		Frog		A				
445	Primary albumose	Dog			200	C	202	
446	Procaine (Novocaine)	Man	100	(D)			15.31	
447		Guinea pig	$<10$	1				
448		Guinea pig	100	(D)				
449		Pig		D				
450	Promethazine (Phenergan; 3277 RP; N -(2-Dime thylamino-2-methyle thyl)phenothiazinel	Man	400	(D)			60	
451		Cat			1-5	C		
452		Dog			1	C		
453		Guinea pig	0.3-200	C				
454		Guinea pig	1000	D				
455	Prosympal (883 F; Diethylaminomethylbenzodioxane)	Guinea pig		C			186	
456	Protoveratrine	Ox	70	I			39	
457	Putrescine	Guinea pig		C			38	
458	$\beta$-(3-Pyrazole)-ethyla mine	Guinea pig	40-200	C			203	
459	$\beta$-(2-Pyridyl)-ethylamine	Guinea pig	1-40	C			203.204	
460	Pyrilamine (Mepyramine; Neoantergan;   Pyranisamine; $N$-(p-Methoxybenzyl)N -(2-pyridyl)- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-ethylenediamine)	Man	4-200	C			17,25,60	
461		Cat			1-10	C		
462		Dog			1	C		
463		Guinea pig	0.4-700	C				
464		Guinea pig	1000	D				
465	Quebrachamine	Cat				I	72	
466		Ox		I				
467	Quebrachine	Cat				1	72	
468		Ox		I				
469	Quinine	Dog				C	$\begin{gathered} 10,31,37,39 \\ 56 \end{gathered}$	
470		Guinea pig	1000	(D)				
471		Ox		D				
472		Pig		D				
473		Frog	200	C				
474	Quinine methochloride	Dog			10	C	114	
475	Semicarbazide	Guinea pig	$<100$	I			204	
476	Sodium azide	Guinea pig		D			205,206	
477	Sodium bromide	Ox		I			31.39	
478		Pig	2000-4000	D				
479	Sodium camphorate	Dog				I	37	
480	Sodium cyanate	Guinea pig	10-400	D			15,207	
481	Sodium cyanide	Cat		C			2	
482	Sodium hydroxide	Guinea pig		Cl			$\begin{gathered} 10,31,36,39 \\ 60 \end{gathered}$	
483		Ox		(C)				
484		Pig		A				
485		Frog		(C)				
486	Sodium Iodide	Dog	250,000	D		1	$\begin{gathered} 31,37,39 \\ 56,77 \end{gathered}$	
487		Guinea pig	15.000	D				
488		Ox	4000	C				
489		Pig	2500	D				
490	Sodium nicotinate	Dog		(I)			45	

/1/At pH 11.
133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	System					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
491	Sodium nitrate		Ox		I			31,39
492		Pig	3000	(C)				
493	Sodium nitrite	Guinea pig	8000	I	80	D	$\begin{array}{r} 10,31,39 \\ 56,214 \end{array}$	
494		Ox	2000	C				
495		Pig	1000	D				
496		Frog	140	D				
497	Sodium nucleinate	Guinea pig		C			38	
498	Sodium theophyllinate	Rabbit	500	I			53	
499	Sodium thiocyanate	Guinea pig	10,000	I			39,56,94	
500		Ox		C				
501	Sodium m-vanadate	Dog			2	C	208	
502	Sodium o-vanadate	Dog			2	C	37.56	
503		Guinea pig	2000	C				
504	Sparteine	Guinea pig	100	C			16	
505	Staphylococcus toxin	Guinea pig		C			209	
506	Starch (Amylum)	Guinea pig	10,000	I			1	
507	Stovaine	Pig	200	D			31	
508	Strontium chloride	Ox		C			39	
509	Strophanthin	Cat		I			84	
510	Strychnine	Cat		I			39,56,77,84	
511		Dog		(D)				
512		Guinea pig		I				
513		Ox	1000	D				
514	Substance P	Man		1			91	
515		Cat		I				
516	Suramin	Cat			250	(D)	14	
517	Syntropan (Amprotropine; 3-Diethylamino-   2,2-dimethyl-propyl tropate)	Guinea pig	10	I			43	
518	Tetramethylammonium chloride	Guinea pig	80	C			16	
519	Tetraethylpyrophosphate (TEPP)	Guinea pig		C			123	
520	Tetrahydropapaveroline	Cat			2-10	D	196	
521	Tetramethylene diisothiourea	Guinea pig			5	(D)	135	
522	Thebaine	Dog			1	C	31,66,110	
523		Pig				(C)		
524	Theobromine (3,7-Dimethylxanthine)	Cat				D	15,31,95	
525		Dog				D		
526		Guinea pig	40-100	D		D		
527		Pig	70	D				
528	Theophylline (1,3-Dimethylxanthine)	Cat				D	$\begin{gathered} 15,53,95 \\ 210 \end{gathered}$	
529		Dog				D		
530		Guinea pig	10-100	D		$\overline{\mathrm{D}}$		
531		Rabbit	200	I				
532	Theophylline monoethanolamine (Theamin)	Cat				D	95	
533		Dog				D		
534		Guinea pig			10-15	D		
535	Theophylline sodium acetate (Theocin)	Dog			10-60	D	50	
536		Guinea pig		D				
537	Thymine ( 5 -Methyluracil)	Guinea pig	10-100	1			15	
538	Thymoxyethyldiethylamine (929 F)	Guinea pig		C	5	C	186,188	
539	Thyroid extract	Cat				(D)	62	
540		Rabbit				(D)		
541	Thyroxine	Frog	0.001-0.01	C			6	
542	d-Tubocurarine	Man	400	D			15,114	
543		Dog			0.3	A		
544	Trasentine (Adiphenine; Diethylaminoethyl diphenylacetate)	Guinea pig	10	I			43,99	
545	Tribromoethanol	Dog				I	92	
546	Trichloroethanol	Dog				I	92	
547	Trimethylamine	Dog				D	37	
548	Trimethyl(2-aminoethyl)ammonjum chloride	Rabbit		C			107	
549	Trimethyl(z-chlorothyl)ammonium chloride	Rabbit		C			107	

133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
550	Trimethyl(2-methylaminoethyl)ammonium chloride		Rabbit		C			107
551	Tripelennamine (Pyribenzamine; N -(2-Pyridyl)-N-benzyl-N', N'-dimethylethylenediamine)	Cat			0.2-10	C	60	
552		Dog			1	C		
553		Guinea pig	0.4-300	C				
554		Guinea pig	1000	D				
555	Typhobacterin	Guinea pig				C	35	
556	Uracil (2,4-Dioxopyrimidine)	Guinea pig	$<10$	I			15	
557	Urea	Guinea pig	<1000	I			15	
558	Urethane (Ethyl urethane, q.v.)	Cat		D		D	$\begin{gathered} 31,56,80,81 \\ 84,190 \end{gathered}$	
559		Guinea pig	10.000	D				
560		Pig		D				
561		Rabbit	5,000-10,000	D				
562		Sheep	5,000-10,000	D				
563	Uric acid	Guinea pig	200-400	I			15	
564	Venom of Crotalus atrox	Cat		C			211	
565		Guinea pig		C				
566	Venom of Denisonia superba	Cat		(C)			211	
567		Guinea pig		(C)				
568	Venom of Naia naia	Cat		C			211	
569		Guinea pig		C				
570	Veratrine	Cat	10-30	C	0.3	C	$\begin{gathered} 10,39,77,80 \\ 127 \end{gathered}$	
571		Dog	3	D				
572		Ox	$<300$	I				
573		Frog	1-10	D				
574	Visammin	Dog				D	212	
575		Pig		D				
576	Xanthine ( 2,6 -Dioxopurine)	Cat				D	15,31,95	
577		Dog				D		
578		Guinea pig	$<10$	I		D		
579		Pig	0.5-1	D				
580	Xysmalobinum	Cat			0.25	C	213	
581	Zinc sulphate	Frog	600-3000	C			10	

Contributor: Hawkins, D. F.
References: [1] Hanzlick, P. J., and Karsner, H. T., J. Pharm. Exp. Ther. 14:449, 1920. [2] Sollmann, T., and Gilbert, A. J., ibid 61:272, 1937. [3] Akcasu, A., J. Pharm., Lond. 4:671, 1952. [4] Alles, G. A., and Prinzmetal, M., J. Pharm. Exp. Ther. 48:161, 1933. [5] Björkman, S. E., C. rend. Soc. biol. 94:947, 1926. [6] Corsten, M., Pflügers Arch. 244:281, 1941. [7] Dale, H. H., J. Pharm. Exp. Ther. 6:147, 1914. [8] Daly, 1. de B., Quart. J. Exp. Physiol., Lond. 28:357, 1938. [9] Dijkstra, C., and Noyons, A. K., Arch. internat. physiol. 49:257, 1939. [10] Dirner, Z., Arch. exp. Path. 146:232, 1929. [11] Dirner, Z., ibid 157:154, 1930. [12] Epstein, D. E., J. Physiol., Lond. 76:346, 1931. [13] Freyburger, W. A., Graham, B. E., Rapport, M. M., Seay, P. H., Govier, W. M., Swoap, O. F., and Vander Brook, M. H., J. Pharm. Exp. Ther. 105:80, 1952.
[14] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [15] Hawkins, D. F. (thesis), London, 1952. [16] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [17] Hawkins, D. F., and Schild, 11. O., Brit. J. Pharm. 6:682, 1951. [18] Houssay, B. A., and Orias, O., C. rend. Soc. biol. 117:61, 1934. [19] Kiese, M., Arch. exp. Path. $178: 342$, 1935. [20] Lourie, E. M., Brit. J. Pharm. 7:130, 1952. [21] McDougal, M. D., and West, G. B., ibid $8: 26,1953$. [22] Melville, K. I., Arch. internat. pharm. dyn., Par. 58:129. 1938. [23] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. int. $1: 26,1950$. [24] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [25] Schild, H. O., Hawkins, D. F., Mongar, J. L., and Herxheimer, H., Lancet 2:376, 1951. [26] Villaret, M., Justin-Besancon, L., and Vexenat, G., C. rend. Soc. biol. 100:806, 1929. [27] White, A. C., and Stedman, E., J. Pharm. Exp. Ther. 41:259, 1931. [28] Wick, H., Arch. exp. Path. 213:485, 1951. [29] Jackson, D. E., J. Pharm. Exp. Ther. 6:57, 1914. [30] Kleitman, N., Am. J. Physiol. 60:203. 1922. [31] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:373, 1921. [32] Bennet, D. W., and Drury, A. N., J. Physiol., Lond. 72:288, 1931. [33] Green, H. N., and Stoner, II. B., "Biological Actions of the Adenine Nucleotides," p 111, London: Lewis, 1950. [34] Lendle, L., Arch. exp. Path. 187:371, 1937. [35] Hanzlick, P. J., and Karsner, 11. T., J. Pharm. Exp. Ther. 14:379, 1920. [36] Schild, H. O., Quart. J. Exp. Physiol., Lond. $26: 165$, 1936. [37] Jackson, D. E., J. Pharm. Exp. Ther. 4:291, 1913. [38] De Cuyper, T., Arch. internat. pharm. dyn., Par. 72:360, 1946. [39] Trendelenburg, P., Arch. exp. Path. 69:79, 1912. [40] Weber, E., Arch. Anat. Physiol., Lpz., p 63, 1914. [41] Gruber, C. M., Jr., Kwang Soo Lee, and Gruber, C. M., J. Pharm. Exp. Ther., 99:312, 1950. [42] Wakim, K. G., and Chen, K. K., ibid 90:57, 1947. [43] Castillo, J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947. [44] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [45] Gilbert, A.J.,

## 133. DIRECT ACTION OF DRUGS ON THE BRONCHl (Continued)

and Goldman, F., Proc. Soc. Exp. Biol. 44:458, 1940. [46] Hambourger, W. E., Freese, H. B., Winbury, M. M., and Mikhiels, P. M., J. Pharm. Exp. Ther. $94: 367$, 1948. [47] Hawkins, D. F., Herxheimer, H., and Schild, H. O., J. Physiol., Lond. 113:26P, 1951. [48] Herxheimer, H., Arch. internat. pharm. dyn., Par. $106: 371,1956$.
[49] Lehmann, G., J. Pharm. Exp. Ther. 92:249, 1948. [50] Luduena, F. P., ibid 75:316, 1942. [51] Rubitsky, H. J., Herschfus, J. A., Levinson, L., Bresnick, E., and Segal, M. S., J. Allergy 21:559, 1950. [52] Segal, M. S., Levinson, L., Bresnick, E., and Beakey, J. F., J. Clin. Invest. 28:1190, 1949. [53] Young, R. H., and Gilbert, R. P., J. Allergy 12:235, 1941. [54] Januschke, H., and Lasch, F., Arch. exp. Path. 114:70, 1926. [55] Eichler, O., and Mügge, H., ibid 159:633, 1931. [56] Baehr, G., and Pick, E. P., ibid 74:41, 1913. [57] Chu, H-P, and How, G. K., Chin. J. Physiol. 5:115, 1931. [58] Hardikar, S. W., J. Pharm. Exp. Ther. 20:17, 1922.
[59] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 78:559, 1948. [60] Hawkins, D. F., Brit. J. Pharm. i0:230, 1955. [61] Sandberg, F., Acta physiol. scand. 25:(suppl. 91) 1952. [62] Golla, F. L., and Symes, W. L., J. Pharm. Exp. Ther. 5:87, 1913. [63] Chen, K. K., ibid 33:237, 1928. [64] Co Tui, Burstein, C. L., and Wright, A. M., J. Pharm. Exp. Ther. 58:33, 1936. [65] Epstein, D. E., Gunn, J. A., and Virden, C.J., J. Physiol., Lond. 76:224, 1931. [66] Jackson, D. E., J. Pharm. Exp. Ther. 5:479, 1914. [67] Pedden, J. R., Tainter, M. L., and Cameron, W. M., ibid 55:242, 1935. [68] Swanson, E. E., and Webster, R. K., ibid 38:327. 1930. [69] Rietschel, H. G., Arch. exp. Path. 186:387, 1937. [70] Trendelenburg, P., Zb1. Physiol. 26:1, 1912. [71] Wick, H., Arch. exp. Path. 212:133, 1950. [72] Cow, D., J. Pharm. Exp. Ther. 5:341, 1914. [73] Florey, H., and Wells, A. Q., ibid 42:133. 1931. [74] Macht, D. 1., Arch. internat. pharm. dyn., Par. 27:175, 1923.
[75] Melville, K. I., ibid 58:139, 1938. [76] Swanson, E. E., J. Pharm. Exp. Ther. 36:541, 1929. [77] Titone, F. P., Pflügers Arch. 155:77. 1914. [78] Randall, L. O., and Smith, T. H., J. Pharm. Exp. Ther. $103: 10,1951$. [79] Cameron, W. M., and Tainter, M. L., ibid 57:152, 1936. [80] Dixon, W. E., and Brodie, T. G., J. Physiol., Lond. 29:97, 1903. [81] Franklin, K. J., J. Pharm. Exp. Ther. 26:227, 1925. [82] De Gamrat, C.. Rev. méd. Suisse rom. 29:245, 1909. [83] Hawkins, D. F., and Parkes, M. W., unpublished, 1957. [84] Lohr, H., Zschr. ges. exp. Med. $39: 67,1924$. [85] Werle, E., in "Polypeptides which Stimulate Plain Muscle," Gaddum, J. H., ed.. p 23. London: Livingstone, 1955. [86] Akcasu, A., Sinha, Y. K., and West G. B., Brit. J. Pharm. 7:331, 1952. [87] Bullowa, J. G., and Gottlieb, C., Am. J. M. Sc. 160:98, 1920. [88] Macht, D. 1., J. Pharm. Exp. Ther. 13:509. 1919. [89] Fellows, E. J., and Livingston, A. E., ibid 74:65, 1942. [90] Archer, J. D., Howard, J. K., and Nash, J. B., ibid 101:1, 1951. [91] Brocklehurst, W. E., J. Physiol., Lond. 120:16P, 1953. [92] Lehmann, G., and Knoeffel, P. K., J. Pharm. Exp. Ther. 63:453, 1938. [93] Bovet, D., Bovet, F.. and Montezin, G., C. rend. Soc. biol. 140:91, 1946. [94] Baehr, G.. and Pick, E. P., Arch. Exp. Path. 74:65, 1913. [95] Emmelin, N., Kahlson, G. S., and Lindstrom, K., Acta physiol. scand. 3:39. 1941. [96] Pal, J., Deut. med. Wschr. 38:1774, 1912. [97] Warnant, H., Arch. internat. pharm. dyn., Par. 37:61, 1930. [98] Lipschitz, W., and Osterroth, J., Arch. exp. Path. 106:341, 1925. [99] Kraatz, C. P., Gruber, C. M.. Jr.. Shields, H. L., and Gruber, C. M., J. Pharm. Exp. Ther. 96:42, 1949. [100] Farber, S., Arch. internat. pharm. dyn., Par. 53:377, 1936. [101] Hanzlick, P. J., J. Pharm. Exp. Ther. 6:596, 1915. [102] Hanzlick, P. J., ibid 7:99, 1915. [103] Hanzlick, P. J., ibid 18:63, 1921. [104] Einthoven, W., Pflügers Arch. 51:367, 1892. [105] Vane, J. R., Brit. J. Pharm. 4:14, 1949. [106] Hasama, B., Arch. exp. Path. 153:161, 1930. [107] Von Oettingen, W. F., and Eveleth, D. F., $\bar{J}$. Pharm. Exp. Ther. $44: 465,1932$. [108] Ambrose, A. M., and De Eds, F.. ibid 88:173, 1946. [109] Macht, D. 1., ibid 7:339, 1915. [110] Macht, D. I., ibid 11:176, 1918. [111] Dews, P. B., Wnuck, A. L., Fanelli, R. V., Light, A. E., Tornaben, J. A., Norton, S., Ellis, C. 11., and De Reer, E. J., ibid 107:1, 1953. [112] Reynolds, A. K., ibid 69:112, 1940. [113] Golla, F. L., and Symes, W. L., J. Physiol., Lond. 46:38P, 1913.
[114] Landmesser, C. M., Anesthesiology 8:506, 1947. [115] Pal, J., Arch. gen. méd., Par. 203:69, 1913. [116] West, R., Arch. internat. pharm. dyn., Par. 56:81, 1937. [117] West, R., J. Physiol., Lond. 91:437, 1938. [118] Kuck, H., and Vogt, W., Arch. exp. Path. 209:71, 1950. [119] Randall, L. O., Kruger, J., Conroy, C., Kappe11, B., and Benson, W. M., Arch. exp. Path. 220:26, 1953. [120] Kraatz, C. P., Gruber, C. M., Jr., and Lisi, A. G., J. Pharm. Exp. Ther. 98:111, 1950. [121] Parkes, M. W., Brit. J. Pharm. 10:95, 1955.
[122] Atanackovic, D., and Dalgaard-Mikkelsen, S., Arch. internat. pharm. dyn., Par. 85:1, 1951. [123] Douglas, W. W., J. Physiol., Lond. 112:20P, 1950. [124] Heymans, C., Estable, J. J., and De Bonneveaux, C. S., Arch. internat. pharm. dyn., Par. $79: 123,1949$. [125] Supniewski, J. V., Serafinowna, M., and Hano, J., Arch. exp. Path. 183:725, 1936. [126] Vartianen, A., J. Pharm. Exp. Ther. 54:265, 1935. [127] Barer, G. R., and Nusser, E., Brit. J. Pharm. 8:315, 1953. [128] Pick, E. P., and Wasicky, R., Arch. exp. Path. 80:147, 1916.
[129] Prevost, J. L., and Saloz, J. . Arch. internat. physiol. 8:327, 1910. [130] Hebb, C. O., J. Physiol., Lond. 99:57, 1940. [131] Jackson, D. E., J. Pharm. Exp. Ther. 4:59, 1912. [132] Lasch, F., Arch. exp. Path. 124:231, 1927. [133] De Wispelaere, H., Arch. internat. pharm. dyn., Par. 56:363, 1937. [134] Gruber, C. M., De Beradinis, C. T., Shields, H. L., and Copeland, J. E., J. Pharm. Exp. Ther. 98:274, 1950. [135] Fastier, F. N., Brit. J. Pharm. $4: 315,1949$. [136] Dayrit, C., Manry, C. H., and Seevers, M. H., J. Pharm. Exp. Ther. 92:173, 1948. [137] Cārlson, A. J., and Luckhardt, A. B., Am. J. Physiol. 54:55, 1920. [138] Dale, H. H., and Laidlaw, P. P., J. Physiol., Lond. 41:318, 1910. [139] Emmelin, N., Kahlson, G., and Wicksell, F., Acta physiol. scand. 2:123, 1941. [140] Field, M. E., and Drinker, C. K., Am. J. Physiol. 93:138, 1930. [141] Foggie, P., Quart. J. Exp. Physiol., Lond. 26:225, 1937. [142] Graham, J. D., Quart. J. Pharm., Lond. 16:362, 1943. [143] Januschke, H., and Pollak, L., Arch. exp. Path. 66:205, 1911. [144] Konzett, H., Brit. J. Pharm. 11:289. 1956. [145] Melville, K. I., and Kaplan, H., J. Pharm. Exp. Ther. 94:182, 1948. [146] Quagliarello, G., Zschr. Biol. $64: 263,1914$. [147] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. int. $1: 40,1950$.
[148] Schenk, P., Arch. exp. Path. 89:332, 1921. [149] Sollmann, T., and Von Oettingen, W. F., Proc. Soc. Exp. Biol. 25:692, 1925. [150] Weiss, S., Robb, G. P., and Ellis, L. B., Arch. Int. M. 49:360, 1932. [151] Yonkman, F. F., Oppenheimer, E., Rennick, B., and Pellet, E., J. Pharm. Exp. Ther. 89:31, 1947. [152] Thornton, J. W., Quart. J. Exp. Physiol., Lond. 21:305, 1932. [153] Randall, L. O., J. Pharm. Exp. Ther. 100:83, 1950.
[154] White, A. C., and Stedman, E., ibid 60:198, 1937. [155] Bhattacharya, B. K.. Arch. internat. pharm. dyn.,

## 133. DIRECT ACTION OF DRUGS ON THE BRONCHI (Concluded)

Par. 103:357, 1955. [156] Comroe, J. H., Jr., Van Lingen, B., Stroud, R. C., and Roncoroni, A., Am. J. Physiol. 173:379, 1953. [157] Gaddum, J. H., Hebb, C. O., Silver, A., and Swan, A. A., Quart. J. Exp. Physiol., Lond. 38:255, 1953. [ 158] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [159] Kottegoda, S. R., and Mott, J. C., Brit. J. Pharm. 10:66, 1955. [160] Reid, G., and Rand, M., Nature, Lond. 169:801, 1952. [161] Waud, R. A., J. Pharm. Exp. Ther. 69:103, 1940. [162] Anrep, G. V., Barsoum, G. S., and Kenawy, M. R., J. Pharm., Lond. 1:164, 1949
[163] Richter, R., Arch. exp. Path. 190:280, 1938. [164] Daly, M. de B., and Schweitzer, A., J. Physiol., Lond. 113:442, 1951. [165] Haury, V. G., J. Pharm. Exp. Ther. 64:58, 1938. [166] Gruber, C. M., Hart, E. R., and Gruber, C. M., Jr., ibid 73:319, 1941. [167] Comroe, J. H., Jr., and Starr, I., Jr., ibid 49:283, 1933. [168] Scadding, J. G., quoted by Fraser in Brit. M. J. 1:1293, 1938. [169] Seibert, R. A., and Handley, C. A., J. Pharm. Exp. Ther. 110:304, 1954. [170] Macht, D. I., ibid 11:389, 1918. [171] Loew, E. R., Kaiser, M. E., and Moore, V., ibid $86: 1$, 1946. [172] Fraser, P. J., Brit. J. Pharm. 12:47, 1957. [173] Grossman, M., Zschr. klin. Med. 12:550, 1887. [174] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:111, 1921. [175] Brown, J. G., Edinburgh M. J. 31:255, 1885. [176] Roy, C. S., and Brown, G., J. Physiol., Lond. 6:21P, 1885. [177] Issekutz, B. V., and Genersich. P., Arch. exp. Path. 202:201, 1943. [178] 1ssekutz, B. V., Leinzinger, M., and Dirner, Z., ibid 164:158, 1932. [179] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 83:120, 1945. [180] Pal, J., Wien. med. Wschr. $63: 1049$, 1913. [181] Stern, P., Arch. exp. Path. 199:251, 1942. [182] Curtis, F. R., J. Pharm. Exp. Ther. 35:321, 1929. [183] De Jongh, D. K., Arch. internat. pharm. dyn., Par. 83:158, 1950. [184] Kreitmar, H., Arch. exp. Path. 120:189. 1927. [185] Levy, J., and Ditz, E., Arch. internat. pharm. dyn., Par. 47:138, 1934. [186] Bovet, D., C. rend. Soc. biol. 116:1020, 1934. [187] Meier, R., Yonkman, F. F., Craver, B. N., and Gross, F., Proc. Soc. Exp. Biol. 71:70, 1949. [188] Staub, A. M., Ann. Inst. Pasteur, Par. 63:485, 1939. [189] Dale, A. S., and Narayana, B., Quart. J. Exp. Physiol., Lond. 25:85, 1935. [190] Dixon, W. E., and Ransom, F., J. Physiol., Lond. 45:413, 1912. [191] Thornton, J. W., ibid 96:53P, 1939. [192] Cloetta, M., Arch. exp. Path. 73:233, 1913. [193] Curry, J. J., and Leard, S. E., J. Laborat. Clin. M. 33:585, 1948. [194] Handovski, H., Arch. internat. pharm. dyn., Par. 51:301, 1935. [195] Kiese, M., Klin. Wschr. 14:571, 1935. [196] Laidlaw, P. P., J. Physiol., Lond. $40: 480,1910$. [197] Mũgge, H., Klin. Wschr. 12:381, 1933. [198] Rittman, R., Wien. med. Wschr. 74:2058, 1924. [199] Trendelenburg, P., Arch. exp. Path. 73:118, 1913. [200] Wick, H., Arch. internat. pharm. dyn., Par. 88:450, 1951. [201] Parkes, M. W., personal communication, 1949. [202] Geiling, E. M., and Kolls, A. C., J. Pharm. Exp. Ther. 23:29, 1924. [203] Arunlakshana, O. (thesis), London, 1953. [204] Arunlakshana, O., Mongar, J. L., and Schild, H. O., J. Physiol., Lond. 123:32, 1954. [205] Graham, J. D., Arch. internat. pharm. dyn., Par. 77:40, 1948. [206] Graham, J. D., Brit. J. Pharm. 4:1, 1949. [207] Hawkins, D. F., quoted by Herxheimer, H., ibid 10:160, 1955. [208] Jackson, D. E., J. Pharm. Exp. Ther. 4:1, 1912, [209] Feldberg, W., and Koegh, E. V., J. Physiol., Lond. $90: 280$, 1937. [210] Parker, J. M., and Ferguson, J. K., Proc. XIX Int. Physiol. Congr., Montreal, p 661. 1953. [211] Feldberg, W., and Kellaway, C. H., J. Physiol., Lond. 90:257, 1937. [212] Samaan, K., Quart. J. Pharm., Lond. 5:6, 1932. [213] Watt, J. M., J. Pharm. Exp. Ther. 38:261, 1930. [214] Barlow, O. W., and Beams, A. J., J. Pharm. Exp. Ther. 47:111, 1933.

Drugs are listed to illustrate, as far as possible, the relationship between chemical structure and pharmacological action. Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all "effects" included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Drug actions influencing only anaphylactic or asthmatic bronchospasm, or other pathological states of the bronchi, were also excluded. Concentrations of drugs are given in $\mathrm{m} \mu \mathrm{g} / \mathrm{ml}$ for local actions on isolated preparations, and doses in $\mu \mathrm{g} / \mathrm{kg}$ for drugs administered systemically. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted. A = active, but action complex (original literature should be consulted); $\mathrm{C}=$ constricts; $\mathrm{D}=$ dilates; $1=$ inactive.

	Compound (Synonym)	Species	Effect				Reference
			Local		Systemic		
			$\mathrm{m} \mathrm{\mu g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$.	Action	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
1-Phenyl-2-amino Alkanes and Alkanols							
	1-Phenyl-2-amino-ethane ( $\beta$-Phenyl-ethylamine)	Cat			2000	D	1-4
2		Dog			2000	D	
3		Guinea pig		1	$\begin{array}{r} 2,000- \\ 20,000 \end{array}$	(C)	
4		Rabbit				1	
5	1-Phenyl-2-amino-ethanol (Phenyl-ethanolamine)	Cat				(1)	3,5,6
6		Dog				(1)	
7		Cuinea pig		D	10.000	D	
8		Rabbit			2000-4000	D	
9	1-Phenyl-2-isopropylamino-e thanol (WIN 5528; 859)	Guinea pig		D			$\begin{array}{\|l\|} \hline 5,8,9 \\ \hline 2,7,10-15 \end{array}$
0	1-Phenyl-2-amino-propane (Ampheta-mine; Benzedrine)	Cat			1000-2000	D	
11		Dog	400,000	C	$\begin{array}{r} 2,000- \\ 10,000 \end{array}$	(D)	$2,7,10-15$
12		Guinea pig		C		C	
13		Guinea pig	250,000	D	10,000	(D)	
4	d-1-Phenyl-2-methylamino-propane(Methamphetamine; Methedrine)	Cat				(D)	11.16
5		Guinea pig	1000-5000	D			
16		Guinea pig	100,000	(C)			
17	1-Phenyl-2-dimethylamino-propane	Cat			1000	D	11
18	1-Phenyl-2-benzylamino-propane	Cat			1000	D	11
19	1-Phenyl-2-amino-propanol (Mydriatin; Norephedrine; Propadrine)	Dog			5000	1	3,10,14
20		Guinea pig		C			
21		Rabbit			4500	D	
2	1-Phenyl-2-methylamino-propanol   (dl-Ephedrine, Ephetonin, Racephedrine)	Dog			2000	D	17,26
23		Frog	400,000				
24	$1-1$-Phenyl-2-methylamino-propanol(Ephedrine)	Man	5,000-100,000	D	500-600	D	$\begin{aligned} & 3,7,10 \\ & 14-16, \\ & 18-41, \\ & 43,44, \\ & 46-49 \\ & 51 \end{aligned}$
25		Cat	1,000-100,000	D	1000-1500	D	
26		Dog	10.000	D	$\begin{array}{r} 1.000- \\ 10,000 \end{array}$	D	
27		Guinea pig	1,000-10,000	D	$\begin{array}{r} 5,000= \\ 70,000 \end{array}$	(1)	
28		Guinea pig	$\begin{array}{r} 400,000- \\ 1,000,000 \end{array}$	(C)			
29		Rabbit	$\begin{array}{r} 100,000- \\ 1,000,000 \end{array}$	A	4000-6000	D	
30		Rat	10,000	D			
31		Frog	400,000	D			
32	廿-1-Phenyl-2-methylamino-propanol   (Pseudo-ephedrine)	Cat		D			$\begin{gathered} 16,39,40 \\ 46,47 \end{gathered}$
33		Dog		D	2000	D	
34		Guinea pig	$\begin{aligned} & 2,000- \\ & 100,000 \\ & \hline \end{aligned}$	D			
35		Guinea pig	500,000	(C)			
36		Rabbit	10,000	D			
37		Rabbit	$\begin{array}{r} 100,000- \\ 500,000 \end{array}$	C			
38	d- $\psi$-1-Phenyl-2-methylamino-propanol   (d-Pseudo-ephedrine)	Guinea pig			20,000	D	7
39	1-1-Phenyl-2-dimethylamino-propanol   (N-Methyl-ephedrine)	Cat				D	18
40	$\begin{aligned} & \text { 1-1-Phenyl-2-(ethyl-me thylamino)- } \\ & \text { propanol (N-Ethyl-ephedrine) } \end{aligned}$	Cat		D		D	18.20
41		Dog			5000	D	
42		Guinea pig		D			
43		Rabbit		D			

134. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=c o n s t r i c t s ; D=$ dilates; $1=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference
		Local	Systemic				
		$\mathrm{m} \mu \mathrm{~g} / \mathrm{ml}$   (C)	Action (D)	$\frac{\mu \mathrm{g} / \mathrm{kg}}{(\mathrm{E})}$	$\frac{\text { Action }}{(F)}$		
(A)						(B)	(G)
1 -Phenyl-2-amino Alkanes and Alkanols (concluded)							
44	1-1-Phenyl-2-[( $\beta$-hydroxyethyl)-methyl-aminol-propanol ( N -Ethanol-ephedrine)	Cat				I	$18$
45	1-Phenyl-2-(diethylaminoethyl-methyl-amino)-propanol (Isalon)	Cat			$\begin{aligned} & 5,000- \\ & 10,000 \end{aligned}$		19,50,51
46		Dog			10,000	D	
47		Guinea pig		D			
48		Rabbit		D			
49	$\begin{aligned} & 1-\text { Phenyl-2-(dibutylaminoethyl-methyl- } \\ & \text { amino)-propanol } \end{aligned}$	Rabbit		D			19
50	1-1-Phenyl-2-(propyl-methylamino)-propanol (N-Propyl-ephedrine)	Cat				I	18
51	1-1-Phenyl-2-(isopropyl-methylamino)propanol ( N -Isopropyl-ephedrine)	Cat				1	18
52	1-Phenyl-2-[( $\beta$-hydroxypropyl)-methyl-amino)-propanol (S 166)	Guinea pig		I			52
53	1-Phenyl-z-[( $\beta$-hydroxypropyl)-methyl-amino]-propanol methiodide (S 164)	Guinea pig		I			52
54	```1-1-Phenyl-2-(butyl-methylamino)-propanol (N-Butyl-ephedrine)```	Cat				I	18
55	1-Phenyl-2-diethylamino-propanol   ( $\mathrm{N}, \mathrm{N}$-Diethyl-norephedrine)	Cat			5,000	D	18
56	1-Phenyl-2-amino-butane	Guinea pig		I			1
57	2-Phenyl-3-methylamino-butanol	Guinea pig			30,000	1	7
	1-(m-1	droxypheny	2-amino	ols			
58	1-(m-Hydroxyphenyl)-2-amino-ethanol   (WIN 5501)	Guinea pig		D			5
59	1-(m-Hydroxyphenyl)-2-methylamino-	Cat			150-1000	D	5,53,54.
60	ethanol (Adrianol; Neosynephrine;	Dog			30	I	56
61	Phenylephrine; m-Sympatol)	Guinea pig		D		D	
62	1-(m-Hydroxyphenyl)-2-propylaminoethanol ( N -Propyl-noradrianol)	Dog				I	54
63	1-(m-Hydroxyphenyl)-2-isopropylaminoethanol (WIN 5507: 539)	Guinea pig		D		D	5,9
64	1-(m-Hydroxyphenyl)-2-amino-propanol	Dog			500-5000	1	10,14,41
65	(m-Oxynorephedrine)	Guinea pig		D			
66	1-1-(m-Hydroxyphenyl)-2-methylamino-	Dog			1000-5000	(D)	10,14,41
67	propanol (m-Oxyephedrine)	Guinea pig		(D)			
68	1-(m-Hydroxyphenyl)-2-isopropylamino- propanol	Dog			200	1	57
69	$\begin{aligned} & \text { 1-(m-Hydroxyphenyl)-2-benzylamino- } \\ & \text { propanol } \end{aligned}$	Dog			5000	C	57
70	```l-(m-Hydroxyphenyl)-(a-phenylethylamino)- propanol```	Dog			10,000	I	57
71	1-(m-Hydroxyphenyl)-z-(a-methyl-y-phenyl-propylaminol-propanol	Dog			65	D	57
	1-(p-Hydroxyp	enyl)-2-ami	Alkanes	Alkanol			
72	1-(p-Hydroxyphenyl)-2-amino-ethane   (Tyramine)	Cat		(A)	$\begin{aligned} & 100- \\ & 20,000 \end{aligned}$	(D)	$\begin{gathered} 2,3,16 \\ 58-67 \end{gathered}$
73		Dog	100,000	C	$\begin{aligned} & 2,000- \\ & \quad 20,000 \\ & \hline \end{aligned}$	(D)	
74		Guinea pig	4000-8000	D	40,000	D	
75		Guinea pig	1.000 .000	C	100,000	(C)	
76		Monkey		(D)			
77		Ox	100,000	C			
78		Rabbit			2500	(D)	
79	1-(p-Hydroxyphenyl)-2-dimethylamino-	Dog			4000	D	42.64
80	ethane (Hordenine)	Rabbit			$\begin{aligned} & 2,000= \\ & 15,000 \end{aligned}$	D	

134. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)	Species	Effect				Reference
		Local		Systemic		
		$\mathrm{m} \mathrm{\mu g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action	
(A)	(B)	(C)	(D)	(E)	(F)	(G)

1-(p-Hydroxyphenyl)-2-amino Alkanes and Alkanols (continued)

81	1-(p-Hydroxyphenyl)-2-amino-ethanol	Cat				D	5,8,68
82	(Norsympatol; WIN 5512; 582)	Guinea pig		(D)			
83	1-(p-Hydroxyphenyl)-2-methylaminoethanol (Synephrine; Sympatol)	Cat			$\begin{aligned} & 1,500- \\ & 30,000 \\ & \hline \end{aligned}$	D	$\left\{\begin{array}{c} 5,8,34,48 \\ 54,69 \\ 70 \end{array}\right.$
84		Dog			500	(D)	
85		Guinea pig		D	12,000	D	
86		Rabbit			30,000	D	
87	$\begin{aligned} & 1-1-(\mathrm{p} \text {-Hydroxyphenyl)-2-methylamino- } \\ & \text { ethanol (1-Synephrine) } \end{aligned}$	Cat			750	D	48,55
88		Dog				(1)	
89	1-(p-Hydroxyphenyl)-2-ethylaminoethanol (573)	Guinea pig		D			8
90	1-(p-Hydroxyphenyl)-2-diethylamino-ethanol	Cat				D	68
91	1-(p-Hydroxyphenyl)-2-propylamino-e tha nol (579)	Guinea pig		D			8
92	1-(p-Hydroxyphenyl)-2-isopropylamino-   ethanol (Isopropyl-norsympatol; WIN 833)	Dog			30-500	D	5,8,9,54
93		Guinea pig		D		D	
94	$\begin{aligned} & 1 \text { - (p-Hydroxyphenyl)-2-butylamino- } \\ & \text { ethanol }(570) \end{aligned}$	Guinea pig		D			8
95	1-(p-Hydroxyphenyl)-2-isobutylamino- ethanol (643)	Guinea pig		D			8
96	$\begin{aligned} & 1-(\text { p-Hydroxyphenyl })-2-s e c . \text {-butylamino- } \\ & \text { ethanol }(661) \end{aligned}$	Guinea pig		D			8
97	1-(p-Hydroxyphenyl)-2-tert.-butylaminoethanol (651)	Guinea pig		(D)			8
98	1-(p-Hydroxyphenyl)-2-amino-propane	Cat			$\begin{aligned} & 2,000- \\ & 20,000 \end{aligned}$	D	2
99		Dog			$\begin{array}{r} \hline 2,000- \\ 20,000 \\ \hline \end{array}$	D	
100		Guinea pig		I			
101	1-(p-Hydroxyphenyl)-2-methylaminopropane (Veritol; Paredrinol; Pholedrine)	Dog				1	7.57
102		Guinea pig			20,000	(D)	
103	$\begin{aligned} & 1-(p \text {-Hydroxyphenyl)-2-(a, a-dimethyl- } \\ & \beta \text {-phenylethylamino-propane } \end{aligned}$	Dog				1	57
104	I-(p-Hydroxyphenyl)-2-phenylpropylamınopropane	Dog				C	57
105	$\begin{aligned} & \text { 1-(p-Hydroxyphenyl)-2-(a-methyl- } \gamma- \\ & \text { phenylpropylamino)-propane } \end{aligned}$	Dog				C	57
106	1-(p-Hydroxyphenyl)-2-methylaminopropanol (Supifene; Suprifen; p-Oxyephedrine)	Dog			5000	1	7,10,57,69
107		Guinea pig			$\begin{aligned} & 3,000- \\ & 10,000 \end{aligned}$	D	
108	```1-(p-Hydroxyphenyl)-2-isopropylamino- propanol```	Dog			200	C	57
109	1-(p-Hydroxyphenyl)-2-benzylaminopropanol	Dog			5,000	C	57
110	$\begin{aligned} & 1-(p-\text { Hydroxyphenyl })-2-(a-\text { phenyl-ethyl- } \\ & \text { amino)-propanol } \end{aligned}$	Dog			10,000	1	57
111	1-(p-Hydroxyphenyl)-2-( $\beta$-phenylethylamino)propanol	Dog			400	D	57
112	1-(p-Hydroxyphenyl)-2-(a-methyl- $\beta$-phenyl-ethylamino)-propanol	Dog			200	D	57
113	$\begin{aligned} & 1-(\mathrm{p} \text {-Hydroxyphenyl })-2-(\mathrm{y} \text {-phenylpropyl- } \\ & \text { amıno)-propanol } \end{aligned}$	Dog			160	D	57
114	$\begin{gathered} 1-(p-\text { Hydroxyphenyl })-2-(\mathrm{a}-\text { methyl }-\gamma- \\ \text { phenylpropylamino)-propanol } \end{gathered}$	Dog			100	D	57
115	$1-(p$-Hydroxyphenyl)-2-[a-methyl- $\gamma-$ ( p -methoxyphenyl)-propylamino]propanol	Dog			1000	D	57
116	$\begin{aligned} & \text { 1-(p-Hydroxyphenyl)-2-(a-methyl- } \delta \text { - } \\ & \text { phenylbutylamino)-propanol } \end{aligned}$	Dog			1000	D	57

134. SYMPA THOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mathrm{m} \mathrm{\mu g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1-(p-Hydroxyphenyl)-2-amino Alkanes and Alkanols (concluded)								
117	$\begin{aligned} & 1-(p-\text { Hydroxyphenyl })-2 \text {-methylamino- } \\ & \text { butane } \end{aligned}$		Dog				I	57
118	l-(p-Hydroxyphenyl)-2-(y-phenylpropyl-amino)-butanol	Dog			300	D	57	
119	$\begin{aligned} & 1 \text { - ( } \mathrm{p} \text {-Hydroxyphenyl)-2-(a-methyl- } \mathrm{y} \text {-phenyl- } \\ & \text { propylamino)-butanol } \end{aligned}$	Dog			100	D	57	
120	1-(p-Hydroxyphenyl)-2-( $\delta$-phenylbutylamino) butanol	Dog			1000	D	57	
1-(3,4-Dihydroxyphenyl)-2-amino Alkanes and Alkanols								
121	1-(3,4-Dihydroxyphenyl)-2-amino-ethane	Cat				D	2	
122		Dog				D		
123		Guinea pig		D				
124	3,4-Dihydroxyphenyl-alanine	Rabbit			20,000	I	3	
125	$\begin{aligned} & 1 \text {-(3,4-Dihydroxyphenyl)-2-methylamino- } \\ & \text { ethane (Epinine) } \end{aligned}$	Cat			100-500	(D)	$\begin{gathered} 10,14,41, \\ 61-64, \\ 71,72 \end{gathered}$	
126		Dog			400-1000	D		
127		Guinea pig		D				
128		Rabbit			100-500	(D)		
129	1-(3,4-Dihydroxyphenyl)-2-isopropylaminoethane (0-4;1554)	Guinea pig		D	100	D	71-73	
$\begin{aligned} & 130 \\ & 131 \\ & 132 \\ & 133 \\ & 134 \end{aligned}$	$1 \text {-(3,4-Dihydroxyphenyl)-2-amino-ethanol }$   (Arterenol; Noradrenaline)	Man	1000	D			$\begin{gathered} 10,16,32 \\ 41,71 \\ 73-76 \end{gathered}$	
		Cat			50-250	D		
		Dog			40-200	D		
		Guinea pig	100-1000	D	30-250	D		
	d-1-(3,4-Dihydroxyphenyl)-2-amino-ethanol   (d-Arterenol)	Guinea pig		D	1000	D		
135	$\begin{aligned} 1-1- & (3,4 \text {-Dihydroxyphenyl)-2-amino-ethanol } \\ & \text { (1-Arterenol; Levarterenol) } \end{aligned}$	Man	1000	D			$\begin{array}{r} 9,16,38 \\ 77-79 \end{array}$	
136		Cat	10-100	D				
137		Dog	40	D		(I)		
138		Guinea pig	50-500	D	50-100	D		
139		Rabbit	1000	D				
140		Rat	100	D				
141	1-(3,4-Dihydroxyphenyl)-2-methylamino-ethanol(dl-Epinephrine; Vaponephrin)	Guinea pig	100-120	D			71,75	
142	```1-1-(3,4-D ihydroxyphenyl)-2-methylamino- ethanol (Epinephrine; Adrenalin; Supra- renin)```	Man	10-100	D	10	D	$3,13,16$$21,25,26$$30,32,36$$38,43,47$$54,55,58$,$60,62-64$$73,74,77$,$81-112$	
143		Cat	1-100	D	2-2500	D		
144		Dog	5-100,000	D	0.5-300	D		
145		Guinea pig	1-100,000	D	0.5-500	D		
146		Monkey		D				
147		Ox	300-4000	D				
148		Pig	1,600-10,000	D				
149		Rabbit	1000-2000	(D)	2-100	(D)		
150		Rat	10-100	D				
151		Sheep	2000	D				
152		Frog	200-10,000	D	1000	D		
153	1-(3,4-Dihydroxyphenyl)-2-dimethylaminoethanol (Methadren; N -Methyl-adrenaline)	Dog			400	D	113	
154		Guinea pig		D				
155	1-(3,4-Dihydroxyphenyl)-2-ethylaminoethanol (N-Ethyl-arterenol; WIN 5564; 1516)	Dog			0.5-3	D	$\begin{array}{r} 9,54,71 \\ 73,75 \end{array}$	
156		Guinea pig	30-50	D	100	D		
157	$\begin{aligned} & \text { 1-(3.4-Dihydroxyphenyl)-2-( } \beta \text {-hydroxy- } \\ & \text { ethylamino)-ethanol (JB 254) } \end{aligned}$	Dog			7	D	45	
158	1-(3,4-Dihydroxyphenyl)-2-propylaminoethanol (N-Iropyl-artercnol; WIN 5587)	Dog			0.5-7	D	$\begin{gathered} 9.54,75 \\ 114 \end{gathered}$	
159		Guinea pig	300-500	D	100	D		
160	1-(3.4-Dihydroxyphenyl)-2-isopropylaminoethanol (lsoprenaline; Isoproterenol; Alcudrin; lsuprel; Neo-epinine)	Man	10	D	2	D	$\begin{gathered} 7,16,21,31 \\ 32,38,54 \\ 57,73,75 \\ 114-116 \end{gathered}$	
161		Cat	10	D				
162		Dog	5-10,000	D	0.5-1	D		
163		Guinea pig	0.5-30	D	10-1000	D		
164		Rabbit	100	D				
165		Rat	10	D				
166	$\begin{aligned} & 1 \text { - }(3.4 \text { - Dihydroxyphenyl)- }-(\beta \text {-hydroxy- } \\ & \text { propylamino)-ethanol (J13 } 253) \end{aligned}$	Dog			8	D	45	

134. SYMPA THOMLMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=c o n s t r i c t s ; D=d i l a t e s ; I=i n a c t i v e$. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mathrm{m} \mu \mathrm{g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1-(3,4-Dihydroxyphenyl)-2-amino Alkanes and Alkanols (continued)								
167	1-(3,4-Dihydroxyphenyl)-2-butylaminoethanol (N-Butylarterenol; WIN 5590; SKF 690A; 1960)		Dog			5	D	$\begin{gathered} 9,16,54 \\ 71,114 \end{gathered}$
168		Guinea pig	4-10	D	25	D		
169	$\begin{aligned} & 1-(3,4 \text {-Dihydroxyphenyl)-2-isobutylamino } \\ & \text { ethanol (WIN } 5595) \end{aligned}$	Dog			50	D	9,54,114	
170		Guinea pig		D	250	D		
171	1-(3,4-Dihydroxyphenyl)-2-sec.-butylaminoethanol (WIN 5559; 0-4;1424)	Guinea pig	30-50	D	25-100	D	$\begin{gathered} 9,71,73,75, \\ 115 \end{gathered}$	
172	$\begin{aligned} & \text { 1- }(3,4 \text {-Dihydroxyphenyl })-2-(a-\text { methyl- } \\ & \text { propylamino)-ethanol } \end{aligned}$	Dog			0.7	D	57	
173	1-(3,4-Dihydroxyphenyl)-2-tert.-butylaminoethanol (WIN 5563; 1505)	Dog			0.4	D	9,57,71,75	
174		Guinea pig	8-12	D				
175	1-(3,4-Dihydroxyphenyl)-2-amylaminoethanol (WIN 5596 )	Guinea pig		D	100	D	9,114	
176	```1-(3,4-Dihydroxyphenyl)-2-(a-e thylpropyl- amino)-ethanol (WIN 5592)```	Guinea pig		D	500	D	9,114	
177	1-(3,4-Dihydroxyphenyl)-2-( $\alpha, \beta$-dimethyl-propylamino)-ethanol (WIN 5593)	Guinea pig		D	100	D	9,114	
178	$\begin{aligned} & \text { 1-(3,4-Dihydroxyphenyl)-2-(a-methyl- } \\ & \text { amylamino)-ethanol (J B 226) } \end{aligned}$	Dog			7	D	45	
179	```1-(3,4-Dihydroxyphenyl)-2-cyclopentyl- amino-ethanol (W1N 5591)```	Guinea pig		D	100	D	9,114	
180	1-(3,4-Dihydroxyphenyl)-2-cyclohexylaminoethanol (WIN 5589)	Guinea pig		D	100	D	9,114	
181	$\begin{aligned} & \text { 1- }(3,4 \text {-Dihydroxyphenyl })-2-\bar{\beta}-\text { phenyl- } \\ & \text { ethylamino-ethanol } \end{aligned}$	Dog			6	D	57	
182	1-(3,4-Dihydroxyphenyl)-2-( $a$-methyl-$\beta$-phenylethylamino)-ethanol (JB 230)	Dog			4	D	45	
183	1-(3,4-Dihydroxyphenyl-z-[a-methyl- $\beta$ ( $p$-methoxyphenyl)e thylamino]-e thanol (JB 245)	Dog			1.5	D	45	
184	1-(3,4-Dihydroxyphenyl)-z-[ $\alpha$-methyl- $\beta$ ( $3^{\prime}, 4^{\prime}$ - methylenedioxyphenyl)e thylamino]ethanol (JB 251)	Dog			2	D	45	
185	1-(3.4-Dihydroxyphenyl)-2-Y-phenyl-propylamino-ethanol (JB 246)	Dog			2	D	45,57	
186	1-(3,4-Dihydroxyphenyl)-2-amino-propane	Cat				D	2	
187		Dog				D		
188		Guinea pig		D				
189	1-(3,4-Dihydroxyphenyl)-2-isopropylaminopropane (SKF 364)	Guinea pig	100-200	D			16	
190	1-(3,4-Dihydroxyphenyl)-2-amino-propanol   (Cobefrine; Corbasil; Dioxynorephedrine)	Dog			1000-3000	D	7,9,10,14	
191		Guinea pig		D	500	D		
192	1-(3,4-Dihydroxyphenyl)-2-methylaminopropanol (Dioxyephedrine)	Dog			400	D	7,9,10,14	
193		Guinea pig		D	100	D		
194	1-(3,4-Dihydroxyphenyl)-2-isopropylaminopropanol (W1N 5570)	Guinea pig		1			9	
195	1-(3,4-Dihydroxyphenyl-2-cyclopentyl-amino-propanol (WIN 3357)	Guinea pig		1			9	
196	1-(3,4-Dihydroxyphenyl)-2-cyclohexylaminopropanol (WIN 514)	Guinea pig		D			9	
197	1-(3,4-Dihydroxyphenyl)-2-phenyl-propylamino-propanol	Dog			3	D	57	
198	1-(3,4-Dihydroxyphenyl)-2-(a-me thyl-   $Y$-phenylpropylamino)-propanol	Dog			10	(D)	57	
199	$1 \text {-(3,4-Dihydroxyphenyl)-2-amino-butanol }$   (Ethyl-norsuprarenin; Butanefrine)	Dog			1000	(D)	9,10,14,41,78	
200		Guinea pig		D		D		
201	1-(3,4-Dihydroxyphenyl)-2-isopropylaminobutanol (WIN 3046)	Dog				D	9.78	
202		Guinea pig		D		D		
203	1-(3,4-Dihydroxyphenyl)-2-cyclopentyl-amino-butanol (WIN 515)	Dog				D	9,78	
204		Guinea pig		D		D		

134. SYMPATHOMLMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mathrm{m} \mu \mathrm{g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1-(3,4-Dihydroxyphenyl)-2-amino Alkanes and Alkanols (concluded)								
205	1-(3,4-Dihydroxyphenyl)-2-cyclohexylaminobutanol (WIN 713)		Guinea pig		D		D	9,78
206	1-(3,4-(Dihydroxyphenyl)-2-(a-methyl-$\gamma$-phenyl-propylamino)-butanol	Dog			40	D	57	
207	$\begin{aligned} & 1 \text {-(3,4-Dihydroxyphenyl)-2-amino-pentanol } \\ & \text { (WIN } 3356 \text { ) } \end{aligned}$	Guinea pıg		I			9	
208	1-(3,4-Dihydroxyphenyl)-2-isopropylaminopentanol (WIN -3243)	Guinea pig		I			9	
209	$\begin{aligned} & \text { 1-(3.4-Dihydroxyphenyl)-2-cyclopentyl- } \\ & \text { amino-pentanol (WIN 3242) } \end{aligned}$	Guinea pig		(D)			9	
210	1-(3,4-Dihydroxyphenyl)-2-cyclohexylaminopentanol (WIN 3269)	Guinea pig		I			9	
211	1-(3.4-Dihydroxyphenyl)-2-isopropylaminoisopentanol (WIN 3204)	Guinea pig		(D)			9	
212	$\begin{aligned} & 1-(3,4 \text {-Dihydroxyphenyl)-2-cyclopentyl- } \\ & \text { amino-isopentanol (WIN } 3434) \end{aligned}$	Guinea pig		I			9	
Other Ring-substituted 1-phenyl-2-amino Alkanes and Alkanols								
213	1-(o-Methylphenyl)-2-amino-propane	Guinea pig	250,000	D			12	
214	1-(m-Methylphenyl)-2-amino-propane	Guinea pig	250,000	D			12	
215	1-(m-Methylphenyl)-2-amino-propanol	Dog			500-1000	I	14,41	
216		Guinea pig		C				
217	1-(p-Methylphenyl)-2-amino-propane	Guinea pig	250,000	D			12	
218	1-(2,5-Dimethylphenyl)-z-amino-propane	Guinea pig	250,000	D			12	
219	1-(3,4-Dimethylphenyl)-2-amino-propane	Guinea pig	250,000	D			12	
220	1-(m-Methoxyphenyl)-2-amino-ethane	Cat		D			27	
221		Rabbit		1				
222	1-(p-Methoxyphenyl)-2-amino-ethane	Cat		D			27	
223		Rabbit		1				
224	1-(3,4-Dimethoxyphenyl)-2-amino-ethane	Cat		1			27	
225		Rabbit		I				
226	$\begin{aligned} & 1-(3,4 \text {-Methylenedioxyphenyl) }-2 \text {-amino- } \\ & \text { ethane } \end{aligned}$	Cat	100,000	D			27	
227		Rabbit		1				
228	1-(o-Methoxyphenyl)-2-amino-propane	Rabbit		I			29	
229	1-(o-Methoxyphenyl)-2-methylaminopropane (Orthoxine)	Man			5000	D	$\begin{gathered} 21,23,29 \\ 117 \end{gathered}$	
230		Guinea pig			60.000	D		
231	1-(o-Methoxyphenyl)-2-dimethylaminopropane	Rabbit		D			29	
232	1-(o-Methoxyphenyl)-2-benzylaminopropane	Rabbit		D			29	
233	1-(m-Methoxyphenyl)-2-amino-propane	Rabbit		D			29	
234	1-(m-Methoxyphenyl)-2-methylaminopropane	Rabbit		D			29	
235	1-(m-Methoxyphenyl)-2-ethylaminopropane	Rabbit		D			29	
236	1-(m-Methoxyphenyl)-2-dimethylaminopropane	Rabbit		D			29	
237	1-(m-Methoxyphenyl)-2-benzylaminopropane	Rabbit		D			29	
238	1-(p-Methoxyphenyl)-2-amino-propane	Rabbit		D			29	
239	1-(p-Methoxyphenyl)-2-methylaminopropane	Rabbit		(D)			29	
240	1-(p-Methoxyphenyl)-2-ethylamino-propane	Rabbit		1			29	
241	1-(p-Methoxyphenyl)-2-dimethylaminopropane	Rabbit		D			29	
242	1-(p-Methoxyphenyl)-z-benzylaminopropane	Rabbit		D			29	
243	1-(o-Me thoxyphenyl)-2-amino-propanol	Dog			1000	1	14,41	
244		Guinea pig		C				

134. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $I=$ inactive. Parentheses in Columns D and Findicate action is slight, irregular, or doubtful, and the original literature should be consulted.

135. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns $D$ and $F$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mathrm{m}_{\mu} \mathrm{g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
Ketones (concluded)								
287	$\begin{aligned} & \text { I-(3,4-Dihydroxyphenyl)-1-oxo-2- } \\ & \text { isopropylamino-propane } \end{aligned}$		Dog			65	D	57
288	$\begin{aligned} & 1 \text { - }(3,4 \text {-Dihydroxyphenyl)-1-oxo-2- } \\ & \text { benzylamino-propane } \end{aligned}$	Dog			3500	D	57	
289	1-(3,4-Dihydroxyphenyl)-1-oxo-2-(a-phenyle thylamino)-propane	Dog			5000	D	57	
290	1-(3,4-Dihydroxyphenyl)-1-oxo-2( $\beta$-phenylethylamino)-propane	Dog			300	D	57	
291	1-(3,4-Dihydroxypheny1)-1-oxo-2-( $a, a^{-}$ dimethyl- $\beta$-phenyle thylamino)-propane	Dog			1500	D	57	
292	1-(3,4-Dihydroxyphenyl)-1-oxo-2-   ( $\gamma$-phenylpropylamino)-propane	Dog			90	D	57	
293	$\begin{aligned} & \text { 1-(3,4-Dihydroxyphenyl)-1-oxo-2-(a- } \\ & \text { methyl- } \gamma \text {-phenylpropylamino)-propane } \end{aligned}$	Dog			65	D	57	
294	$\begin{aligned} & \text { 1-(3,4-Dihydroxyphenyl)-1-oxo-2- } \\ & \text { isopropylamino-butane } \end{aligned}$	Dog			650	D	57	
295	1-(3,4-Dihydroxyphenyl)-1-oxo-2-(a-methyl-y-phenylpropylamino)butane	Dog			1000	I	57	
Hydroxyphenyl Ethylenediamines								
296	m-Hydroxyphenyl-ethylenediamine ( Nu 1896 )	Guinea pig	20,000	D			36	
297	$\begin{aligned} & 1-\left(\mathrm{m} \text {-Hydroxyphenyl)- } \mathrm{N}^{2}-\mathrm{me}\right. \text { thyl- } \\ & \text { ethylenediamine (Nu } 1683 \text { ) } \end{aligned}$	Guinea pig	2000	D			36	
298	$\begin{aligned} & \text { d-l-(m-Hydroxyphenyl)- } \mathrm{N}^{2}-\text { methyl- } \\ & \text { ethylenediamine (Nu 2013) } \end{aligned}$	Guinea pig	1000	D			36	
299	$\begin{gathered} 1-1-(m-H y d r o x y p h e n y l)-\mathbb{N}^{2}-\text { methyl- } \\ \text { ethylenediamine (Nu 2014) } \end{gathered}$	Guinea pig	4000	D			36	
300	3,4-Dihydroxyphenyl-ethylenediamine   (Nu 1825)	Guinea pig	1000-2000	D			36	
301	1-(3,4-Dihydroxyphenyl)- $\mathrm{N}^{2}$-methylethylenediamine ( Nu 1408 )	Guinea pig	100-400	D			36	
Diphenylethylamines and Related Compounds								
302	1,2-Diphenylethylamine	Dog			$\begin{array}{r} 5,000- \\ 15,000 \end{array}$	C	121	
303		Guinea pig		C				
304	N-Methyl-1,2-diphenylethylamine	Guinea pig		C			121	
305	N-Ethyl-1,2-diphenylethylamine	Dog			$\begin{array}{r} 5,000- \\ 15,000 \\ \hline \end{array}$	C	121	
306		Guinea pig		(D)				
307	N-Propyl-1.2-diphenylethylamine	Guinea pig		C			121	
308	N-Isopropyl-1,2-diphenylethylamine	Guinea pig		C			121	
309	N-Isobutyl-1,2-diphenylethyLamine	Guinea pig		C			121	
310	1,2-Di-(p-methoxyphenyl)-ethylamine	Guinea pig		C			121	
311	$\begin{aligned} & \mathrm{N}-\text { Ethyl-1,2-di-(p-methoxyphenyl)- } \\ & \text { ethylamine } \end{aligned}$	Guinea pig		C			121	
312	1-Methyl-2,6-di-(p-methoxyphenyle thyl)piperidine	Guinea pig		D			122	
313	1,3-Diphenyl-2-amlno-propanol (Ephetonin)	Cat			4000	(D)	34,50	
	Aliphatic Amines							
314	Methylamine	Cat				(D)	61,62	
315		Rabbit				(D)		
316	Ethylamine	Cat				(D)	61.62	
317		Rabbit				(D)		
318	Amylamine	Guinea pig		C			123	
319	Isoamylamine	Cat				(C)	59,61.62	
320		Rabbit				(C)		
321	1-Hexylamlne	Guinea pig		1			124	
322	2-Hexylamine	Guinea pig		1			124	

134. SYMPA THOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued) $A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns D and Findicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound (Synonym)		Species	Effect				Reference	
		Local	Systemic					
		$\mathrm{m} \mathrm{\mu g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
Aliphatic Amines (concluded)								
323	3-Methyl-1-hexylamine		Guinea pig		I			124
324	2-Methyl-2-hexylamine	Guinea pig		I			124	
325	3-Methyl-2-hexylamine	Guinea pig		I			124	
326	4-Methyl-2-hexylamine	Guinea pig		I			124	
327	5-Methyl-2-hexylamine	Guinea pig		1			124	
328	1-Heptylamine	Guinea pig		1			124	
329	2-Heptylamine (Tuamine; Tuaminoheptane)	Guinea pig	250,000	D	5000	1	37,124,125	
330	3-Heptylamine	Guinea pig		1			124	
331	4-Heptylamine	Guinea pig		1			124	
332	2-Methyl-2-heptylamine	Guinea pig	250,000	D			125	
333	3-Methyl-2-heptylamine	Guinea pig	250,000	D			125	
334	4-Methyl-2-heptylamine	Guinea pig	250,000	D			125	
335	5-Methyl-2-heptylamine	Guinea pig	250,000	D			125	
336	6-Methyl-2-heptylamine	Guinea pig	250,000	D			125	
337	2-Octylamine	Guinea pig	250,000	D			125	
338	3-Octylamine	Guinea pig	250,000	D			125	
339	2-Methyl-6-methylamino-heptene-2 (Octin)	Dog			$\begin{array}{r} 1,000- \\ 10,000 \end{array}$	(D)	10.126	
340		Rabbit			1000	D		
	Alicyclic Amines							
341	1-Cyclopentyl-2-amino-ethane	Guinea pig		1			4	
342	1-Cyclopentyl-2-amino-propane	Guinea pig		1			1	
343	1-Cyclopentyl-2-methylamino-propane	Dog			500-1000	D	127	
Indane Derivatives								
344	2-Amino-indane	Cat			8000	D	7,34	
345		Guinea pig			20,000	D		
346	2-Amino-indanol-1	Cat			6000	D	87	
347	cis-5-Hydroxy-2-amino-indanol-1	Cat			1000-6000	(D)	34	
348	trans-5-Hydroxy-2-amino-indanol-1	Cat			1000-6000	(D)	34	
349	6-Hydroxy-2-amino-indanol-1	Cat			5000	(D)	34	
350	5,6-Methylenedioxy-2-amino-indanol-1	Cat			5000	(D)	34	
	Isoquinolines and Related Compounds							
351	Tetrahydroisoquinoline	Dog			550-950	1	128	
352	6-Hydroxy-tetrahydroisoquinoline	Dog			900	C	128	
353	5,6-Dihydroxy-tetrahydroisoquinoline	Dog			250-950	D	128	
354	6,7-Dihydroxy-tetrahydroisoquinoline	Dog			250-1200	(D)	128	
355	6-Methoxy-tetrahydroisoquinoline	Dog			600-1300	(D)	128	
356	6-Ethoxy-tetrahydroisoquinoline	Dog			600-850	C	128	
357	6,7-Diethoxy-tetrahydriosoquinoline	Dog			700-1000	C	128	
358	5-Ethoxy-6-methoxy-tetrahydroisoquinoline	Dog			700-1000	1	128	
359	6-Ethoxy-7-methoxy-tetrahydroisoquinoline	Dog			700-1000	D	128	
360	6-Methoxy-7-ethoxy-tetrahydroisoquinoline	Dog			700	C	128	
361	N -Methyl-tetrahydroisoquinoline	Dog			1000-3500	D	128	
362	N-Methyl-6-hydroxy-tetrahydroisoquinoline	Dog			600	D	128	
363	N-Methyl-5,6-dihydroxy-tetrahydroisoquinoline	Dog			600	D	128	
364	N-Methyl-6,7-dihydroxy-tetrahydroisoquinoline	Dog			250-650	D	128	
365	N-Methyl-6-methoxy-tetrahydroisoquinoline	Dog			600-1300	C	128	
366	N-Methyl-5,6-dimethoxy-tetrahydroisoquinoline	Dog			700	C	128	
367	N-Methyl-6,7-dimethoxy-tetrahydroisoquinoline	Dog			700-1400	1	128	
368	N-Methyl-6-ethoxy-tetrahydroisoquinoline	Dog			70-130	D	128	
369	N-Methyl-6,7-diethoxy-tetrahydroisoquinoline	Dog			500-1100	(A)	128	
370	N-Methyl-5-ethoxy-6-methoxy-tetrahydroisoquinoline	Dog			700-1100	I	128	
371	N-Methyl-6-methoxy-7-ethoxy-tetrahydroisoquinoline	Dog			1000	I	128	

134. SYMPATHOMIMETIC AMINES AND RELATED DRUGS ACTING ON THE BRONCHI (Continued)
$A=$ active, but action complex (original literature should be consulted); $C=$ constricts; $D=$ dilates; $1=$ inactive. Parentheses in Columns D and F indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Compound Effect							Reference	
Compound (Symonym)		Species	Local		Systemic			
		$\mathrm{m} \mu \mathrm{g} / \mathrm{ml}$	Action	$\mu \mathrm{g} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)
1soquinolines and Related Compounds (concluded)								
372	N-Methyl-6-ethoxy-7-methoxy-tetrahydro- isoquinoline	Dog			1000	(A)	128	
373	6,7-Diethoxy-1-(3,4-diethoxybenzyl)isoquinoline (Perparin)	Cat	$\begin{array}{r} 1,000- \\ 100,000 \\ \hline \end{array}$	D			33	
374	6,7-Dimethoxy-2-methyl-3,4-dihydroisoquinolinium chloride (Lodal)	Dog			2000-5000	D	64	
375	$\beta$-Tetrahydronaphthylamine	Dog			3000	D	7.64	
376		Guinea pig			30,000	D		
377	2-(1,2,3,4-Tetrahydro-1-naphthyl)- imidazoline (Tetrahydrozoline)	Guinea pig	$\begin{array}{r} 100,000- \\ 200,000 \\ \hline \end{array}$	1			129	

Contributor: Hawkins, D. F.
References: [1] Marsh, D. F., J. Pharm. Exp. Ther. 94:426, 1948. [2] Alles, G. A., and Prinzmetal, M., ibid 48:161, 1933. [3] Hasama, B., Arch, exp. Path. 153:161, 1930. [4] Marsh, D. F., Pelletier, M. H., and Ross, C. A., J. Pharm. Exp. Ther. $91: 324,1947$. [5] Lands, A. M., Am. J. Physiol. 169:11, 1952. [6] Tainter, M. L., J. Pharm. Exp. Ther. 36:29, 1929. [7] Tiffeneau, R., and Beauvallet, M., C. rend. Soc. biol. 139:944, 1945. [8] Lands, A. M., Rickards, E. E., Nash, V. L., and Hooper, K. Z., J. Pharm. Exp. Ther. 89:297, 1947. [9] Lands, A. M., and Tainter, M. L., Arch. exp. Path. 219:76, 1953. [10] Cameron, W. M., and Tainter, M. L., J. Pharm. Exp. Ther. 57:152, 1936. [11] Hauschild, F., Arch. exp. Path. 195:647, 1940. [12] Marsh, D. F., and Herring, D. A., J. Pharm. Exp. Ther. 100:298, 1950. [13] Sollmann, T., and Gilbert, A. J., ibid 61:272, 1937. [14] Tainter, M. L., Pedden, J. R., and James, M., ibid 51:371, 1934. [15] Warren, M. R., Marsh, D. G., Thompson, C. R., Shelton, R. S., and Becker, T. G., ibid 79:187, 194 3. [16] Hawkins, D. F., (thesis), London, 1952. [17] Chen, K. K., J. Pharm. Exp. Ther. 33:237, 1928. [18] Curtis, F. R., ibid 35:321, 1929. [19] Handovski, H., Arch. internat. pharm. dyn., Par. 51:301, 1935. [20] Becker, T. J., Warren, M. R., Marsh, D. G., Thompson, C. R., and Shelton, R. S., J. Pharm. Exp. Ther. 75:289, 1942. [21] Bresnick, E., Beakey, J. F., Levinson, L., and Segal, M. S., J. Clin. Invest. 28:1182, 1949. [22] Chen, K. K., and Schmidt, C. F., J. Pharm. Exp. Ther. 24:339, 1924. [23] Curry, J. J., Fuchs, J. E., Leard, S. E., J. Allergy 20:104, 1949. [24] De Eds, F., and Bult, E. M., Proc. Soc. Exp. Biol. 24:800, 1927. [25] De Jongh, D. K., Arch. internat. pharm. dyn., Par. 83:158, 1950. [26] Dirner, Z., Arch. exp. Path. 146:232, 1929. [27] Epstein, D.. Gunn, J. A., and Virden, C. J., J. Physiol., Lond. 76:224, 1931. [28] Feinberg, S. M.. J. Allergy 17:217, 1946. [29] Graham, B. E., and Kuizenga, M. H., J. Pharm. Exp. Ther. 94:150, 1948 . [30] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [31] Hawkins, D. F., Herxheimer, H., and Schild, H. O., J. Physiol., Lond. 113:26P, 1951. [32] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 6:682, 1951. [33] Issekutz, B. v., Leinzinger, M., and Dirner, Z., Arch. exp. Path. 164:158, 1932. [34] Kiese, M., ibid 178:342, 1935. [35] Kreitmar, H., ibid 120:189, 1927. [36] Lehmann, G., and Randall, L. O., J. Pharm. Exp. Ther. $93: 114,1948$. [37] Lowe, E. R., Kaiser, M. E., and Moore, V., ibid 86:1, 1946. [38] McDougal, M. D., and West, G. B., Brit. J. Pharm. 8:26, 1953. [39] Pak, C., and King T., Chin. J. Physiol. $4: 141,1930$. [40] Pak, C., and King, T., Proc. Soc. Exp. Biol. 27:253, 1930.
[41] Pedden. J. R., Tainter, M. L., and Cameron, W. M., J. Pharm. Exp. Ther. 55:242, 1935. [42] Rietschel, H. G., Arch. exp. Path. 186:387, 1937. [43] Rosa, L., and McDowall, R. J., Acta Allerg. $4: 293,1951$. [44] Rubitsky, H. J., Herschfus, J. A., Levinson, L., Bresnick, E., and Segal, M. S., J. Allergy 21:559, 1950. [45] Seibert, R. A., and Handley, C. A., J. Pharm. Exp. Ther. 110:304, 1954. [46] Swanson, E. E., ibid 36:541, 1929. [47] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [48] Tainter, M. L., and Seidenfeld, M. A., ibid 40:23, 1930. [49] Warnant, H., Arch. internat. pharm. dyn., Par. 37:61, 1930. [50] Kiese, M., Klin. Wschr. 14:571, 1935. [51] Rietschel, H. G., ibid 14:1649, 1935. [52] Ellis, F. W., J. Pharm. Exp. Ther. 89:214, 1947. [53] Co Tui, Burstein, C. L., and Wright, A. M., ibid 58:33, 1936. [54] Konzett, H., Arch. exp. Path. 197:27, 1941. [55] Kuschinsky, G., ibid 156:290, 1930. [56] Kuschinsky, G., and Oberdisse, K., ibid 162:46, 1931. [57] Ludwigs, N., and Schneider, M., ibid 21 8:432, 1953. [58] Baehr. G., and Pick, E. P., ibid 74:41,1913. [59] Dale, II. II., and Dixon, W. E., J. Physiol., Lond. $39: 25,1909$. [60] Daly, I. de B., Quart. J. Exp. Physiol., Lond. 28:357, 1938. [61] Golla, F. L., and Symes, W. L., J. Physiol., Lond. 46:38P, 1913. [62] Golla, F. L., and Symes, W. L., J. Pharm. Exp. Ther. 5:87, 1913. [63] Jackson, D. E., ibid 4:291, 1913. [64] Jackson, D. E., ibid 5:479, 1914. [65] Quagliarello, G., Zschr. Biol. 64:263, 1914. [66] Tainter, M. L., J. Pharm. Exp. Ther. $\overline{3} 0: 163,1926$. [67] Zipf, K., and Gebauer, A., Arch. exp. Path. $189: 249$, 1938. [68] Supniewski, J. V., C. rend. Soc. biol. $100: 1147,1929$. [69] Issekutz, B. V., and Genersich, P., Arch. exp. Path. 202:201, 1943. [70] Lasch, F., ibid $12 \overline{4: 231}, 1927$. [71] Lands, A. M., Nash, V. L., Dertinger, B. L., Granger, 11. R., and McCarthy, H. M., J. Pharm. Exp. Ther. 92:369, 1948. [72] Lands, A. M., Luduena, F. P., Ananenko, E., and Grant, J. I., Arch. internat. pharm. dyn., Par. 83:602, 1950. [73] Siegmund, O. H., Granger. H. R., and Lands, A. M., J. Pharm. Exp. Ther. 90:254, 1947. [74] Burn, J. H., and llutcheon, D. E., Brit. J. Pharm. 4:373, 1949. [75] Marsh, D. F., Pelletier, M. H., and Ross, C. A., J. Pharm. Exp. Ther. 92:108, 1948.
[76] Melville, K. I., Arch. internat. pharm. dyn., Par. 58:129, 1938. [77] Luduena, F. P., Ananenko, E., Siegmund, O.11., and Miller, L. C., J. Pharm. Exp. Ther. 95:155, 1949. [ 78] Lands, A. M., Luduena, F. P., Grant. J. I., and Ananenko, E., ibid 99:45, 1950. [79] Lu, F.C., and Allmark, M. G., J. Pharm. Pharmacol. 6:513, 1954. [80] Hawkins. D. F., and Parkes, M. W., unpublished, 1957. [81] Carlson, A. J., and Luckhardt, A. B., Am. J. Physiol. 54:55, 1920. [82] Castillo. J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947. [83] Cloetta, M., Arch. exp. Path.

73:233, 1913. [84] Cordier, D., and Magne, H., Ann. physiol., Par. 3:486, 1927. [85] Dixon, W. E., and Ransom, F., J. Physiol., Lond. $45: 413,1912$. [86] Bullowa, J. G.., and Gottlieb, C., Am. J. M. Sc. 160:98, 1920. [87] Augstein, W., Arch. exp. Path. $169: 114,1933$. [88] Barlow, O. W., and Beams, A. J., J. Pharm. Exp. Ther. 47:111. 1933. [89] Eichler, O., and Mügge, H., Arch. exp. Path. 159:613, 1931. [90] Epstein, D. E., J. Physiol., Lond. 76:346, 1931. [91] Foggie, P., Quart. J. Exp. Physiol., Lond. 26:225, 1937. [92] Franklin, K. J., J. Pharm. Exp. Ther. 26:227, 1925. [93] De Gamrat, C., Rev. méd. Suisse romande 29:245, 1909. [94] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [95] Jackson, D. E., J. Pharm. Exp. Ther. 4:59, 1912. [96] Januschke, H., and Pollak, L., Arch. exp. Path. 66:205, 1911. [97] Lehmann, G., J. Pharm. Exp. Ther. 92:249, 1948. [98] Lendle, L., Arch. exp. Path. 187:371, 1937. [99] Lipschitz, W., and Osterroth, J., ibid 106:341, 1925. [100] Lohr, H., Zschr. ges. exp. Med. $39: 67,1924$. [101] Macht, D. I., and Ting, G. C., J. Pharm. Exp. Ther. 18:373, 1921. [102] McDowall. R. J., and Thornton, J. W., J. Physiol., Lond. 70:44P, 1930. [103] Modrakowski, G., Pflügers Arch. 158:509, 1914. [104] Rittman, R., Wien. med. Wschr. 74:2058, 1924. [105] Rosa, L., Boll. e. Mem. del. Soc. Tosco-Umbro Emiliana d. Med. Int. $1: 40,1950$. [106] Sollmann, T., and Von Oettingen, W. F., Proc. Soc. Exp. Biol. 25:692, 1925. [107] Symes, W. L., Brit. M. J. 2:12, 1915. [108] Tiefensee, K., Arch. exp. Path. 139:139, 1929. [109] Titone, F. P., Pflügers Arch. 155:77, 1914. [110] Villaret, M., Justin-Besancon, L., and Vexenat, G., C. rend. Soc. biol. $100: 806$. 1929. [111] Weber, E., Arch. Anat. Physiol., Lpz., p 63, 1914. [112] Wick, H., Arch. exp. Path. 212:133, $1 \overline{950}$. [113] Stutzman, J. W., and Orth, O. S., J. Pharm. Exp. Ther. 69:1, 1940. [114] Siegmund, O. H., Beglin, N., and Lands, A. M., ibid 97:14, 1949. [115] Lands, A. M., Nash, V. L., McCarthy, H. M.. Granger, H. R., and Dertinger, B. L., ibid $90: 110,1947$. [116] Hebb, C.O., and Konzett, H., J. Pharm. Exp. Ther. $96: 228$, 1949. [117] Feinberg, S. M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. 99:195, 1950. [118] Graham, J. D., Quart. J. Pharm., Lond. 16:362, 1943. [119] Grewal, R. S.. Brit. J. Pharm., Lond. 7:338, 1952. [120] Graham, B. E., and Cartland, G. F., J. Pharm. Exp. Ther. 81:360, 1944. [121] Tainter, M. L., Luduena, F. P., Lackey, R. W., and Neuru, E. N., ibid 77:317, 1943. [122] Forster, R. H., Moench, L. J., and Clark, H. C., ibid 87:73, 1946. [123] De Cuyper, T., Arch. internat. pharm. dyn., Par. 72:360, 1946. [124] Marsh, D. F., J. Pharm. Exp. Ther. 94:225, 1948. [125] Marsh, D. F.. and Herring, D. A., ibid 98:300, 1950. [126] Mligge, H., Klin. Wschr. 12:381, 1933. [127] Swanson, E. E., and Chen, K. K., J. Pharm. Exp. Ther, 93:423, 1948. [128] Fassett, D. W., and Hjort, A. M., ibid 63:253. 1938. [129] Hutcheon, D. E., P'an, S. Y., Gardocki, J. F.. Jaeger, D. A., ibid 113:341, 1955.

## 135. ANTAGONISTS AND POTENTLATORS OF DRUGS ACTING ON THE BRONCH1

Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of Sciences-The National Research Council. For all "effects" included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Similarly, results obtained in protecting guinea pigs against lethal doses of histamine were excluded, unless there was evidence of the relief of bronchospasm. Drug actions influencing only anaphylactic or asthmatic bronchospasm, or other pathological states of the bronchi, were also excluded. Concentrations of drugs are given in $\mu \mathrm{g} / \mathrm{ml}$ for local action on isolated preparations, and doses in $\mathrm{mg} / \mathrm{kg}$ for drugs administered systemically. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted. $\mathrm{C}=$ constricts, $\mathrm{D}=$ dilates, $\mathrm{A}=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect.

Part 1: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS
Drugs are listed alphabetically.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Amylocaine	5-Hydroxytryptamine	C	Cat		A			1	
2	Antrenyl (Ba 5473;   Diethyl(2-hydroxy-ethyl)methylammonium bromide a-phenyl-cyclohexaneglycollate)	Acetylcholine	C	Guinea pig	$\begin{array}{r} 0.1- \\ 1.0 \end{array}$	A			2	
3		Pilocarpine	C	Cat			1.0	A	3	
4	$\begin{aligned} & \text { Atropine (Tropine } \\ & \text { tropate) } \end{aligned}$	Acetylcholine	C	Man	$\begin{array}{r} 0.0004 \\ 10.0 \end{array}$	A			4-7	
5			C	Cat	1.0	A	0.01-0.04	A	8,9	
6			C	Dog	$\begin{aligned} & 0.1- \\ & 10.0 \end{aligned}$	A	0.1-1.0	A	10.11	
7			C	Guinea pig	$\begin{array}{r} 0.001- \\ 20.0 \end{array}$	A	0.01-1.0	A	12-17	
8			C	Monkey		A			18	
9			C	Pig		A			19	
10			C	Rabbit		A			20	
11			C	Frog	16.0	A			21,22	
12		Agar	C	Guinea pig	500-1000	01			23	
13		Amphetamine	C	Dog		A			24	
14		Andromedotoxin	C	Rabbit	10	A			25	
15		Arecoline	C	Cat		A			26	
16			C	Dog	$\begin{aligned} & 0.1- \\ & 10.0 \end{aligned}$	A	$0.2-1.0$	A	11,26-28	
17			C	Rabbit		A			26	
18		```1-Benzyl-3-\beta-diethyl- aminoe thyl-5,5- diallyl-barbituric acid```	C	Cat			1.5	I	29	
19		Benzyltrimethylammonium iodide	C	Guinea pig		A			30	
20		Carbachol	C	Dog			0.1	A	31	
21		Carbaminoyl- $\beta$ methylcholine	C	Dog			0.1	A	32	
22		Coniine	$\overline{\mathrm{C}}$	Guinea pig	10	(A)			8	
23		Curarine	C	Cat		1			33	
24			C	Guinea pig				A	34	
25		Cytisine	C	Guinea pig	10	1			8	
26		Diethylaminoe thanol	C	Guinea pig		1			35	
27		Diethylmorphine	C	Dog		1		I	26,28	
28		Diisopropylfluorophosphate	C	Guinea pig	0.01	A			36	
29		N - Dimethyl-hexa-hydro-isonicotinic acid methyl ester iodide	C	Cat			0.4	A	37	
30		Ephedrine	D	Cat		1			26	
31			D	Dog		1		1	26,28	
32			D	Rabbit		1			26	
33			C	Rabbit	2	I			[38,39	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued)

Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Continued)
$C=$ constricts,$D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
34	Atropine (Tropine tropate) (continued)	$\psi$-Ephedrine	D	Cat		I			26	
35			D	Dog		I		I	26.28	
36			D	Rabbit		I			26	
37		Epinephrine	D	Cat		I	3	1	26.73	
38			D	Dog		I		I	26.28	
39			D	Guinea pig	1-100	I			8	
40			D	Rabbil		I			26	
41		Ergot	C	Dog				A	40	
42		Ethylcholine	C	Dog		A			41	
43			C	Guinea pig		A			41	
44		Furmethide	C	Guinea pig		A			30	
45		Hexamethonium	C	Guinea pig	1-10	I			8	
46		Histamine	C	Man			0.01	(A)	42	
47			C	Cat		(A)	10	1	43,44	
48			C	Dog		A	1-2	(A)	$\begin{aligned} & 24,28 \\ & 45-47 \end{aligned}$	
49			C	Guinea pig	$1-1000$	A	0.1-40.0	A	$\begin{array}{r} 12,16 \\ 48-55 \end{array}$	
50		5-11ydroxytryptamine	C	Cat			0.3	(A)	9.56	
51			C	Guinea pig		A	0.3-1.3	A	57.58	
52		Kalmia	C	Guinea pig		I			59	
53		Lobeline	C	Guinea pig	1-10	1			8	
54		Methacholine	C	Man			0.01	A	42	
55			C	Cat		A			24	
56			C	Dog		A	0.2	A	24,46,61	
57			C	Guinea pig			0.01-3.0	A	16,50,51,62	
58		Miotine	C	Cat				A	63	
59		Morphine	C	Dog		I		I	26,28	
60		Muscarine	C	Cat		A	0.5-20.0	A	44,64,65	
61			C	Dog			0.2-0.5	A	40,66	
62			C	Guinea pig				A	, 67	
63			C	Pig	3-200	A			'68,69	
64			C	Frog		A			22	
65		Nicotine	C	Cat	1	A			8	
66			C	Guinea pig			0.1-1.3	A	16	
67			D	Guinea pig	1-100	A			8	
68		Norepinephrine	D	Guinea pig	1-100	I			8	
69		Peptone	C	Dog			0.2	I	46	
70			C	Guinea pig	500	A			23.70	
71		Physostigmine	C	Cat		A	0.3	A	26,64,71	
72			C	Dog	0.1-10	A	0.4	A	11,24,26,28	
73			C	Guinea pig	0.01	A			36	
74			C	Rabbit		A	0.5	A	26,40	
75		Pilocarpine	C	Cat		A	0.5-3.0	A	$\begin{gathered} 26,66,72 \\ 74,75 \end{gathered}$	
76			C	Dog	2	A	0.1-0.8	A	$\begin{gathered} 24,26,28 \\ 40,47 \\ 76-80 \end{gathered}$	
77			C	Guinea pig		A			81,82	
78			C	Ox	20-30	A			84	
79			C	Pig	30-200	A			68,69	
80			C	Rabbit		A	3.0	A	24,26,85	
81			C	Turile			5.0	A	40	
82			C	Frog	20	A			22	
83		Pyrilamine	C	Guinea pig	10	I			60	
84		Tetraethylpyrophosphate	C	Guinea pig	0.01	A			36	
85		Tetramethylammonium chloride	C	Guinea pig	1	A			8	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued)

Part 1: PARASXMPATHOLYTICS AND LOCAL ANESTHETICS (Continued)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
86	Atropine (Tropine	d-Tubocurarine	C	Dog			0.2	1	46	
87	tropate)(concluded)	Xysmalobinum	C	Cat				1	86	
88	Bellafoline ${ }^{\text {l }}$	Histamine	C	Man			0.01	I	42	
89		Methacholine	C	Man			0.01	A	42	
90	bis-[1-(Carbo- $\beta$-diethyl-	Furmethide	C	Guinea pig			50	A	87	
91	$\begin{aligned} & \text { aminoethoxy)-1-phenyl- } \\ & \text { cyclopentane]-ethane di- } \\ & \text { sulphonate (SKF } 769 \text { J2) } \end{aligned}$	Histamine	C	Guinea pig			75	(A)	87	
92	Dibucaine (Nupercaine)	Histamine	C	Guinea pig			5	1	54	
93	Dibutoline (Dimethyl-	Histamine	C	Guinea pig		I	100	I	50,88	
94	ethyl- $\beta$-hydroxyethyl-	Methacholine	C	Guinea pig			0.6	A	50	
95	ammonium sulphate di-n-butyl carbamate)	Pilocarpine	C	Guinea pig		A			88	
96	2,2-Diphenyl-4-	Acetylcholine	C	Guinea pig		A			57	
97	diisopropylaminobutyramide methyliodide (R 79)	5-Hydroxytryptamine	C	Guinea pig		I			57	
98	Homatropine sulphuric ester	Pilocarpine	C	Ox	400	I			89	
99	d- Hyoscine ${ }^{2}$ (Scopine tropate)	Muscarine	C	Pig		A			69	
100	d-Hyoscyamine ${ }^{3}$ (Tropine tropate)	Muscarine	C	Pig		A			69	
101	1-Hyoscyamine ${ }^{4}$	Muscarine	C	Cat				A	64	
102			C	Pig		A			69	
103	Lidocaine (lignocaine; Xylocaine)	5-Hydroxytryptamine	C	Cat		A			1	
104	Methantheline (Banthine; $\beta$-Diethylaminoethyl	Acetylcholine	C	Guinea pig	$\begin{array}{r} 0.05- \\ 10.0 \end{array}$	A			51,91	
105	xanthene-9-carboxylate	Histamine	C	Guinea pig	10	(A)	6	1	51,91,92	
106	methobromide	Methacholine	C	Guinea pig			0.5-3	A	51.92	
107	Novatropine	Acetylcholine	C	Guinea pig	$\begin{array}{r} 0.05- \\ 0.1 \end{array}$	A			12	
108			C	Frog	0.3	(A)			99	
109		Histamine	C	Guinea pig	10	I	2-3	A	12,93	
110	Procaine (Novocaine;	Acetylcholine	C	Man	50	1			4	
111	P.A.D.; p-Amino-		C	Guinea pig		A			94	
112	benzoyl-diethylaminoethanol)	Diisopropylfluoro phosphate	C	Dog			20-40	A	95	
113		Histamine	C	Man		1			96	
114			C	Guinea pig		(A)		(A)	4,52.54.94	
115		Hydroxyphenyl-benzyl trimethylammonium dimethylcarbamate	C	Dog			100	A	95	
116		5-Hydroxytryptamine	C	Cat		A			1	
117		Physostigmine	C	Dog			100-200	A	95	
118		Pilocarpine	C	Guinea pig		A			94	
119	Propantheline	Acetylcholine	C	Guinea pig			0.2-10.0	A	16	
120	(Pro-Banthine)	Histamine	C	Guinea pig			0.2-10.0	A	16	
121		5-llydroxytryptamine	C	Guinea pig			1.0-10.0	A	16	
122		Methacholine	C	Guinea pig			0.1-10.0	A	16	
123		Methyl-furmethide	C	Guinea pig			0.2-2.0	A	16	
124		Nicotine	C	Guinea pig			1.0-10.0	A	16	
125	Scopolamine (1-1lyoscine;	Acetylcholine	C	Dog	0.1-10	A			11	
126	Scopine tropatel	Arecoline	C	Dog	0.1-10	A			11	
127		listamine	C	Man			0.005-0.01	(A)	42	
128		Methacholine	C	Man			0.005-0.01	A	42	
129		Muscarine	C	Cat				A	04	
130			C	Pig		A			09	
131		Physostigmine	$\overline{\mathrm{C}}$	Dog	0.1-10	A			11	

Ti/Belladonna alkaloids. /2/Dextro isomer of scopolamine. /3/Dextroisomer of atropine. /4/Levo isomer of atropine.

## Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Continued)

$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
132	Scopolamine butylbromide	Acetylcholine	C	Dog			0.5	A	97	
133	(Buscopan; Scopola-	Histamine	C	Dog				1	97	
134	mine-N-bromobutylate)		C	Guinea pig			20	A	97	
135		Pilocarpine	C	Dog			0.01	A	97	
136	Scopolamine methyl-	Acetylcholine	C	Guinea pig		A			98	
137	bromide (Epoxymethamine bromide; Pamine: ScopolamineN -bromomethylate)	Histamine	C	Guinea pig		A			98	
138	Syntropan (3-Diethyl-	Acetylcholine	C	Guinea pig	5	A			12	
139	amino-2, 2-dimethyl-	Histamine	C	Guinea pig	10	I	30	I	12,54	
140	propyl di-tropate)	Pilocarpine	C	Cat			12	A	74	
141	Tetracaine (Amethocaine)	5-Hydroxytryptamine	C	Cat		A				

Contributor: Hawkins, D. F.
References: [1] Sinha, Y. K., and West, G. B., J. Physiol., Lond. 120:64P, 1953. [2] Plummer. A. J.. Barrett, W. E., Rutledge, R., and Yonkman, F. F.. J. Pharm. Exp. Ther. 108:292, 1953. [3] Meier, R., quoted by Plummer et al, ibid. [4] Hawkins, D. F. (thesis), London, 1952. [5] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 6:682, 1951. [6] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. Int. 1:26, 1950.
[7] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [8] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [9] Konzett, H., Brit. J. Pharm. 11:289, 1956. [10] Houssay, B. A., and Orias, O., C. rend. Soc. biol. 117:61, 1934. [11] Wick, H., Arch. exp. Path. 212:133, 1950. [12] Castillo, J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947, [13] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [14] Hawkins, D. F., and Parkes, M. W., unpublished, 1957. [15] Hebb, C. O., J. Physiol., Lond. $96: 26 \overline{\mathrm{P}}, 1939$. [16] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [17] Parkes, M. W., Brit. J. Pharm. 10:95, 1955. [18] Daly, I. de B., Quart. J. Exp. Physiol., Lond. $28: 357,1938$. [19] Villaret, M., Justin-Besançon, L., and Vexenat, G., C. rend. Soc. biol. 100:806, 1929. [20] Fastier, F. N., and Reid, C. S., Brit. J. Pharm. 7:417, 1952. [21] Dijkstra, C., and Noyons, A. K., Arch. internat. physiol. 49:257, 1939. |22] Dirner, Z., Arch. exp. Path. 146:232, 1929.
[23] Hanzlick, P. J., and Karsner, H. T:, J. Pharm. Exp. Ther. 14:449, 1920. [24] Sollmann, T., and Gilbert, A. J., ibid $61: 272$, 1937. [25] Hardikar, S. W., ibid $20: 17$, 1922. T26] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [27] Pedden, J. R., Tainter, M. L., and Cameron, W. M., ibid 55:242, 1935. [28] Swanson, E. E., ibid 36:541, 1929. [29] Sandberg, F., Acta physiol. scand. 25:(suppl. 91), 1952. [30] Fellows, E. J., and Livingston, A. E., J. Pharm. Exp. Ther. 74:65, 1942. [31] Dautrebande, L., Philippot, E., Nogarède, F., and Charlier, R., Arch. internat. pharm. dyn., Par. 66:138, 1941. [32] Farber, S., ibid 53:377, 1936. [33] West, R., ibid 56:81, 1937. [34] West, R., J. Physiol., Lond. 91:437, 1938. [35] Kraatz, C. P., Gruber, C. M., Jr., and Lisi, A, G., J. Pharm. Exp. Ther. 98:110, 1950. [36] Douglas, W. W., J. Physiol., Lond. 112:20P, 1951. [37] Supniewski, J. V., Serafinówna, M., and Hano, J., Arch. exp. Path. 183:725, 1936. [38] Pak, C., and King. T., Chin. J. Physiol. 4:141, 1930. [39] Pak, C., and King, T., Proc. Soc. Exp. Biol. 27:253, 1930.
[40] Prevost, J. L., and Saloz, J., Arch. internat. physiol. 8:327, 1909. [41] De Wispelaere, H., Arch. internat. pharm..dyn., Par. 56:363, 1937. [42] Beakey, J. F., Bresnick, E., Levinson, L., and Segal, M. S., Ann. Allergy 7:113, 1949. [43] Dale, H. H., and Laidlaw, P. P., J. Physiol., Lond, 41:318, 1910. [44] Lohr, 11., Zschr. ges. exp. Med, 39:67, 1924. [45] Cameron, W. M., and Tainter, M. L.. J. Pharm. Exp. Ther. 57:152, 1936.
[46] Landmesser, C. M., Anesthesiology 8:506, 1947. [47] Tainter, M. L., and Seidenfeld, M. A., J. Pharm. Exp. Ther. 40:23, 1930. [48] Arunlakshana, O. (thesis), London, 1953. [49] Barlow, O. W., and Beams, A. J., J. Pharm. Exp. Ther. 47:111, 1933. [50] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [51] Chen, J. Y., J. Pharm. Exp. Ther. 112:64, 1954. [52] Dutta, N. K., Brit. J. Pharm. 4:197, 1949. [53] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [54] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 86:1, 1946. [55] Schild, H. O., Quart. J. Exp. Physiol., Lond, 26:165, 1936. [56] Comroe, J. H., Jr., Van Lingen, B., Stroud, R. C., and Roncoroni, A., Am. J. Physiol. 173:379, 1953. [57] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [58] Herxheimer, H., J. Physiol., Lond. 128:435, 1955.
[59] Waud, R. A., J. Pharm. Exp. Ther. 69:103, 1940. [60] Hawkins, D. F., Brit. J. Pharm. 10:230, 1955. [61] Comroe, J. H., Jr., and Starr, I., Jr., J. Pharm. Exp. Ther, 49:283, 1933. [62] Randall, L. O., Benson, W. M., and Stefko, P. L., ibid 104:284, 1952. [63] White, A. C., and Stedman, E., ibid 41:259, 1931. [64] Dixon, W. E., and Bradie, T. G., J. Physiol., Lond. 29:97, 1903. [65] Weber, E., Arch. Anat. Physiol., Lpz., p63, 1914, [66] De Gamrat, C., Rev. méd. Suisse romande 29:245, 1909. [67] Pal, J., Deut. med. Wschr. 38:1774, 1912. [68] Macht, D. 1., and Ting, G. C., J. Pharm. Exp, Ther. 18:111, 1921. [69] Macht, D. I., and Ting. G. C., ibid 18:373, 1921. [70] Baehr, G., and Pick, E. P., Arch. exp. Path. 74:41, 1913. [71] Dixon, W. E., and Ransom, F., J. Physiol., Lond. 45:413, 1912. [72] Florey, H., and Wells, A. Q., J. Pharm. Exp. Ther. 42:133, 1931. [73] Golla, F. L., and Symes, W. L., J. Physiol., Lond, 46:38P, 1913. [74] Kiese, M., Arch. exp, Path. $178: 342,1935$. [75] Kuschinsky, G., ibid $156: 290$, 1930. [76] Cloetta, M., ibid 73:233, 1913. [77] Ellis, M. P., and Livingston, A. E., J. Physiol., Lond. 84:223, 1935. [78] Jackson, D. E., J. Pharm. Exp. Ther. 4:1, 1912. [79] Jackson, D. E., ibid 4:291, 1913. [80] Wick, H., Arch. internat. pharm. dyn., Par.

## Part I: PARASYMPATHOLYTICS AND LOCAL ANESTHETICS (Concluded)

88:450, 1951. [81] Chu, H.-P., and How, G. K., Chin. J. Physiol. 5:115, 1931. [82] Thornton, J. W., Quart. J. Exp. Physiol., Lond. 21:305, 1932. [83] Trendelenburg, P., 2bl. Physiol. 26:1, 1912. [84] Trendelenburg, P., Arch. exp. Path. $69: 79,1912$. [85] Golla, F. L., and Symes, W. L., J. Pharm. Exp. Ther. $5: 87$, 1913. [86] Watt, J. M., ibid 38:261, 1930. [87] Toner, J. J., and Macko, E., ibid 106:246, 1952. [88] Featherstone, R. M., and White, N. G., ibid 84:105, 1945. [89] Trendelenburg. P., Arch. exp. Path. 73:118, 1913. [90] Siegmund, O. H., Granger, H. R., and Lands, A. M., J. Pharm. Exp. Ther. 90:254, 1947. [91] Chen, J. Y., ibid 114:192, 1955. [92] Hambourger, W. E., Cook, D. L., Winbury, M. M., and Freese, H. B., ibid 99:245, 1950. [93] Issekutz, B. v., and Genersich. P., Arch. exp. Path. 202:201, 1943. [94] Hazard, R., and Corteggiani, E., C. rend. Soc. biol. 137:688, 1943. [95] Atanackovic, D., and Dalgaard-Mikkelsen. S., Arch. internat. pharm. dyn., Par. 85:1, 1951. [96] Archer, J. D., Texas Repts. Biol. M. 10:483, 1952. [97] Wick, H., Arch. exp. Path. 213:485, 1951. [98] Visscher, F. E., Seay, P. H., Tazelaar, A. P., Jr., Veldkamp, W., and Vander Brook, M. J., J. Pharm. Exp. Ther. 110:188, 1954. [99] Dirner, Z., Arch. exp. Path. 157:154, 1930.

Part II: ANTICHOLINESTERASES
Drugs are listed alphabetically. $C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Benzoylcholine	Acetylcholine	C	Cat	3-10	P			1,2	
2			C	Cat	100	A			1.2	
3			C	Dog		P			1	
4			C	Rabbit	10	P			2	
5			C	Rabbit	100	A			2	
6	Diisopropylfluorophosphate (DFP)	Acetylcholine	C	Guinea pig	1.0	P			3	
7	Miotine ( ${ }_{\text {a-(m-Hydroxy- }}$	Acetylcholine	C	Cat			0.5	P	4	
8	phenyl)-ethyl]dimethylamine methylcarbamate)	Epinephrine	D	Cat				I	4	
9	Neostigmine (Prostigmine)	Methacholine	C	Man			0.005	P	5	
10	Physostigmine (Eserine)	Acetylcholine	C	Man	0.1-1.0				10.7	
11			C	Dog			0.1-0.6	P	8	
12			C	Guinea pig	0.1-5.0	P	1.0	P	3,9-11	
13			C	Monkey		P			12	
14			C	Rabbit		P			13	
15			C	Frog	10	P			14	
16		Histamine	C	Dog			0.0025		15	
17			C	Guinea pig			0.75	P	16	
18		Nicotine	C	Cat	$0.1-1.0$	P P			17	
19			C	Guinea pig	0.1	(P)			17	
20	Tetraethylpyrophosphate   (TEPP)	Acetylcholine	C	Guinea pig	0.1	P			3	

Contributor: Hawkins, D. F.
References: [1] Akcasu, A., Sinha, Y. K., and West, G. B., J. Physiol., Lond. 117:41P, 1952. [2] Akcasu, A., Sinha, Y. K., and West, G. B., Brit. J. Pharm. 7:331, 1952. [3] Douglas, W. W., J. Physiol., Lond. 112:20P, 1951. [4] White, A. C., and Stedman, E., J. Pharm. Exp. Ther. 41:259, 1931. [5] Beakey, J. F., Bresnick, E., Levinson, L., and Segal, M. S., Ann. Allergy 7:113, 1949. [6] Hawkins, D. F. (thesis), London, 1952. [7] Hawkins, D. F., and Schild, H. O., 13rit. J. Pharm. $\underline{\overline{6}}: 682$, 1951. [8] Houssay, B. A., and Orias, O., C. rend. Soc. biol. 117:61, 1934. [9] Guimaraes, J. L., and Lourie, E. M., Brit. J. Jharm. 6:514, 1951. [10] 1lebb, C. O., J. Physiol., Lond. $99: 57$, 1940. [11] Thornton, J. W., ibid 96:53P, 1939. [12] Daly, 1. de B., Quart J. Exp. Physiol., Lond. 28:357, 1938. [13] Fastier, F. N., and Reid, C. S., Brit. J. Pharm. 7:417, 1952. [14] Dijkstra, C., and Noyons, A. K., Arch. internat. physiol. 49:257, 1939. [15] Yonkman, F. F., Oppenheimer, E., Kennick, B., and Pellet, E., J. Pharm. Exp. Ther. 89:31, 1947. [16] Loew, E. K., Kaiser, M. E., and Moore, V., ibid 80:1, 1946. [17] Jlawkins, D. F., and Paton, W. D., unpublished, 1957.

## Part IlI: ANTIHISTAMINES

Drugs are listed to illustrate, as far as possible, the relationship between chemical structure and pharmacological action. $C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drugh, $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potenliator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect    Local Systemic				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Phenol Ethers										
1	$\begin{aligned} & \text { (m-Methylphenyl-oxo- } \\ & \text { ethyl)-amine (JL 474) } \end{aligned}$	Histamine	C	Guinea pig			10	1	1	
2	$\begin{aligned} & \text { (p-Methylphenyl-oxo- } \\ & \text { ethyl)-amine (JL 478) } \end{aligned}$	Histamine	C	Guinea pig			10	I	1	
3	$\begin{aligned} & \text { (p-Methoxyphenyl-oxo- } \\ & \text { ethyl)-amine (JL 499) } \end{aligned}$	Histamine	C	Guinea pig			10	I	1	
4	(3,4-Dimethylphenyl-ox0-ethyl)-amine (JL 912)	Histamine	C	Guinea pig			10	1	1	
5	( p - Methylphenyl-oxo-ethyl)-methylamine (JL 950)	Histamine	C	Guinea pig			10	I	1	
6	$\begin{gathered} \text { (2-Isopropyl-5-methyl- } \\ \text { phenyl-oxo-ethyl)- } \\ \text { ethylamine }(1482 \mathrm{~F}) \end{gathered}$	Histamine	C	Guinea pig		A		I	2	
7	(o-Methylphenyl-oxo-ethyl)-( $\beta$-hydroxy-ethyl)-amine (JL 504)	Histamine	C	Guinea pig			10	I	1	
8	$\begin{aligned} & \text { ( } \mathrm{p} \text { - Methylphenyl-oxo- } \\ & \text { ethyl)-( } \beta \text {-hydroxyethyl)- } \\ & \text { amine (JL 725) } \end{aligned}$	Histamine	C	Guinea pig			10	I	1	
9	(Phenyl-oxo-ethyl)dimethylamine (JL413)	Histamine	C	Guinea pig			10	A	1	
10	(o-Methylphenyl-oxo-ethyl)-dimethylamine (JL 963)	Histamine	C	Guinea pig			10	A	1	
11	(2,5-Dimelhylphenyl-oxo-ethyl)-diethylamine (1655 F)	Histamine	C	Guinea pig		A			2	
12	(2-Isopropyl-5-methyl-	Histamine	C	Dog			40	A	3	
13	phenyl-oxo-ethyl)-diethylamine (Thymoxyethyldiethylamine:929 F)		C	Guinea pig	1-10	A	2.5-25	A	1,2,4,5	
14	( p -Methylphenyl-oxo-ethyl)-phenylamine (JL 956)	Histamine	C	Guinea pig			5	I	1	
15	```N-{p-(tert.-Octyl)-phe- noxy-ethyl-oxo-ethyl]- morpholine (S 150)```	Histamine	C	Guinea pig		A			6	
16	$\begin{gathered} \text { Di-(p-methylphenyl-oxo- } \\ \text { ethyl)-amine (JL 477) } \end{gathered}$	Histamine	C	Guinea pig			4	A	1	
17	Di-(3,4-dimethylphenyl-oxo-ethyl)-amine (JL 765)	Histamine	C	Guinea pig			2	A	1	
18	Di-(o-methylphenyl-oxo-ethyl)-methylamine (JL 951)	Histamine	C	Guinea pig			8	I	1	
19	$\begin{aligned} & \text { Tri-(o-methylphenyl-oxo- } \\ & \text { ethyl)-amine (JL } 959 \text { ) } \end{aligned}$	Histamine	C	Guinea pig			10	A	1	
Benzhydryl Ethers										
20	$\beta$-Aminoethyl benzhydryl ether	Histamine	C	Guinea pig			25	A	5	

## 135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCII (Continued)

Part 111: ANTIHISTAMINES (Continued)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $l f$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect    Local Systemic				Reference	
		Compound								
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
Benzhydryl Ethers (Continued)										
21	$\beta$-Methylaminoethyl benzhydryl ether (S 59)	Histamine	C	Dag			2-5	A	6	
22			C	Guinea pig		A	6-12.5		5,6	
23		Pilocarpine	C	Guinea pig		A			6	
24	$\beta$-Dimethylaminoethyl benzhydryl ether (Diphenhydramine; Benadryl)	Histamine	C	Man		A	0.5-1.0	A	7,8,9	
25			C	Dog			2-5	A	6,10	
26			C	Guinea pig	$\begin{array}{r} 0.005- \\ 50.0 \end{array}$	A	$\begin{array}{r} 0.005- \\ 12.5 \end{array}$	A	$\begin{gathered} 5,11,12-23, \\ 25 \end{gathered}$	
27		Acetylcholine Me thacholine	C	Guinea pig	4	A			15	
28			C	Man			0.5-1.0	A	8,9	
29			$\overline{\mathrm{C}}$	Dog			1 -	A	10	
30			C	Guinea pig			25-33	A	20,27	
31		Pilocarpine	C	Guinea pig		A			6	
32		$\beta$-Pyridylethylamine	C	Guinea pig	0.005	A			12	
33		d-Tubocurarine	C	Dog			1	A	10	
34	Diphenhydramine oxalate	Histamine	C	Guinea pig			2.7	A	11	
35	Diphenhydramine succinate	Histamine	C	Guinea pig			2.0	A	11	
36	$\beta$-Isopropylaminoethyl benzhydryl ether ( S 82 )	Histamine	C	Dog			2-5	A	6	
37			C	Guinea pig		A	6.0-12.5	A	5,0	
38		Pilocarpine	C	Guinea pig		A			6	
39	$\beta$-Diethylaminoethyl benzhydryl ether	Histamine	C	Guinea pig			6.0-12.5	A	5	
40	$\bar{\beta}$-n-Butylaminoethyl benzhydryl ether	Histamine	C	Guinea pig			12.5	I	5	
41	$\beta$ - $\mathrm{D}_{\mathrm{i}}$-n-butylaminoethyl benzhydryl ether	Histamine	C	Guinea pig			50	(A)	5	
42	$\beta$-Dicyclohexylaminoethyl benzhydryl ether	Histamine	C	Guinea pig			50	(A)	5	
43	```\beta-(\beta-Diethylaminoethyl- oxol-ethyl benzhydryl ether```	Histamine	C	Guinea pig			50	A	5	
44	$\begin{aligned} & \beta-(\beta-\text { Hydroxyethylmethyl- } \\ & \text { amino)-ethyl benzhydryl } \\ & \text { ether (S 161) } \end{aligned}$	Histamine	C	Guinea pig		A			0	
45	$\beta$-Piperidinoe thyl benzhydryl ether	Histamine	C	Guinea pig			1.5-12.5	A	5	
46	$\beta$-Morpholinoethyl benzhydryl ether	Histamine	$\overline{\mathrm{C}}$	Guinea pig			3.0-12.5	A	5	
47	$\beta$-( $\beta$-Morpholinoethyla mino)-ethyl benzhydryl ether	Histamine	C	Guinea pig			25	A	5	
48	Diethylaminopropyl benzhydryl ether	Histamine	C	Guinea pig			6-12.5	A	5	
49	$\bar{\beta}$-Methyl- $\beta$-morpholinopropyl benzhydryl ether	Histamine	C	Guinea pig			25	A	5	
50	6-Morpholinohexyl benzhydryl ether	Histamine	$\overline{\text { C }}$	Guinea pig			50	A	5	
51	( $\beta$-Benzhydryl-oxo-ethyl)trimethylammonium iodide (S 92)	Histamine	C	Dog			2-5	A	$\bigcirc$	
52			C	Guinea pig		A	0.5	A	0,11	
53	( $\beta$-Benzhydryl-oxo-ethyl)trimethylammonium methylsulphonate	Histamine	C	Guinea pig			1.3	A	11	
54	```( }\beta\mathrm{ -Benzhydryl-oxo-e thyl)- trimethylammonium p-toluensulphonate (S 154)```	Histamine	C	Dog			3-5	A	16	
55			C	Guinea pig		A	2.8	A	6,11	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued)

Part III: ANTIHISTAMINES (Continued)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Aclive Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	mg/kg	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Benzhydryl Ethers (concluded)										
56	( $\beta$-Benzhydryl-oxo-ethyl)-dimethylethylammonium bromide	Histamine	C	Guinea pig			1.8	A	11	
57	( $\beta$-Benzhydryl-oxo-ethyl)-	Histamine	C	Dog			5	A	6	
58	dimethylethylammonium p -toluenesulphonate (S 158)		C	Guinea pig		A	1.7	A	6,11	
59	4-( $\beta$-Benzhydryl-oxo-	Histamine	C	Dog			5	A	6	
60	ethyl)-4-methyl-morpholinium $p$-toluenesulphonate (S 157)		C	Guinea pig		A			6	
61	4-Chloro-benzhydryl	Histamine	C	Guinea pig	10	A	1-10	A	28	
62	tropine ether (SL 6057)	Acetylcholine	C	Guinea pig		(A)			28	
63	```4-Chloro-benzhydryl tropine ether methyl- bromide (SL 6058)```	Histamine	C	Guinea pig			2-10	A	28	
64	4, 4'-Dichlorobenzhydryl-$\beta$-morpholinoethyl ether	Histamine	C	Guinea pig			25	A	5	
	Benzhydryl Amines									
65	$\beta$-Aminoethyl benzhydryl amine	Histamine	C	Guinea pig			50	1	5	
66	$\beta$-Diethylaminoethyl benzhydryl amine	Histamine	C	Guinea pig			25	1	5	
67	$\beta$-Morpholinoe thyl benzhydryl amine	Histamine	C	Guinea pig			25	1	5	
68	$\gamma$-Diethylaminopropyl benzhydryl amine	Histamine	C	Guinea pig			50	1	5	
69	$\begin{aligned} & \text { N-Methyl-N'-benzhydryl- } \\ & \text { piperazine (Cyclizine; } \\ & \text { Marezine; } 47-83 \text { ) } \end{aligned}$	Histamine	C	Guinea pig	0.4	A	10	A	10,19,29	
70	N-Methyl-N'-(4-chloro-	Histamine	C	Man	0.2	A			7	
71	benzhydryl)-piperazine (Chloro-cyclizine; Perazil; Histantin; $47-2821$		C	Guinea pig	0.1-0.5	A	2.5-10	A	10,19,21	
	Ethylenediamines									
72	N -Phenyl- N - methyl$\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-diethyl-ethylenediamine ( 1335 F )	listamine	C	Guinea pig		1			2	
73	```N-Phenyl-N-ethyl-N',N'- dimethyl-ethylene- diamine (RP 2325)```	Histamine	C	Guinea pig			0.2-20.0	A	30-33	
74	```N-Phenyl-N-ethyl-N'.N'- diethyl-ethylene- diamine (1571 F)```	Histamine	C	Guinea pig	1-10	A	3-25	A	$\begin{gathered} 2,5,11,32 \\ 33 \end{gathered}$	
75	$\begin{aligned} & \mathrm{N}-(\mathrm{o} \text { - Methylphenyl)-N- } \\ & \text { ethyl-N', N'-diethyl- } \\ & \text { ethylenediamine (1599 F) } \end{aligned}$	${ }^{\text {Histamine }}$	C	Guinea pig		I			2	
76	N -Phenyl-N-benzyl- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$ -dimethyl-ethylenediamine (Antergan; Lergitin; RP 2339)	Histamine	C	Cat			4	A	34	
77			C	Guinea pig	0.1	A	0.5-20	A	31-33, 35-38	
78		Acetylcholine	C	Guinea pig			$<50$	1	33,37	
79		Agmatine	C	Guinea pig		A			39	
80		Amylamine	C	Guinea pig		A			39	
81		Cadaverine	C	Guinea pig		A			39	
82		Clupeine	C	Guinea pig		A			39	
83		Guanidine	C	Guinea pig		A			39	
84		Putrescine	C	${ }^{\top}$ Guinea pig		A			39	
85		Sodium nucleinate	C	Guinea pig		A			39	
86	N -Phenyl- N -(2-thenyl)$\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-ethylenediamine (Me thaphenilene; Diatrin; W-50)	Histamine	C	Guinea pig		A	0.05-1.0	A	40	

## Part 111: ANT1HISTAMINES (Continued)

$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $l=$ inactive (i.e., without influence on effect of active drug), $\mathrm{P}=$ potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Antagonist or Potentiator (Synonym)	Active Drug Compound	Effect	Species	Antagonist or Potentiator Effect Local Systemic			Reference
					$\mathrm{\mu g} / \mathrm{ml}$ Action	[ mg/kg	${ }^{\text {T Action }}$	
	(A)	(B)	(C)	(D)	(E) (F)	(G)	(H)	(I)
Ethylenediamines (continued)								
87	$\begin{aligned} & \mathrm{N} \text { - Benzyl-N-(z- } \\ & \text { pyrimidyl)- } \mathrm{N}^{\prime}, \mathrm{N}^{\prime}- \\ & \text { dimethyl-ethylene- } \\ & \text { diamine (Hetramine) } \end{aligned}$	Histamine	C	Guinea pig		0.3-12.0	A	$\begin{gathered} 19,25,41- \\ 43 \end{gathered}$
88	N -(p-Methoxybenzyl)- N -(2-pyrimidyl)- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}-$ dimethyl-ethylenediamine (Thonzylamıne; Anahist; Neohetramine)	Histamine	C	Guinea pig	$0.02-$ 2.0	3.5-10.0	A	$\begin{gathered} 19,41,42, \\ 44,45 \end{gathered}$
89	$\begin{gathered} \mathrm{N}-(\mathrm{p}-\text { Methoxybenzyl })-\mathrm{N}- \\ \text { (2-thiazolyl)- } \mathrm{N}^{\prime}, \mathrm{N}^{\prime} \text { - } \\ \text { dimethyd-ethylene- } \\ \text { diamine }(194 \mathrm{~B}) \end{gathered}$	Histamine	C	Guinea pig		5	A	19
90	N-Benzyl- $N$-( $\beta$-picolinyl) $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethylethylenediamine (74)	Histamine	C	Guinea pig		10	A	30
91	$\begin{aligned} & \mathrm{N}-\text { Benzyl- } \mathrm{N} \text {-(Y-picolinyl)- } \\ & \mathrm{N}^{1}, \mathrm{~N}^{\prime} \text {-dimethyl- } \\ & \text { ethylenediamine (106) } \end{aligned}$	-Histamine	C	Guinea pig		1.0	A	30
92	$\begin{aligned} & \text { N-(1-Naphthyl)-N-benzyl- } \\ & \text { N' }^{\prime} \text { N'-dimethyl- } \\ & \text { ethylenediamine (T } 1) \end{aligned}$	Histamine	C	Guinea pig		5.6	A	31
93	N -(I-Naphthyl)- N -benzyl-N', N'-diethylethylenediamine ( T 2)	Histamine	C	Guinea pig		16	(A)	31
94	$\begin{aligned} & \mathrm{N}-(2 \text {-Naphthyl)-N-benzyl- } \\ & \mathrm{N}^{\prime}, \mathrm{N}^{\prime} \text {-dimethyl- } \\ & \text { ethylenediamine (T } 3) \end{aligned}$	Histamine	C	Guinea pig		16	(A)	31
95	N -(2-Naphthyl)-N-benzyl$\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-diethyl-ethylenediamine (T 4)	Histamine	C	Guinea pig		16	(A)	31
96	$\begin{aligned} & \mathrm{N}-(1-\mathrm{Naph} \text { thyl)-N-ethyl- } \\ & \mathrm{N} \text { ', } \mathrm{N}^{\prime} \text {-dimethyl- } \\ & \text { ethylenediamine (T 5) } \end{aligned}$	Histamine	C	Guinea pig		16	(A)	31
97	$\begin{aligned} & \mathrm{N}-(1 \text { - Naphthyl })-\mathrm{N}-\text { ethyl- } \\ & \mathrm{N}, \mathrm{~N}^{\prime} \text {-diethyl- } \\ & \text { ethylenediamine (T 6) } \end{aligned}$	Histamine	C	Guinea pig		16	(A)	31
98	N -(2-Naphthyl)-N-ethyl$\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethylethylenediamine (T 7)	Histamine	C	Guinea pig		16	(A)	31
99	N -(2-Naphthyl)- N -ethyl$\mathrm{N}^{\prime} \cdot \mathrm{N}^{\prime}$-diethyl-ethylenediamine (T 8)	Histamine	C	Guinea pig		16	(A)	31
100	N-Benzyl- N -(z-pyridyl)-	Histamine	C	Man	50 A	0.5-1.0	A	8,46
101	$\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-		C	Dog		0.1-3.0	A	10,35
102	ethylenediamine   (Tripelennamine;   Pyribenzamine; $\mathrm{U}-95$ )		C	Guinea pig	$0.03-$ 1.7	0.1-10.0	A	$\begin{array}{r} 13,16,19,22 \\ 25,28,30 \\ 35,41,42 \\ 44,47-54 \end{array}$
103		Acetylcholine	C	Dog		$0.1-0.3$	1	35
104		Curarine	C	Dog		2	A	10
105		Methacholine	C	Dog		2	1	10
106		d-Tubocurarine	C	Dog		2	A	10
107	N -(p-Methoxybenzyl)- N -   (2-pyridyl)- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$ -	Histamine	C	Man	$\begin{gathered} 0.0004-\mathrm{A} \\ 10.0 \end{gathered}$			7,21,55-57
108	dimethyl-e thylenediamine (Mepyramine; Pyranisamine: Pyrilaminc: Neoantergan;		C	Guinea pig	$\begin{gathered} 0.00025-\mathrm{A} \\ 5.0 \end{gathered}$	0.001-2.5	A	$\begin{aligned} & 4,12.16 \\ & 21.25 \\ & 54.58 \\ & 02 \end{aligned}$
109	R1 2780)	Acetylcholine	C	Guinea pig		1-3	A	61

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued) Part IlI: ANTIHISTAMINES (Continued)
$\mathrm{C}=$ constricts, $\mathrm{D}=$ dilates, $\mathrm{A}=$ antagonizes active drug effect, $\mathrm{I}=$ inactive (i.e., without influence on effect of active drug), $\mathrm{P}=$ potentiates active drug effect. Parentheses in Columns F and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.


Part 1II: ANTIIISTAMINES (Continued)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drugl, $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	mg/kg	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Ethylenediamines (concluded)										
130	$\mathrm{N}^{1}$-Phenyl-N 1 -benzyl- $\mathrm{N}^{2}$, $\mathrm{N}^{2}$-diethyl-2-methylethylenediamine	Histamine	C	Guinea pig				A	68	
Phenothiazines and Related Compounds										
131	N -Dimethyla minoethylphenothiazine (RP 3015)	Histamine	C	Dog			1.0	A	69	
132			C	Guinea pig			0.1-8.0	A	19,25,69	
133	```N-Diethylaminoethyl- phenothiazine (Diethazine; Diparcol; 2987 RP)```	Diisopropylfluorophosphate	C	Dog			8.5	A	70	
134		Pilocarpine	C	Dog			10.0	A	70	
135	N - $(\beta$ - Dimethylaminopropyl)phenothiazine (Promethazine; Phenergan; RP 3277)	Histamine	C	Man		A	0.5-1.0	A	7,71	
136			C	Dog			1.0	A	69	
137			C	Guinea pig	5	A	0.2-10.0	A	$\begin{gathered} 19.21 .25 \\ 26,28.69 \\ 72-75 \end{gathered}$	
138		5-Hydroxytryptamine	C	Guinea pig		1	1-3	A	64,65	
139		Methacholine	C	Man			0.5-1.0	A	71	
140			C	Guinea pig			6.0	A	26	
141	$\begin{aligned} & \mathrm{N}-(\gamma \text {-Dimethylamino- } \beta, \\ & \beta \text {-dimethyl-propyl)- } \\ & \text { phenothiazine (RP 3300) } \end{aligned}$	Histamine	C	Guinea pig				1	38	
$\begin{aligned} & 142 \\ & 143 \end{aligned}$	N -Dimethylaminopropyl3 -chlorophenothiazine (Chlorpromazine; Largactil)	Histamine	C	Guinea pig			10-40	A	61.72-74	
		Acetylcholine   5-Hydroxytryptamine	C	Guinea pig			5-10	A	61	
144			C	Guinea pig			5-10	A	61	
145		Methacholine	C	Guinea pig			10	(A)	61	
$\begin{aligned} & 146 \\ & 147 \end{aligned}$		Methyl-furmethide	C	Guinea pig			10	A	61	
		Nicotine	C	Guinea pig			5-10	A	61	
148	N-Methylpiperidyl-3-methyl-phenothiazine (Lacumin)	Histamine	C	Guinea pig				A	76	
149	$\overline{\mathrm{N}}$-Pyrrolidinee thyl-phenothiazine (Pyrathiazine; Pyrrolazote: I-WBR-86)	Histamine	C	Guinea pig			2-12	A	19,44,47	
150	N - Dime thylaminoe thyl-1methoxyphenothiazine (RP 3298)	Histamine	C	Guinea pig				A	38	
151	```N-(\alpha-Methyl-\beta-dimethyl- aminoethyl)-1-me thoxy- phenothiazine (RP 3299)```	Histamine	C	Guinea pig				A	38	
152	N -Dimethylaminoethylthionodiphenylamine (RP 3283)	Histamine	C	Guinea pig				A	38	
153	N-Dimethylaminoethylsulphonodiphenylamine (RP 3289)	Histamine	C	Guinea $\overline{\mathrm{pig}}$				A	38	
	- Miscellaneous									
154	2-Dimethylaminoethoxydiphenylmethane (C 5581 H )	Histamine	C	Guinea pig			5	A	19	
155	2-Dimethylaminoethoxy4 -chloro-diphenylmethane (01780)	Histamine	C	Guinea pig			10	A	19	
156	a - Dimethylaminoethoxy-a-(2-pyridyl)-ethylbenzene (Decapryn; Dox	$\begin{aligned} & \text { llistamine } \\ & \text { xylaminel } \end{aligned}$	C	Guinea pig			5	A	19.44	
157	1-Phenyl-1-(2-pyridyl)-3-dimethylaminopropane (Prophenpyridamine; Inhiston; Trimeton)	llistamine	C	Guinea pig	0.02	A	0.5-5	A	19.45 .77	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued)

Part Ill: ANTIHISTAMINES (Continued)
$C=$ constricts,$D=$ dilates,$A=$ antagonizes active drugeffect, $I=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug Compound	Effect	Species	Antagonist or Potentiator Effect    Local Systemic				Reference	
		$\mu \mathrm{g} / \mathrm{ml}$			Action	mg/kg	Action			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(G)
Miscellaneous (concluded)										
158	1-Phenyl-1-(2-pyridyl)-3-dimethylaminopropane p-aminosalicylate (Avil; 11513c)	Histamine	C	Guinea pig			$0.1-10.0$	A	77	
159	$1-(p-\text { Chlorphenyl })-1-$   (2-pyridyl)-3-dimethyl-   amino-propane (Chlorpheniramine: Chlorpro-phenpyridamine:Chlor-T	Histamine   Trimeton)	C	Guinea pig			0.05-10.0	A	19,28,60	
160	$\mathrm{N}^{\prime}$ - Benzyl-N-methylpiperazine (46-125)	Histamine	C	Guinea pig		(A)			16	
161	$\begin{aligned} & \mathrm{N}^{\prime}-\text { Benzyl-N-ethyl- } \\ & \text { piperazine }(46-126) \end{aligned}$	Histamine	C	Guinea pig		(A)			16	
162	$\begin{aligned} & \mathbf{N}^{\prime}-\text { Benzyl-N-(n-lauryl)- } \\ & \text { piperazine }(895) \\ & \hline \end{aligned}$	Histamine	C	Guinea pig		1			16	
163	4-Dimethylamino- N phenylpiperidine (lrenal)	Histamine	C	Dog		A	1-2	A	78	
164	$\begin{aligned} & \text { 1,2-Diphenyl-4-piperidyl- } \\ & \text { l-butene }(01003) \end{aligned}$	Histamine	C	Guinea pig				A	19	
165	$\begin{aligned} & 1 \text { - Methyl-4-amino- } \mathrm{N}^{\prime}- \\ & \text { phenyl- } \mathrm{N}^{\mathrm{N}}-\left(2^{\prime}\right. \text {-thenyl)- } \\ & \text { piperidine (Sandosten) } \end{aligned}$	Histamine	C	Guinea pig			0.08-0.15	A	79	
166		5-Hydroxytryptamine	C	Guinea pig			0.3	A	79	
167	2-(N-Phenyl-N-benzyl-aminomethyl)imidazoline (Antazoline; Antistine; Antastan; 5512-M)	Histamine	C	Man		A			21	
168			C	Guinea pig	$\begin{array}{r} 0.005= \\ 50.0 \end{array}$	A	0.0025-15.0	A	$\begin{gathered} 13,17,19 \\ 21,67 \\ 80,81 \end{gathered}$	
169	2-(1,2,3,4-Tetrahydro-   1-naphthyl)-imidazoline   (Tetrahydrozoline   Tyzine)	Histamine	C	Guinea pig	$\begin{array}{r} 100- \\ 200 \end{array}$	A			82	
170	$\begin{aligned} & \text { Irans-1-(4'-Methyl- } \\ & \text { phenyl)-1-(2'-pyridyl)- } \\ & \text { 3-pyrrolidinoprop-1- } \\ & \text { ene hydrochloride } \\ & \text { (295 C 51) } \\ & \hline \end{aligned}$	Histamine	C	Guinea pig			0.01-1.0	A	60	
171	```trans-1-(4'-Chloro- phenyl}-1-{2'-pyridyl}- 3-pyrrolidinoprop-1- ene maleate (405 C 49)```	Histamine	C	Guinea pig			0.09-2.5	A	60	
172	2-Methyl-9-phenyl-2,3-dihydro-1-pyridindene (Nu 1326)	Histamine	C	Guinea pig			6-12		23	
173	2-Methyl-9-phenyl-2,3,	Histamine	C	Cat			1.0	A	23,83	
174	4,9-tetrahydro-1pyridindene (Phenin-		C	Guinea pig			0.25-10.0	A	$\begin{gathered} 19.23 .75 \\ 83 \\ \hline \end{gathered}$	
175	damine; Thephorin;   Nu 1504)	Acetylcholine	C	Cat			1.0	A	23	
176	2-Methyl-9-phenyl-2,3. 4,4a,9,9a-hexahydro-1-pyrıdindene ( Nu 1525 )	Histamine	C	Guinea pig			30	A	23	

Contributor: Hawkins, D. F.
References: [1] Kohler, D., C. rend. Soc. biol. 141:48, 1947. [2] Staub, A. M.. Ann. Inst. Pasteur, Par. 63:400, 1939. [3] Minard, D., and Rosenthal, S. R., Proc. Soc. Exp. Biol. $44: 237,1940$. [4] Bovet, D., and Walthert, F., Ann. pharm. fr. 2:(suppl.), 1944. [5] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 83:120, 1945. [6] Ellis, F. W., ibid 89:214, 1947. [7] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951.

## Part III: ANTIHISTAMINES (Concluded)

[8] Rubitsky, H. J., Bresnick, E., Levinson, L., Risman, G., and Segal, M. S., N. England M. J. 241:853. 1949. [9] Rubitsky. H. J., Herschfus, J. A., Levinson, L., Bresnick, E., and Segal, M. S., J. Allergy 21:559, 1950. [10] Landmesser, C. M., Anesthesiology 8:506, 1947. [11] Winder, C. V., Kaiser, M. E., Anderson, M. M., and Glassco, E. M., J. Pharm. Exp. Ther. 87:121, 1946. [12] Arunlakshana, O., (thesis). London, 1953.
[13] Bovet, D., Ann. N. York Acad. Sc. 50:1089, 1950. [14] Castillo, J. C., J. Pharm. Exp. Ther. $94: 412,1948$.
[15] Castillo, J. C., and De Beer, E. J., ibid 90:104, 1947. [16] Castillo, J. C., De Beer, E. J., and Jaros, S. H., ibid $96: 388,1949$. [17] Dutta, N. K., Brit. J. Pharm. 4:197, 1949. [18] Ellis, F. W., Fed. Proc. 4:117, 1945. [19] Feinberg, S. M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. $99: 195$. 1950. [20] Graham, J. D., ibid 91:103, 1947. [21] Hawkins, D. F.. (thesis), London, 1952. [22] Lee, H. M., Dinwiddie, W. G., and Chen, K. K., J. Pharm. Exp. Ther. 90:83, 1947. [23] Lehmann, G., ibid 92:249, 1948. [24] Luduena, F. P., Ananenko, E., Siegmund, O. H., and Miller, L. C., ibid 95:155, 1949. [25] Winter. C. A., ibid $90: 224,1947$. [26] Chen, G.. and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [27] Hambourger, W. E., Freese, H. B., Winbury, M. M., and Michiels, P. M., J. Pharm. Exp. Ther. 94:367, 1949. [28] Chen, J. Y., ibid 114:192, 1955. [29! Norton, S., Colville, K. I., Light, A. E., Wnuck, A. L., Fanelli, R. V., and De Beer, E. J., ibid 112:297, 1954. [30] Mayer, R. L., Huttrer, C. P., and Scholz, C. R., Science 102:93, 1945.
[31] Graham, J. D., and Tonks, R. S., Brit. J. Pharm. 11:1, 1956. [32] Feinberg, S. M., J. Allergy $17: 217$. 1946. [33] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [34] Sandberg, F., Acta physiol. scand. 25: (suppl. 91), 1952. [35] Yonkman, F. F., Oppenheimer, E., Rennick, B., and Pellet, E.. J. Pharm. Exp. Ther. 89:31, 1947. [36] Halpern, B. N., J. méd. Lyon 23:409, 1942. [37] Halpern, B. N., C. rend. Soc. biol. 139:625, 1945. [38] Halpern, B. N.. J. Allergy 18:263, 1947. [39] De Cuyper, T.. Arch. internat. pharm. dyn., Par. 72:360, 1946. [40] Ercoli, N., Schacter, R.J., Hueper, W. C., and Lewis, M. N., J. Pharm. Exp. Ther. 93:210, 1948. [41] Reinhard, J. F.. and Scudi, J. V.. Proc. Soc. Exp. Biol. 66:512, 1947. [42] Scudi, J. V.. Reinhard, J. F.. and Dreyer, N. B., J. Allergy 19:184, 1948. [43] Feinstone, W. H., Williams, R. D., and Rubin, B., Proc. Soc. Exp. Biol. 63:158, 1946. [44] Feinberg, S. M., Norén, B., and Feinberg, R. H., J. Allergy $19: 90$, 1948. [45] Dreyer, N. B., Ann. Allergy $8: 229,1950$. [46] Archer, J. D., Texas Repts. Bial. M. $10: 483,1952$. [47] Brook, V. M., Olsen, K. J., Richmond, M. T., and Kuizenga, M. H., J. Pharm. Exp. Ther. 94:197, 1948. [48] Feinberg, S. M., Quart. Bull. Northwest. Univ. M. School 22:27, 1948. [49] Lands, A. M., Hoppe. J. O., Siegmund, O. H., and Luduena, F. P., J. Pharm. Exp. Ther. $95: 45$, 1949. [50] Mayer, R. L.. J. Allergy 17:153, 1946. [51] Mayer, R. L., Hays, 11. W., Brousseau, D., Mathieson, D., Rennick, B., and Yonkman, F. F., J. Laborat. Clin. M. $31: 749,1946$. [52] Orcutt, J. A., and Prytherch, J. P., J. Pharm. Exp. Ther. 99:479, 1950. [53] Schiller, 1. W., and Lowell, F. C., Ann. Allergy 5:564, 1947. [54] Sherrod, T. R., Loew, E. $\bar{R} .$, and Schloemer, H. F., J. Pharm. Exp. Ther. 89:247, 1947. [55] Hawkins, D. F.. Herxheimer, H., and Schild, H. O., J. Physiol., Lond. 113:26P, 1951. [56] Hawkins, D. F., and Schild, H. O., Brit. J. Pharm. 6:682, 1951. [57] Schild, H. O., Hawkins, D. F., Mongar, J. L., and Herxheimer, H., Lancet, Lond. 2:376, 1951. [58] Bovet, D., Horclois, R., and Walthert, F., C. rend. Soc. biol. 138:99, 1944. [59] Dews, P. B., and Graham, J. D., Brit. J. Pharm. 1:278, 1946. [60] Green, A. F., Brit. J. Pharm. 8:171, 1953. [61] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [62] Parkes, M. W., personal communication, 1949. [63] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [64] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [65] lerxheimer, H., J. Physiol.. Lond. 128:435, 1955. [66] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [67] Alberty, J., Arch. internat. pharm. dyn., Par. 95:408, 1953. [68] Jalon, G., Farmacoter. actual, Madr. 2:35, 1946. [69] Halpern, B. N., and Ducrot, R., C. rend. Soc. biol. 140:361, 1946. [70] Heymans, C., Estable, J. J., and De Bonneveaux, S. C., Arch. internat. pharm. dyn., Par. 79:123, 1949. [71] Herxheimer, H., Brit. M. J. 2:901, 1949. [72] Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M., and Koetschet, P.. Arch. internat. pharm. dyn., Par. 92:305, 1952. [73] Kopera, J., and Armitage, A. K., Brit. J. Pharm. 9:392, 1954. [74] Ryall, R. W., ibid 11:339, 1956. [75] Timiras, P. S., J. Pharm. Exp. Ther. 106:419, 1952. [76] Kopf, R., Nord. med. 54:1779, 1955. [77] Lindner, E., Arch. exp. Path. 211:328, 1950. [78] Stern, P., ibid 199:251, 1942. [79] Konzett, H., Brit. J. Pharm. 11:289, 1956. [80] Graham, J. D., J. Pharm., Lond. 91:103, 1947. [81] Meier, R., and Bucher, K., Schweiz. med. Wschr. 76:294, 1946. [82] Hutcheon, D. E., P'an, S. Y., Gardocki, J. F., and Jaeger, D. A., J. Pharm. Exp. Ther. $113: 341,1955$. [83] Lehmann, G., Hagen, E., Barbarrow, G., and Rof, M., Fed. Proc. 6:350, 1947.
135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONC HI (Continued)

Part IV: ERGOT DERIVATIVES
Drugs are listed alphabetically. $C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e.. without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect    Local Systemic				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	1-Acetyl-d-Iysergic acid diethylamide	5-Hydroxytryptamine	C	Cat			0.015-0.03	A	1	
2	2-Bromo-d-lysergic acid diethylamide	5-Hydroxytryptamine	C	Cat			0.015-0.03	A	1	
3	Dihydroergocornine	Histamine	C	Man			0.003-0.01	A	2	
4		Methacholine	C	Man			0.003-0.01	A	2	
5	Dihydroergotamine	Epinephrine	D	Guinea pig	0.3-5.0	A			3	
6		5-Hydroxytryptamine	C	Cat		A			4	
7			C	Guinea pig		A	4.0	A	5,6	
8		Isoproterenol	D	Guinea pig	0.3-3.0	A			3	
9		Lobeline	D	Guinea pig	I. 0	I			3	
10		Nicotine	D	Guinea pig	0.3-1.0	A			3	
11		Norepinephrine	D	Guinea pig	10.0	(A)			3	
12	Ergometrine	Epinephrine	D	Guinea pig	1.0	I			3	
13		5-Hydroxytryptamine	C	Guinea pig			0.2	I	1	
14		Norepinephrine	D	Guinea pig	1.0	I			3	
15	Ergotamine	Arecoline	C	Cat		I			8	
16			C	Dog		I		I	7.8	
17			C	Rabbit		I			8	
18		Diethylmorphine	C	Cat		I			8	
19			C	Dog		I		I	7,8	
20		Ephedrine	D	Dog				I	7	
21		$\psi$-Ephedrine	D	Dog				I	7	
22		Epinephrine	D	Cat		I	2.0	P	8,9	
23			D	Dog		I	2.0	I	7,8,9	
24			D	Guinea pig	$\begin{aligned} & 0.8- \\ & 10.0 \end{aligned}$	(A)			3,10	
25			D	Rabbit		I			8	
26		Histamine	C	Cat		I			8	
27			C	Dog		I	5.0	I	7.8	
28			C	Guinea pig			1.5	I	11	
29			C	Rabbit		I			8	
30		5-Hydroxytryptamine	C	Guinea pig		A			5	
31		Isoproterenol	D	Guinea pig	0.3-3.0	A			3	
32		Morphine	C	Cat		I			8	
33			C	Dog		I		I	7.8	
34		Nicotine	$\overline{\mathrm{D}}$	Guinea pig	1.0	A			3	
35		Norepinephrine	D	Guinea pig	10	(A)			3	
36			D	Guinea pig	40	(P)			3	
37		Physostigmine	C	Cat		I			8	
38			C	Dog		I		I	7,8	
39			C	Rabbit		I			8	
40		Pilocarpine	C	Cat		I			8	
41			C	Dog		I		I	7,8	
42			C	Rabbit		1			8	
43	Ergotoxine ${ }^{1}$	Acetylcholine	C	Guinea pig		A			12,13	
44		Arecoline	C	Cat		I			8	
45			C	Dog		I		I	7,8	
46			C	Rabbit		I			8	
47		Diethylmorphine	C	Cat		I			8	
48			C	Dog		I		1	7,8	
49		Ephedrine	D	Cat		I			8	
50			D	Dog		I		1	7.8	
51			D	Rabbit		I			8	

/1/ Contains ergocornine, plus small amounts of ergokryptine and ergocristine.

Part IV: ERGOT DERIVATIVES (Concluded)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiales active drug effect. Parentheses in Columns $F$ and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Aclive Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
52	Ergotoxinel (concluded)	$\psi$-Ephedrine	D	Cat		I			8	
53			D	Dog		I		I	7.8	
54			D	Rabbit		1			8	
55		Epinephrine	D	Cat		I	0.3	1	8.14	
56			D	Dog		I	0.2-2.0	1	7.8 .15	
57			D	Guinea pig		(A)			16,17	
58			D	Pig		A			18	
59			D	Rabbit		I			8	
60		Histamine	C	Cat		I			8	
61			C	Dog		1		1	7,8	
62			C	Rabbit		I			8	
63		Morphine	C	Cat		1			8	
64			C	Dog		I		I	7,8	
65		Muscarine	C	Cat		I			14	
66		Nicotine	D	Guinea pig		A			3	
67		Norepinephrine	D	Guinea pig		I			3	
68		Physostigmine	C	Cat		I			8	
69			C	Dog		I		1	7.8	
70			C	Rabbit		1			8	
71		Pilocarpine	C	Cat		I			8	
72			C	Dog		I		I	7.8	
73			C	Rabbit		I			8	
74	d-Lysergic acid diethylamide	Acetylcholine	C	Guinea pig			0.07	I	19	
75		Histamine	C	Cat		1	0.005-0.03	I	1,4	
76			C	Guinea pig		I	$<0.05$	I	1,19	
77		5-Hydroxytryptamine	C	Guinea pig		A	0.005-0.4	A	1,5,6,19	
78		Methacholine	C	Guinea pig			0.02	(A)	19	
79		Methyl-furmethide	C	Guinea pig			$<0.08$	I	19	
80		Nicotine	C	Guinea pig			$<0.08$	1	19	

/1/ Contains ergocornine, plus small amounts of ergokryptine and ergocristine.
Contributor: Hawkins, D. F.
References: [1] Konzett, H., Brit. J. Pharm. 11:289, 1956. [2] Curry, J. J., Fuchs, J. E., and Leard, S. E., J. Clin. Invest. 29:439, 1950. [3] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [4] Gaddum, J. H., Hebb, C. O., Silver, A., and Swan, A. A., Quart. J. Exp. Physiol., Lond. 38:255, 1953. [5] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357, 1955. [6] Herxheimer, H., J. Physiol., Lond. 128:435, 1955.
[7] Swanson, E. E., J. Pharm. Exp. Ther. 36:541, 1929. [8] Swanson, E. E., and Webster, R. K., ibid 38:327. 1930. [9] Melville, K. I., Arch. internat. pharm. dyn., Par. 58:129, 1938. [10] Warnant, H., ibid 37:61. 1930. [11] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 86:1, 1946. [12] Hebb, C. O., J. Physiol. Lond. $96: 29 \mathrm{P}$, 1939. [13] Hebb, C. O., ibid 99:57, 1940. [14] Januschke, H., and Pollak, L., Arch. exp. Path. 66:205, 1911. [15] Jackson, D. E., J. Pharm. Exp. Ther. ${ }^{4}: 59$, 1912. [16] Daly, 1. de B., Quart. J. Exp. Physiol., Lond. 28:357, 1938. [17] Hawkins, D. F. (thesis), London, 1952. [18] Villaret, M., Justin-Besançon, L., and Vexenat, G., C. rend. Soc.biol. 100:806, 1929. [19] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956.

Part V: 2-HALOETHYLAMINES
Drugs are listed alphabetically. $C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	\|chtagonist or Potentiator Effect				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(11)	(1)
1	N-(2-(2-Biphenylyloxy)ethyl] -N-(2-chloro-ethyl)-allylamine	Histamine	C	Guinea pig			12.5	1	1	
2	N -(2-(z-Biphenylyloxy)-ethyl]-N-(2-chloro-ethy!)-amylamine	Histamine	C	Guinea pig			12.5	1	1	
3	$\begin{aligned} & \mathrm{N}-[2-(2-\text { Biphenylyloxy })- \\ & \text { ethyl }]-\mathrm{N}-(2 \text {-chloro- } \\ & \text { ethyl)-butylamine } \end{aligned}$	Histamine	C	Guinea pig			25.0	I	1	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued)

Part V: 2-HALOETHYLAMINES (Continued)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect Local $\quad$ Systemic				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
4	$\begin{aligned} & \mathrm{N}-[2-(2-\text { Biphenylyloxy })- \\ & \text { ethyl }]-\mathrm{N}-(2 \text {-chloro- } \\ & \text { ethyl)-ethylamine } \end{aligned}$	Histamine	C	Guinea pig			6.0	A	1	
5	$\begin{aligned} & \mathrm{N}-[2-(2-\text { Biphenylyloxy })- \\ & \text { ethyl }]-\mathrm{N}-(2 \text {-chloro- } \\ & \text { ethyl)-hexylamine } \end{aligned}$	Histamine	C	Guinea pig			25.0	1	1	
6	$\begin{gathered} \mathrm{N}-[2-(2-\text { Biphenylyloxy })- \\ \text { ethyl }]-\mathrm{N}-(2 \text {-chloro- } \\ \text { ethyl)-isopropylamine } \end{gathered}$	Histamine	C	Guinea pig			12.5	1	1	
7	$\begin{gathered} \mathrm{N}-[2-(2-\text { Biphenylyloxy })- \\ \text { ethyl }]-\mathrm{N}-(2 \text {-chloro- } \\ \text { ethyl)-methylamine } \end{gathered}$	Histamine	C	Guinea pig			1.5	A	1	
8	N -[2-(2-Biphenylyloxy)-ethyl]-N-(2-chloro-ethyl)-n-propylamine	Histamine	C	Guinea pig			12.5	A	1	
9	$\begin{aligned} & \mathrm{N}-[2-(2-\text { Biphenylyloxy })- \\ & \text { ethyl }]-\mathrm{N}-(2 \text {-chloro- } \\ & \text { propyl)-ethylamine } \end{aligned}$	Histamine	C	Guinea pig			12.5	A	1	
10	4-Chloro- N -(2-chloro- ethyl)- N -ethyl-1- naphthalenemethylamine	Histamine	C	Guinea pig			12.5	1	2	
11	N -(2-Chloroethyl)- N -allyl-1-naphthalenemethylamine	Histamine	C	Guinea pig			3.0	A	2	
12	$\begin{aligned} & \mathrm{N}-(2-\text { Chloroethyl })-\mathrm{N}-\mathrm{n}- \\ & \text { a myl-1-naphthalene- } \\ & \text { methylamine } \end{aligned}$	Histamine	C	Guinea pig			12.5	1	2	
13	N -(2-Chloroethyl)-N-n-butyl-1-naphthalenemethylamine	llistamine	C	Guinea pig			12.5	A	2	
14	$\begin{aligned} & \mathrm{N}-(2-\text { Chloroethyl })-\mathrm{N}- \\ & \text { sec. - butyl-1-naphtha- } \\ & \text { leneme thylamine } \end{aligned}$	Histamine	C	Guinea pig			12.5	A	2	
15	$\overline{\mathrm{N}}$-(2-Chloroethyl)- N -elhyl-1-naphthalenemethylamine	llistamine	C	Guinea pig			0.025-0.08	A	2,3	
16	N -(2-Chloroethyl)- N - n -hexyl-1-naphthalenemethylamine	Histamine	C	Guinea pig			25.0	I	2	
17	N -(2-Chloroethyl)- N -isobutyl-1-naphthalenemethylamine	llistamine	C	Guinea pig			12.5	1	2	
18	N -(2-Chloroethyl)-N-isopropyl-1-naphthalenemethylamine	Histamine	C	Guinea pig			3.0	A	2	
19	$\begin{aligned} & \mathrm{N}-(2 \text {-Chloroethyl)-N- } \\ & \text { (2-me thoxyethyl)-1- } \\ & \text { naph thalenemethylamine } \end{aligned}$	Hista mine	C	Guinea pig			1.5	A	2	
20	$\begin{aligned} & \mathrm{N}-(2-\text { Chloroethyl)- } \mathrm{N}- \\ & \text { methyl- } 1 \text { - naphthalene- } \\ & \text { methylamine } \end{aligned}$	Hlistamine	C	Guinea pig			0.05-0.20	A	2,3	
21	$\begin{aligned} & \mathrm{N}-(2-\text { Chloroethyl })-\mathrm{N}-\mathrm{n}^{-} \\ & \text {propyl- } \mathrm{t} \text {-naphthalene- } \\ & \text { me thylamine } \end{aligned}$	Histamine	C	Guinea pig			1.0	A	2	
22	N -[2-(2'-Cyclohexylphen-oxy)-ethyl)-N-(z-chloro-ethyl)-ethylamine	Histamine	C	Guinea pig			25.0	1	1	
23	$\overline{\mathrm{N}, \mathrm{N}}$ - Dibenzyl-2-chloroethylamine (Dibenamine)	Epinephrine	D	Guinea pig	1000	P			4	
24		5-Hydroxytryptamine	C	Guinea pig		A			5	
25		Norepinephrine	D	Guinea pig	1000	1			4	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHl (Continued)

Part V: 2-HALOETIIYLAMINES Concluded)
$C=$ constricis, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentlator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{kg}$			Action	$\mathrm{mg} / \mathrm{kg}$.	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
26	N, N-Di-(2-chloroethyl)-1naphthalenemethylamine	Histamine	C	Guinea pig			25.0	A	2	
27	N - Ethyl- N - (1-naphthyl-methyl)-2-bromoethylam	Histamine ine;	C	Guinea pig			0.03-0.10	A	2,3	
28	N - Ethyl-N-(2-naphthyl-methyl)-2-bromoethylam	Histamine ine!	C	Guinea pig			1.5	A	3	
29	$\begin{gathered} \mathrm{N}-\text { Ethyl-N-(2-naphthyl- } \\ \text { methyl)-2-chloroethylami } \end{gathered}$	Histamine ine;	C	Guinea pig			3.6		3	
30	N-Ethyl-N-(1-naphthyl-methyl)-2-fluoroethylami	Histamine ine:	C	Guinea pig				(I)	3	
31	N-Ethyl-N-(2-naphthyl-methyl)-2-fluoroethylami	Histamine ine	C	Guinea pig			20.0	A	3	
32	N-Ethyl-N-(1-naphthyl-methyl)-2-iodoethylamine	Histamine	C	Guinea pig			0.10	A	3	
33	$\overline{\mathrm{N}}$ - Ethyl- N -(2-naphthyl-methyl)-2-iodoethylamine	Histamine	$\overline{\mathrm{C}}$	Guinea pig			1.9	A	3	
34	N -Methyl- N -(1-naphthyl-methyl)-2-bromoethylamine	Histamine	C	Guinea pig			0.11	A	3	
35	N -Methyl- N -(2-naphthyl-methyl)-2-bromoethylamine	Histamine	C	Guinea pig			2.1	A	3	
36	N-Methyl- N -(2-naphthyl-methyl)-2-chloroethylamine	Histamine	C	Guinea pig			4.4	A	3	
37	N -Methyl- N - (1-naphthyl-methyl)-2-fluoroethylamine	Histamine	C	Guinea pig				(1)	3	
38	N -Methyl-N-(2-naphthyl-methyl)-2-fluoroethylamine	Histamine	C	Guinea pig			25.0	A	3	
39	$\begin{aligned} & \mathrm{N} \text { - Methyl- } \mathrm{N}-(1 \text { - naphthyl- } \\ & \text { methyl)-2-iodoethyl- } \\ & \text { amine } \end{aligned}$	Histamine	C	Guinea pig			0.14	A	3	
40	$\begin{aligned} & \mathrm{N} \text { - Methyl- } \mathrm{N} \text {-(2-naphthyl- } \\ & \text { methyl)-2-iodoethyl- } \\ & \text { amine } \end{aligned}$	Histamine	C	Guinea pig			2.4	A	3	
41	$\begin{aligned} & \mathrm{N} \text { - Phenyl- } \mathrm{N}-(1 \text { - naphthyl- } \\ & \text { methyl)-2-bromoethyl- } \\ & \text { amine } \end{aligned}$	Histamine	C	Guinea pig			9.0	A	3	
42	N - Phenyl- N - (l-naphthyl-methyl)-2-chloroethylamine	Histamine	C	Guinea pig			9.3	A	3	
43	$\begin{aligned} & \mathrm{N} \text { - Phenyl- } \mathrm{N}-(1 \text { - naphthyl- } \\ & \text { methyl)-2-iodoethyl- } \\ & \text { amine } \end{aligned}$	Histamine	C	Guinea pig			8.5	A	3	

Contributor: Hawkins, D. F.
References: [1] Loew, E. R., and Micetich, A., J. Pharm. Exp. Ther. $95: 448,1949 .[2]$ Locw, E. R.. and Micetich, A., ibid 94:339, 1948. [3] Graham, J. D., and Lewis, G. P., Brit. J. Pharm. 8:54, 1953. [4] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [5] Bhattacharya, 13. K., Arch. internat. pharm. dyn., Par. 103:357, 1955.

## Part VI: TRIAZINES

Drugs are listed alphabetically, $C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug). Parentheses in Column Hindicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference		
		Local	- Systemic								
		Compound	Effect		$\mu \mathrm{g} / \mathrm{ml}$	Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)			(B)	(C)	(D)	(E)	(F)	(G)	(11)	(1)
1	2-(p-Aminophenyl)-4,6-diamino-s-triazine	Histamine	C		Guinea pig			50	(A)	1	
2	2-Anillno-4,6-diamino-s-	Histamine	C	Guinea pig			100	(1)	1		

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued) Part VI: TRIAZINES (Concluded)
$C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug). Parentheses in Column $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
3	2-Benzyloxy-4, 6-diamino-s-triazine	Histamine	C	Guinea pig			25.0	1	1	
4	$\begin{aligned} & 2-\text { Butoxy-4,6-diamino-s- } \\ & \text { triazine } \end{aligned}$	Histamine	C	Guinea pig			25.0	A	1	
5	$\begin{aligned} & \text { 2-sec.-Butoxy-4,6- } \\ & \text { diamino-s-triazine } \end{aligned}$	Histamine	C	Guinea pig			12.5-25.0	A	1	
6	$\begin{aligned} & \text { 2-(o-Carboxyphenyl- } \\ & \text { amino)- } 4,6 \text {-diamino-s- } \\ & \text { triazine } \end{aligned}$	Histamine	C	Guinea pig			100	(I)	1	
7	2-Cyclohexoxy-4,6-diamino-s-triazine	Histamine	C	Guinea pig			12.5-25.0	A	1	
8	$\begin{aligned} & 2-(\beta \text {-Dimethylamino- } \\ & \text { ethoxy)-4,6-diamino-s- } \\ & \text { triazine } \end{aligned}$	Histamine	C	Guinea pig			25.0	(A)	1	
9	$\begin{aligned} & \text { 2-Ethoxy-4,6-diamino-s- } \\ & \text { triazine } \end{aligned}$	Histamine	C	Guinea pig			25-50	A	1	
10	$\begin{gathered} z-(\beta-\text { Ethoxy-ethoxy })-4,6- \\ \quad \text { diamino-s-triazine } \end{gathered}$	Histamine	C	Guinea pig			50.0	A	1	
11	$\begin{aligned} & \text { 2- Heptoxy-4, 6-diamino- } \\ & \text { s-triazine } \end{aligned}$	listamine	C	Guinea pig			25.0	I	1	
12	2-Hexoxy-4, 6-dia mino-s-triazine	Histamine	C	Guinea pig			12.5-25.0	A	1	
13	2-(p-Hydroxyphenyl-amino)-4,6-diamino-striazine	Histamine	C	Guinea pig			100	(1)	1	
14	2-Isobutoxy-4, 6-diamino-s-triazine	Hista mine	C	Guinea pig			12.5-25.0	A	1	
15	2-1sopropoxy-4,6dia mino-s-triazine	Histamine	C	Guinea pig			12.5-25.0	A	1	
16	2-Methoxy-4,6-diamino-s-triazine	Histamine	C	Guinea pig			50.0	A	1	
17	2-(p-Methylphenyl-amino)   4,6-diamino-s-triazine	Histamine	C	Guinea pig			100	(1)	1	
18	2-( $\beta$-Morpholino-ethoxy)-   4,6-diamino-s-triazine	listamine	C	Guinea pig			1100.0	(A)	1	
19	2-Nonoxy-4,6-diamino-s- triazine	Hista mine	C	Guinea pig			125.0	1	1	
20	2-Octoxy-4,6-diamino-striazine	Histamine	C	Guinea pig			25.0	1	1	
21	$\begin{aligned} & \text { 2- Pentoxy- } 4,6 \text {-diamino-s- } \\ & \text { triazine } \end{aligned}$	Histamine	C	Guinea pig			25.0	A	1	
22	$\begin{aligned} & \text { 2-Phenoxy-4,6-diamino-s- } \\ & \text { triazine } \end{aligned}$	Histamine	C	Guinea pig			50.0	A	1	
23	2-Propoxy-4,6-diamino-s-	Histamine	C	Guinea pig			12.5-25.0	A	1.2	
24	triazine	Methacholine	C	Guinea pig			15.0	A	12	
25	2,4,6-Triamino-s- triazine	Histamine	C	Guinea pig			100	(1)	1	

Contributor: Hawkins, D. F.

References: [1] Loew, E. R., Kaiser, M. E., and Anderson, M., J. Pharm. Exp. Ther. 86:7, 1946. [2] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949.

## Part Vll: ESTERS

Drugs are listed alphabetically. $C=$ constricts, $A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug). Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		Effect	$\mu \mathrm{g} / \mathrm{ml}$		Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
Diphenylacetic Esters										
1	Allylmethylaminoe thyl diphenyl-( $\beta$-dimethyl-aminoethoxy)-acetate (Ro 3-0275)	Histamine	C	Guinea pig		I			1	
2	1-Azabicyclo-[3,3,1]nonyl 4-diphenylacetate (Ro 2-3493)	Methacholine	C	Guinea pig			0.06	A	2	
3	1-Azabicyclo-[3,2,1]octyl 6-diphenylacetate (Ro 2-3244)	Methacholine	C	Guinea pig			5.0	A	2	
4	1-Azabicyclo-[3,2,1]octyl 6 -diphenylacetate methobromide (Ro 2-3951)	Methacholine	C	Guinea pig			1.0	A	2	
5	Diallylaminoethyl diphenyl( $\beta$-dime thylaminoe thoxy)acetate (Ro 3-0276)	Histamine	C	Guinea pig		A			1	
6	Diethyla minoethyl diphenyl- $\beta$-dime thyla minoe thoxyl-ace tate (Ro 3-0131)	Histamine	C	Guinea pig		A			1	
7	Diethylaminoethyl diphenylhydroxythioacetate (Ro 3-0226)	Acetylcholine	C	Guinea pig	$\begin{array}{r} 0.008 \\ 0.02 \end{array}$	A			3	
8	Diethylaminoethyl diphenyl-(isopropylmethylaminoe thoxy)acetate (Ro 3-0289)	Histamine	C	Guinea pig		A			1	
9	Diethylaminoethyl diphenyl ( $\beta$-morpholinoe thoxy)acetate (Ro 3-0257)	Histamine	C	Guinea pig		1			1	
10	$\beta$-Diethylaminoisopropyl diphenyl-( $\beta$-dimethyla minoe thoxy)-ace tate (Ro3-0281)	Histamine	C	Guinea pig		A			1	
11	$\beta$-Dimethylaminoethyl diphenylacetate (Trasentin)	Acetylcholine	C	Guinea pig	8.0	A			4.5	
12		Histamine	C	Guinea pig	$>10.0$	A	50	1	4-7	
13	Dime thylaminoe thyl diphenyl-( $\beta$-dime thylaminoe thoxy)-ace tate (Ro 3-0190)	Histamine	C	Guinea pig		A			1	
14	$\beta$-lsopropylme thylaminoethyl diphenyl-( $\beta$ dime thylaminoe thoxy)acetate (Ro 3-0282)	Histamine	C	Guinea pig		A			1	
15	```2-Methyl-1-azabicyclo- [3,3,1]-nonyl4-diphenyl- acetate (Ro 2-3521)```	Methacholine	C	Guine a pig			1.0	A	2	
16	$\bar{\beta}$-Morpholinoe thyl diphenyl-( $\beta$-dimethylaminoe thoxy)-ace tate (Ro 3-0280)	Histamine	C	Guinea pig		A			1	
17	```\beta-Morpholinoe thyl diphenyl-(\beta'- morphalinoe thoxy)- acetate (Ro 3-0265)```	llistamine	C	Guinea pig		1			1	
18	Piperidinoe thyl diphenylacetarnide (110̄ 9980)	Acetylcholine	C	Guinea pig			0.25	A	9	
19		Physostigmine	C	Guinea pig			0.25	A	9	
20		Pilocarpine	C	Guinea pig			0.25	A	9	

Part VII: ESTERS (Continued)
$C=$ constricts,$A=$ antagonizes active drug effect, $1=$ inactive (i.e., without influence on effect of active drug) Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist (Synonym)		Active Drug		Species	Antagonist Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Diphenylacetic Esters (concluded)										
21	Piperidinoethyl diphenyl( $\beta$-dimethylaminoe thoxy)acetate (Ro 3-0277)	Histamine	C	Guinea pig		A			1	
22	Quinuclidinyl 3-a-allyldiphenylacetate (Ro 2-3802)	Methacholine	C	Guinea pig			1.0	A	2	
23	dl-Quinuclidinyl 3diphenylacetate (Ro 2-3202)	Methacholine	C	Guinea pig			0.1	A	2	
24	d-Quinuclidinyl 3 diphenylacetate (Ro 2-4040)	Methacholine	C	Guinea pig				(I)	2	
25	1-Quinuclidinyl 3diphenylacetate (Ro 2-4030)	Methacholine	C	Guinea pig			0.05	A	2	
26	Quinuclidinyl 3-diphenylacetate methobromide (Ro2-3203)	Methacholine	C	Guinea pig			0.10	A	2	
Miscellaneous Esters										
27	$\begin{aligned} & \text { 1- Azabicyclo-[3,2,1]- } \\ & \text { octyl 6-fluorene-9- } \\ & \text { carboxylate (Ro 2-3245) } \end{aligned}$	Methacholine	C	Guinea pig			1.0	A	2	
28	$\beta$-Diethylaminoethyl 9.10-dihydroanthracene-9carboxylate	Acetylcholine	C	Dog			1.0	(A)	10	
29		Histamine	C	Dog			1.0	A	10	
30			C	Guinea pig		A			11	
31	$\beta$-Diethylaminoethyl fluorene-9-carboxylate (Pavatrine)	Acetylcholine	C	Dog			1.0	(A)	10	
32		Histamine	C	Dog			1.0	(I)	10	
33			C	Guinea pig			$<50$	I	7	
34	3-( $\beta$-Diethylaminoethyl)-3-phenyl-2-benzofuranone (Amethone: AP 43)	Histamine	C	Guinea pig		(A)			12	
35	2-Diethylaminoethyl 1 -phenylcyclopentane-1-carboxylate (Caramiphen; Parpanit)	Acetylcholine	C	Guinea pig		A			5	
36		Histamine	C	Guinea pig		A			5	
37	Ethyl l-methyl-4-phenyl-piperidine-4-carboxylate (Pethidine; Demerol; Dolantin; Isonipecaine; Meperidine)	Histamine	C	Guinea pig	0.1-5.0	A	0.1-25.0	A	6,13-18	
38		Methacholine	C	Guinea pig		A	64.0	A	14	
39	N-Ethyl-piperidyl 3benzilate methobromide (JB 323)	Acetylcholine	C	Guinea pig	0.05	A			8	
40		Histamine	C	Guinea pig	10.0	1			8	
41		Methacholine	C	Guinea pig			0.5-3.0	A	8	
42	$\beta$-Piperidinoethyl methyl-p-xenylacetate (WIN 5786)	Histamine	C	Guinea pig		A	0.5-2.0	A	19	
43	Quinuclidinyl 3-benzilate   (Ro 2-3308)	Methacholine	C	Guinea pig			0.025	A	2	
44	Quinuclidinyl 3-benzilate me thobromide (Ro 2-3773)	Methacholine	C	Guinea pig			0.20	A	2	

Contributor: Hawkins, D. F.
References: [1] Forbes, O. C., and Marshall, P. B., Brit. J. Pharm. 6:634, 1951. [2] Randall, L. O., Benson, W. M., and Stefko, P. L., J. Pharm. Exp. Ther. 104:284, 1953. [3] Hawkins, D. F., and Parkes, M. W., unpublished, 1957. [4] Castillo, J. C., and De Beer, E. J., J. Pharm. Exp. Ther. 90:104, 1947. [5] Kraatz, C. P.,

## Part VII: ESTERS (Concluded)

Gruber, C. M.. Jr., Shields, 11. L., and Gruber, C. M., ibid 96:42, 1949. [6] Loew, E. R., Kaiser, M. E., and Moore, V., ibid 86:1, 1946. [7] Winder, C. V., Kaiser, M. E., Anderson, M. M., and Glassco, E. M., ibid 87:121. 1946. [8] Chen, J. Y., ibid 112:64, 1954. [9] Schaumann, O., and Lindner, E.. Arch. exp. Path. 214:93, 1951. [10] Lehmann, G., and Knoeffel, P. K., J. Pharm. Exp. Ther. 80:335, 1944. [11] Lehmann, G., and Young, J. W., ibid 83:90, 1945. [12] Richards, R. K.. Everett, G. M., and Kueter, K. E., ibid 84:387, 1945. [13] Arunlakshana, O., (thesis), London, 1953. [14] Chen, G.. and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [15] Duguid, A. M., and Heathcote, R. S., Quari. J. Pharm., Lond. 13:318, 1940. [16] Dutta, M. K., Brit. J. Pharm. 4:197, 1949. [17] Kopera, J., and Armitage, A. K., ibid 9:392. 1954. [18] Schaumann, O., Arch. exp. Path. 196:109, 1940. [19] Lands, A. M., Hoppe, J. O., Lewis, J. R., and Ananenko, E., J. Pharm. Exp. Ther. 100:19, 1950.

## Part VIII: MISCELLANEOUS COMPOUNDS

Drugs are listed alphabetically. $C=$ constricts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and H indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	6-Allyl-6, 7-dihydro-5Hdibenz ( $c, e$ ) azepine (Ro 2-3248)	Epinephrine	D	Guinea pig	10.0	1			1	
2	Alstonine	Epinephrine	D	Dog				1	2	
3	Anagyrine	Nicotine	D	Guinea pig	2.0	A			3	
4	d-Arginine	Acetylcholine	C	Guinea pig			300-1000	(P)	4	
5		Histamine	C	Guinea pig			300-1000	I	4	
6	Ascorbic acid	Epinephrine	D	Man	30-500	(P)			5,6	
7			D	Guinea pig		1			3	
8		Nicotine	D	Guinea pig		(I)			3	
9	Citrinin	Acetylcholine	C	Guinea pig		1			7	
10		Epinephrine	D	Guinea pig		I			7	
11		Histamine	C	Guinea pig		1			7	
12	Chloraguanide (Paludrine)	Histamine	C	Guinea pig			5.0	P	8	
13	Cocaine	Arecoline	C	Dog			7-14	I	9	
14		Diethylmorphine	C	Cat		A			10	
15			C	Dog		A	7-14	(A)	9.10	
16		Ephedrine	D	Cat		A			10	
17			D	Dog		A	7-14	A	9,10	
18			D	Rabbit		A			10	
19		$\psi$-Ephedrine	D	Cat		A			10	
20			D	Dog		A	7-14	A	9.10	
21			D	Rabbit		A			10	
22		Epinephrine	D	Cat		I			10	
23			D	Dog		1	7-14	P	9.10	
24			D	Guinea pig	100	P			3	
25			D	Rabbit		1			10	
26		Histamine	C	Cat		I			10	
27			C	Dog		I	7-14	(A)	9.10	
28			C	Rabbit		I			10	
29		5-Hydroxytryptamine	C	Cat		A			11	
30		Morphine	C	Cat		A			10	
31			C	Dog		A	7-14	A	9,10	
32		Nicotine	C	Cat	1.0	A			3	
33			D	Guinea pig	$\begin{array}{r} 0.05 \\ 1.0 \end{array}$	A			3	
34		Peptone	C	Guinea pig	1000	A			12	
35		Physostigmine	C	Dog			7-14	I	9	
36		Pilocarpine	C	Dog			7-14	I	9	
37	Coniline	Nicotine	D	Guinea pig	0.5	A			3	
38	Cortisone	Histamine	C	Guinea pig	100	I			13	
39	Cytisine	Nicotine	$\square$	Guinea pig	5	A			3	
40	Emetine	Histamine	C	Cat			1-5	(A)	14	
41			C	Guinea pig	$\begin{array}{r} 10,000- \\ 40,000 \end{array}$				14	
42	$\overline{\mathrm{n}}$-lleptyl isothiourea	Histamine	C	Guinea pig			5-10	A	15	

135. ANTAGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Continued) Part VIII: MISCELLANEOUS COMPOUNDS (Continued)
$C=$ constricts, $D=$ dilates,$A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of active drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect    Local Systemic				Reference	
		Compound	Effect							
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
43	Hexamethonium	Acetylcholine	C	Cat	1.0	I			3	
44			C	Guinea pig	$<500$	I	1-20	A	3,16	
45			C	Monkey	10.0	I			3	
46		Choline	C	Guinea pig	$<500$	(I)			3	
47		Coniine	C	Guinea pig	10	I			3	
48		Epinephrine	D	Guinea pig	$<400$	I			3	
49		Histamine	$\bar{C}$	Guinea pig	$\begin{array}{r} 50- \\ 100 \end{array}$	P	1-10	A	3,16	
50		5-Hydroxytryptamine	C	Guinea pig			20	A	16	
51		Lobeline	C	Guinea pig	10-40	I			3	
52			D	Guinea pig	10	I			3	
53		Methacholine	C	Guinea pig			1-20	A	16	
54		Methyl-furmethide	C	Guinea pig			5-10	A	16	
55		Nicotine	C	Cat	1.0	A			3	
56			D	Cat	10	A			3	
57			C	Guinea pig			0.1-20.0	A	16	
58			D	Guinea pig	$\begin{array}{r} 0.1- \\ 1.0 \end{array}$	A			3	
59		Norepinephrine	D	Guinea pig	$<400$	1			3	
60		Pilocarpine	C	Guinea pig	$<10$	I			3	
61		Tetramethylammonium	C	Guinea pig	$\begin{array}{r} 80- \\ 400 \end{array}$	I			3	
62	n-Hexyl-isothiourea	Acetylcholine	C	Rabbit		$\begin{gathered} (A \\ P) \end{gathered}$			17	
63		Histamine	C	Guinea pig			5-10	A	15	
64	1-Histidine	Acetylcholine	C	Guinea pig			300	(P)	4	
65		Histamine	C	Guinea pig			300-1000	I	4	
66	N -(2-Hydroxye thyl)- N -ethyl-1-naphthalenemethylamine	Histamine	C	Guinea pig			25.0	I	18	
67	Lobeline	Epinephrine	D	Guinea pig		I			3	
68		Nicotine	D	Guinea pig	1.0	A			3	
69		Norepinephrine	D	Guinea pig		I			3	
70	Magnesium	Barium	C	Cat		A			19	
71	4-Methylesculetin disulphuric acid (IDRO- $\mathrm{P}_{2}$; Vitamin P)	Epinephrine	D	Man	20	P			6	
72	2-Methyl-4-amino-5-methylamino-pyrimidine ( $\beta_{1}$-Pyrimidine; Grewe diamine)	Histamine	C	Guinea pig	$\begin{array}{r} 0.01- \\ 100 \end{array}$	P			3,20,21	
73		$\beta$-Pyridylethylamine	C	Guinea pig		1			21	
74	Methyl isothiourea	Acetylcholine	C	Rabbit		P			17	
75		Histamine	C	Guinea pig			2-5	(P)	15	
76	Pentamidine ise thionate	Acetylcholine	C	Guinea pig			25	P	22	
77		Histamine	$\overline{\mathrm{C}}$	Guinea pig			25	P	22	
78	Pentobarbital sodium	Histamine	C	Guinea pig			20	(I)	23	
79	Phentolamine (Regitine; 7337)	Epinephrine	D	Guinea pig		1			3	
80		Nicotine	D	Guinea pig	2.0	A			3	
81		Norepinephrine	D	Guinea pig,		1			3	
82		5-Hydroxytryptamine	C	Guinea pig		A			24	
83	Piperoxan (933F)	Acetylcholine	C	Dog			10	I	25	
84	Prosympal (883F)	Epinephrine	D	Guinea pig	$<100$	I			3	
85		Nicotine	D	Guinea pig	1-2	A			3	
86		Norepinephrine	D	Guinea pig	$<100$	I			3	
87	Quinidine	Histamine	C	Guinea pig			5	A	26	
88	Rutin (Quercetin rhamnoglucoside; Vitamin P)	Histamine	C	Guinea pig		1			27	
89	Semicarbazide	Histamine	C	Guinea pig	$\begin{array}{r} 0.01- \\ 1.0 \end{array}$	P			20,21	
90			$\overline{\mathrm{C}}$	Guinea pig	100	A			20,21	
91		$\beta$-Pyridyle thylamine	C	Guinea pig	1.0	I			20.21	

135. ANT AGONISTS AND POTENTIATORS OF DRUGS ACTING ON THE BRONCHI (Concluded)
Part V111: M1SCELLANEOUS COMPOUNDS (Concluded)
$C=$ constrlcts, $D=$ dilates, $A=$ antagonizes active drug effect, $I=$ inactive (i.e., without influence on effect of actlve drug), $P=$ potentiates active drug effect. Parentheses in Columns $F$ and $H$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

Antagonist or Potentiator (Synonym)		Active Drug		Species	Antagonist or Potentiator Effect				Reference	
		Compound	Effect		Local		Systemic			
		$\mu \mathrm{g} / \mathrm{ml}$			Action	$\mathrm{mg} / \mathrm{kg}$	Action			
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
92	Sparteine	Nicotine	D	Guinea pig	0.5	A			3	
93	Suramin	Acetylcholine	C	Guinea pig			250	A	22	
94		Histamine	C	Guinea pig			250	A	22	
95		Pentamidine	C	Guinea pig			250	A	22	
96	Tetramethylene di-isothiourea	Histamine	C	Guinea pig			5	(A)	15	
97	Tolazoline (Priscol)	Epinephrine	D	Guinea pig	10-100	P			3	
98		Nicotine	D	Guinea pig	10-20	A			3	
99		Norepinepbrine	D	Guinea pig	100	P			3	
100	Urethane	Barium	C	Rabbit	5,000-10,000	A			28	
101			C	Sheep	5,000-10,000	A			28	
102		Epinephrine	D	Rabbit	$5.000-10,000$	I			28	
103			D	Sheep	5,000-10,000	1			28	
104		Pilocarpine	C	Rabbit	5,000-10,000	A			28	
105			C	Sheep	5,000-10,000	A			28	
106		Sodium nitrite	D	Rabbit	5,000-10,000	A			28	
107			D	Sheep	5,000-10,000	A			28	
108	Yohimbine	5-Hydroxytryptamine	C	Guinea pig		I			29	

Contributor: Hawkins, D. F.
References: [1] Randall, L. O., and Smith, T. H., J. Pharm. Exp. Ther. 103:10, 1951. [2] Wakim, K. G., and Chen, K. K., ibid 90:57, 1947. [3] Hawkins, D. F., and Paton, W. D., unpublished, 1957. [4] Halpern, B. N., C. rend. Soc. biol. 139:625, 1945. [5] Rosa, L., Boll. e Mem. del. Soc. Tosco-Umbro Emiliana d. Med. Int. 1: 40 , 1950. [6] Rosa, L., and McDowall, R. J., Acta Allerg. 4:293, 1951. [7] Ambrose, A. M., and De Eds, F., J. Pharm. Exp. Ther. 88:173. 1946. [8] Vane, J. R., Brit. J. Pharm. 4:14, 1949. [9] Swanson, E. E., J. Pharm. Exp. Ther. $36: 541,1929$. [10] Swanson, E. E., and Webster, R. K., ibid 38:327, 1930. [11] Sinha, Y. K., and West, G. B., J. Physiol., Lond, 120:64P, 1953. [12] Baehr, G., and Pick, E. P., Arch. exp. Path. 74:41. 1913. [13] Hawkins, D. F. (thesis), London. 1952. [14] Pick, E. P., and Wasicky, R., Arch. exp. Path. 80:147, 1916. [15] Fastier, F. N., Brit. J. Pharm. 4:315, 1949. [16] Herxheimer, H., Arch. internat. pharm. dyn.. Par. 106:371, 1956. [17] Fastier, F. N., and Reid, C. S., Brit. J. Pharm. 7:417, 1952. [18] Loew, E. R., and Micetich, A., J. Pharm. Exp. Ther. 94:339, 1948. [19] Lohr, H., Zschr. ges. exp. Med. 39:67, 1924. [20] Arunlakshana, O. (thesis). London, 1953. [21] Arunlakshana, O., Mongar, J. L., and Schild, H. O., J. Physiol., Lond. 123:32, 1954. [22] Guimaraes, J. L., and Lourie, E. M., Brit. J. Pharm. 6:514, 1951. [23] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 86:1, 1946. [24] Bhattacharya, B. K., Arch. internat. pharm. dyn., Par. 103:357. 1955. [25] Melville, K. I., ibid. $\frac{58}{2}: 129,1938$. [26] Dutta, N. K., Brit. J. Pharm. 4:197, 1949. [27] Wilson, R. H., Mortarotti, T. G., and De Eds, F., J. Pharm. Exp. Ther. 90:120, 1947. [28] Franklin, K. J., ibid 26:227, 1925. [29] Herxheimer, H., J. Physiol., Lond. 128:435, 1955.

Values are the negative logarithm of the molar concentration of antagonist required to reduce the response to an " $x$-fold" dose of active drug to that produced by a single dose of active drug in the absence of antagonist [1]. Parentheses indicate action is irregular and the original literature should be consulted. $\mathrm{C}=$ constricts, $\mathrm{D}=$ dilates.

Antagonist		Active Drug	Effect	Species	Antagonist Contact Time				Reference	
		2 min			$10-15 \mathrm{~min}$	20-30 min	30 min			
					$\mathrm{pA}_{2}$		$\mathrm{pA}_{10}$			
(A)			(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	Atropine		Acetylcholine	C	Guinea Pig			8.0		2
2		C		Guinea pig			8.8	7.6	3	
3		Histamine	C	Guinea pig			5.9	5.0	3	
4	Dihydroergotamine	Epinephrine	D	Guinea pig			6.3		4	
5		Isoproterenol	D	Guinea pig			6.3		4	
6		Nicotine	D	Guinea pig			6.4		4	
7		Norepinephrine	D	Guinea pig			(4.8)		4	
8	Diphenhydramine	Histamine	C	Guinea pig		7.8	7.8	6.9	3	
9		$\beta$-Pyridylethylamine	C	Guinea pig		8.3			3	
10	Ergotamine	Epinephrine	D	Guinea pig			6.0		4	
11		Isoproterenol	D	Guinea pig			6.1		4	
12		Nicotine	D	Guinea pig			5.8		4	
13		Norepinephrine	D	Guinea pig			(4.9)		4	
14	Meperidine (Pethidine)	Histamine	C	Guinea pig			6.2	5.1	3	
15	Pvrilamine (Mepyramine)	Histamine	C	Man	8.3	8.8	9.3		6	
16			C	Guinea pig			8.7		2	
17			C	Guinea pig	7.6	8.8	9.0		5	
18			C	Guinea pig		9.1	9.4	8.4	3	
19		$\beta$-Pyridylethylamine	C	Guinea pig		9.5			3	

Contributor: Hawkins, D. F.

References: [1] Schild, H. O., Brit. J. Pharm. 2:189, 1947. [2] Parkes, M. W., personal communication, 1949.
[3] Arunlakshana, O. (thesis), London, 1953. [4] Hawkins, D. F., and Paton, W. D., unpublished, 1957.
[5] Hawkins, D. F. (thesis), London, 1952. [6] Hawkins, D. F. and Schild, H. O., Brit. J. Pharm. 6:682, 1951.

## 137. AEROSOLS, GASES, AND VAPORS ACTING ON THE BRONCHI

The classification employed is functional, with the drugs listed alphabetically within each Part. Inclusion of trade names is for informative purposes only and in no way implies endorsement by The National Academy of SciencesThe National Research Council. For all effects included in this table, there is reasonable evidence the drug in fact acted on the bronchial musculature. Where there was evidence that an effect was mediated by the respiratory center or adrenal glands, it was excluded. Similarly, results obtained in protecting guinea pigs against lethal doses of histamine were excluded, unless there was evidence of the relief of the bronchospasm. Drug actions influencing anaphylactic or asthmatic bronchospasm, or other pathological states, were also excluded. Concentrations for aerosols, unless otherwise specified, are $\mathrm{mg} / \mathrm{ml}$ of the solution from which the aerosol was formed. Parentheses in Columns E (Part I) and D (Parts II and III) indicate action is slight, irregular, or doubtful, and the original literature should be consulted. $C=$ constricts, $D=$ dilates, $I=$ inactive.

Parti: DIRECT ACTION

	Compound (Synonym)	Species	Mode of Administration	Concentration ${ }^{1}$	Effect	Reference
	(A)	(B)	(C)	(D)	(E)	(F)
1	Acetylcholine	Guinea pig	Aerosol	1-30	C	1-8
2	p-Aminobenzoic acid	Man	Aerosol	50-100	1	9
3	Aminophylline (Theophylline-ethylenediamine)	Man	Aerosol	250	(1)	10
4	Amyl nitrite	Cat	Vapor		D	11,12
5	Antazoline (Antistine)	Man	Aerosol	50	1	13
6	Antergan (Lergitin)	Man	Aerosol	20	C	13
7	Bromine	Cat	Vapor		C	12,14,15
8		Dog	Vapor		C	16
9	Calcium chloride	Man	Aerosol	200	D	13
10	Carbachol (Doryl; Carbaminoylcholine)	Man	Aerosol	5	C	9,13,18
11		Dog	Aerosol	10	C	19
12		Guinea pig	Aerosol		C	1
13	Chlorine	Calf	Gas	$55-500 \mathrm{mg} / \mathrm{L}$	(C)	20
14		Calf	Gas	$600-1250 \mathrm{mg} / \mathrm{L}$	C	20
15		Pig	Gas	$55-500 \mathrm{mg} / \mathrm{L}$	(C)	20
16		Pig	Gas	$600-1250 \mathrm{mg} / \mathrm{L}$	C	20
17	Chloroform	Cat	Vapor	$30 \mathrm{vol} \%$	C	11,12
18	Dibenzylmethylamine (566)	Man	Aerosol	10	D	13,18
19	Ether	Cat	Vapor		(D)	14
20		Cat	Vapor	$30 \mathrm{vol} \%$	C	11
21		Dog	Vapor		D	21,22
22	Ethyl chloride	Cat	Vapor		1	11
23	Furmethide (Furtrethonium; Furfuryltrime thylammonium iodide)	Guinea pig	Aerosol		C	23
24	Glycerol	Man	Aerosol		1	17
25	Histamine	Man	Aerosol	30-300	C	24,25
26		Dog	Aerosol	20	C	26
27		Guinea pig	Aerosol	$0.2-10.0^{2}$	C	27-29
28		Guinea pig	Aerosol	1-40	C	2,3,5,30-35
29	Hydrocyanic acid	Cat	Gas		D	14
30	5-Hydroxytryptamine (Serotonin)	Man	Aerosol	10	1	36
31		Guinea pig	Aerosol	10	C	3
32	Methacholine (Mecholyl; Amechol; Acetyl- $\beta$ -	Man	Aerosol	25-100	C	24, 25
33	methyl choline)	Guinea pig	Aerosol	2.5-24.0	C	1,36-39
34	Methyl-furmethide (5-Methylfurfuryl-trimethylammonium iodide)	Guinea pig	Aerosol	2.5	C	4 -
35	Nicotine	Guinea pig	Aerosol	40	C	4
36	Nikethamide (Coramine)	Man	Aerosol	200	1	13
37	Nitrous oxide	Cat	Gas	60 vol \%	1	11
38	Papaverine	Guinea pig	Aerosol	10	1	35
39	Pentylenetetrazol (Cardiazol; Metrazol)	Man	Aerosol	100	I	13
40	Physostigmine	Guinea pig	Aerosol	1	C	6
41	Pilocarpine	Guinea pig	Aerosol		C	6
42	Polyvinyl pyrrolidene	Man	Aerosol	125	I	17
43	Potassium chloride	Mañ	Aerosol	100-200	C	13
44	Procaine (Novocaine)	Man	Aerosol	100	D	9
45	Pyrilamine (Mepyramine; l'yranisamine; Neoantergan)	Man	Aerosol	20	C	13

/1/ See Headnote. $/ 2 / \mu \mathrm{g} / \mathrm{L}$ of vaporized aerosol.

		Compound (Synonym)	Species	Mode of Administration	Concentration ${ }^{1}$	Effect	Reference
		(A)	(B)	(C)	(D)	(E)	(F)
46	Stramonium		Cat	Fumes		D	12
47	Theophylline		Man	Aerosol	100	D	9

/1/ See Headnote, Page 250.
Contributor: Hawkins, D. F.
References: [1] Chen, G., and Ensor, C. R., J. Laborat. Clin. M. 34:1010, 1949. [2] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [3] Herxheimer, H., J. Physiol., Lond. 120:65P, 1953. [4] Herxheimer, H., Arch. internat. pharm. dyn., Par. 106:371, 1956. [5] Kallos, P., and Pagel, W., Acta med. scand. $91: 292$,
1937. [6] Schaumann, O., and Lindner, E., Arch. exp. Path. 214:93, 1951. [7] Tiffeneau, R., and Beauvallet, M., C. rend. Soc. biol. 138:747, 1944. [ 8] Tiffeneau, R., and Beauvallei, M., ibid 139:944, 1945. [9] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 77:309, 1948. [10] Segal, M. S., Levinson, L., Bresnick, E., and Beakey, J. F., J. Clin. Invest. 28: 1190 , 1949. [11] Lohr, H., Zschr. ges. exp. Med. 39:67, 1924. [12] Symes. W. L., Brit. M. J. 2: 12, 1915. [13] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. $78: 559$, 1948. [14] Dixon, W. E., and Brodie, T. G., J. Physiol., Lond. 29:97, 1903. [15] Symes, W. L., and Golla, F. L., ibid 49:55P, 1915. [16] Jackson, D. E., J. Pharm. Exp. Ther. 4:291, 1913. [17] Charlier, R., Arch. internat. pharm. dyn., Par. 77:337, 1948. [18] Charlier, R.. and Philippot, E., ibid 77:341, 1948.
[19] Dautrebande, L., Philippot, E.. Nogarède, F., and Charlier, R., ibid 66:138, 1941. [20] Barbour, H. G., and Williams, H. W.. J. Pharm. Exp. Ther. 14:47, 1919. [21] Brown. J. G., Edinburgh M. J. 31:255, 1885. [22] Roy, C. S., and Brown, G., J. Physiol., Lond. 6:21P, 1885. [23] Toner, J. J., and Macko, E., J. Pharm. Exp. Ther. 106:246, 1952. [24] Herxheimer, H., Brit. M. J. 2:901, 1949. [25] Herxheimer, H., Internat. Arch. Allergy 2:27, 1951. [26] Melville, K. I., and Kaplan, H., J. Pharm. Exp. Ther. 94:182, 1948. [27] Lee, H. M., Dinwiddie, W. G., and Chen, K.K., ibid 90:83. 1947. [28] Mayer, R. L., Huttrer, C. P., and Scholz, C. R., Science 102:93, 1945. [29] Meier, R., and Bucher, K., Schweiz. med. Wschr. 76:294, 1946. [30] Bovet, D., and Walthert, F., Ann. pharm. fr. 2: (suppl.) 1944. [31] Dews, P. B., and Graham, J. D., Brit. J. Pharm. $1: 278,1946$. [32] Feinberg, S. M.. Norén, B.. and Feinberg, R. H., J. Allergy 19:90, 1948. [33] 1ssekutz, B. V., and Genersich, P., Arch. exp. Path. 202:201, 1943. [34] Loew, E. R., Kaiser, M. E., and Moore, V., J. Pharm. Exp. Ther. 83:120, 1945. [35] Schaumann, O., Arch. exp. Path. 196:109, 1940. [36] Herxheimer, H., J. Physiol., Lond. 128:435, 1955. [37] Chen, J. Y., J. Pharm. Exp. Ther. 112:64, 1954. [38] Hambourger, W. E., Freese, H. B., Winbury, M. M., and Michiels, P. M., ibid 94:367, 1948. [39] Randall, L. O., Benson, W. M., and Stefko, P. L., ibid 104:284, 1952 .

Part II: SYMPATHOMIMETIC AMINES
$D=$ dilutes, $I=$ inactive. Parentheses in Column $D$ indicate action is slight, irregular, or doubtful, and the original literature should be consulted.

	Compound (Synonym)	Species	Aerosol ${ }^{1}$	Effect	Reference
(A)		(B)	(C)	(D)	(E)
1	Adrenalone (1-(3,4-Dihydroxyphenyl)-1-oxo-2-methylamino-ethane)	Man	20	(D)	1
2	1-(m-Aminophenyl)-2-amino-ethanol (W1N 5548)	Guinea pig	10	1	2
3	1-(m-Aminophenyl)-2-isopropylamino-ethanol (WIN 5503)	Guinea pig	10	I	2
4	N-n-Butyl-arterenol (1-(3.4-Dihydroxyphenyl)-2-butylamino-ethanol)	Guinea pig	0.02	D	3
5	N -Cyclopentyl-arterenol (1-(3,4-Dihydroxyphenyl)-2-cyclopentyl- amino-ethanol)	Guinea pig	0.03	D	3
6	dl-Epinephrine (dl-Adrenaline; Vaponephrin)	Man	22.5	D	4-7
7	1-Epinephrine (1-Adrenaline)	Man	1-20	D	4,5,7
8		Dog	0.1-1.0	D	8
9	1-(m-Hydroxyphenyl)-2-amino-ethanol (WIN 5501)	Guinea pig	10	1	2
10	Isoproterenol ( N -isopropyl-arterenol; Aleudrine; lsoprenaline; Isuprel; Neo-epinine)	Man	2-10	D	1.4,5.7
11		Dog	10	D	9
12		Guinea pig	0.0005	D	3
13	Neosynephrine (1-(m-Hydroxyphenyl)-2-methylamino-e thanol)	Man	4-10	D	1,4,7
14		Guinea pig	4	D	2
15	Norsympatol (1-(p-Hydroxyphenyl-2-amino-ethanol)	Man	4-40	D	1
16	Orthoxine (1-(o-Methoxyphenyl)-2-methylamino-propane)	Guinea pig	100	D	10
17	$\beta$-Phenylethylamine	Man	2	(D)	1
18	1-Phenyl-2-methylamino-ethanol	Guinea pig	2	D	1
19	Synephrine (Sympatol; 1-(p-Hydroxyphenyl)-2-methylamino-ethanol)	Man	2-60	D	1
20	Tyramine ( 1 -(p-Hydroxyphenyl)-2-amino-ethane	Man	2	D	1
/1/ See Headnote, Page 250.					
Contributor: Hawkins, D. F.					
References: [1] Charlier, R., and Philippot, E., Arch. internat. pharm. dyn., Par. 78:559, 1949. [2] Lands, A. M., J.					
Pharm. Exp. Ther. $104: 474,1952 .[3]$ Siegmund, O. H., Beglin, N., and Lands, A. M.. ibid 97:14, 1949. [4] Bresnick,					
E., Beakey, J. F., Levinson, L., and Segal, M. S., J. Clin. Invest. 28:1182, 1949. [5] Charlier, R., Arch.internat.pharm					
dyn., Par. $77: 337,1948 .[6]$ Charlier, R., and Philippot, E., ibid 77:309, 1948. [7] Segal, M. S., Beakey, J. F., Bresn					
E., and Levinson, L., J. Allergy 20:97, 1949. [8] Melville, K.l., and Kaplan, H., J. Pharm. Exp. Ther. $94: 182,1948$.					82, 1948.
	Hargis, B. J., J. Pharm. Exp. Ther. 99:195, 1950.				

137. AEROSOLS, GASES, AND VAPORS ACTING ON THE BRONCHI (Concluded)

Part Ill: ANTAGONISTS
Parentheses in Column D indicate action is slight, irregular, or doubtiful, and the original literature should be consulted.

	Antagonist (Synonym)	Species	Aerosol ${ }^{1}$	Effect	Reference
	(A)	(B)	(C)	(D)	(E)
1	Antazoline (Antistine)	Guinea pig	5-20	Antagonizes histamine.	1,2
2	Antergan (Lergitin)	Guinea pig	2.5	Antagonizes histamine.	3
3	Atropine	Guinea pig	10-30	Inactive against histamine.	4
4	Bellafoline (Belladonna alkaloids)	Man	0.5	Antagonizes methacholine.	5
5	Bromothen	Guinea pig	2.5-20	Antagonizes histamine.	1.2
6	Chlorcyclizine (Histantin; Perazil)	Guinea pig	20	(Antagonizes) histamine.	1
7	Chlorneoantergan	Guinea pig	2.5	Antagonizes histamine.	1
8	Chlorothen (Chloropyrilene; Tagathen)	Guinea pig	2.5	Antagonizes histamine.	1,6
9	Chlorprophenpyridamine (Chlor-Trimeton)	Guinea pig	2.5	Antagonizes histamine.	1
10	Cocaine	Guinea pig	2.5-5	Antagonizes acetylcholine.	7
11		Guinea pig	2.5-5	Antagonizes histamine.	7
12		Guinea pig	2.5-5	Antagonizes 5-hydroxytryptamine.	7
13		Guinea pig	2.5-5	Antagonizes methacholine.	7
14		Guinea pig	2.5-5	Antagonizes nicotine.	7
15		Guinea pig	2.5-5	Inactive against methyl-furmethide.	7
16	Cyclizine (Marezine)	Guinea pig		(Antagonizes) histamine.	1
17	2-Dimethylaminoethoxy-4-chlorodiphenylmethane ( 01780 )	Guinea pig		(Antagonizes) histamine.	1
18	2-Dimethylaminoethoxy-diphenylmethane (C 5581 H )	Guinea pig	2.5-20	Antagonizes histamine.	1.2
19	N -Dimethylaminoe thyl-phenothiazine (RP 3015)	Guinea pig	20	Antagonizes histamine.	1,2
20	Diphenhydramine (Benadryl)	Man	14	Antagonizes histamine.	8
21		Guinea pig	2.5-20	Antagonizes histamine.	1,2
22	Doxylamine (Decapryn)	Guinea pig	2.5-20	Antagonizes histamine.	1,2
23	$\begin{gathered} \mathrm{N}-(4-\mathrm{Fluorobenzyl})-\mathrm{N}-(2 \text {-pyridyl })- \\ \mathrm{N}^{\prime}, \mathrm{N}^{\prime} \text {-dimethyl-ethylenediamine } \end{gathered}$	Guinea pig	2.5	Antagonizes histamine.	1
24	Hetramine	Guinea pig		(Antagonizes) histamine.	1
25	Meperidine (Demerol; Dolantin; Pethidine)	Guinea pig	10	Antagonizes histamine.	4
26	Methapyrilene (Thenylene; Histadyl)	Guinea pig	2.5-20	Antagonizes histamine.	1.2
27	o-Methoxy- $\beta$-phenyl isopropyl-methylbenzylamine (II-RBH-85)	Guinea pig		(Antagonizes) histamine.	1
28	Phenindamine (Thephorin)	Guinea pig	20	Antagonizes histamine.	1
29	N -Phenyl-N-ethyl- $\mathbf{N}^{\mathbf{1}}, \mathrm{N}^{\mathbf{N}}$-diethyl-ethylene-diamine ( 1571 F )	Guinea pig	50	Antagonizes histamine.	3
30	N - Phenyl- N -ethyl- $\mathrm{N}^{\mathbf{\prime}}, \mathrm{N}^{\mathbf{\prime}}$ - dime thyl-ethylene-diamine (RP 2325)	Guinea pig	10	Antagonizes histamine.	3
31	Procaine (Novocaine)	Guinea pig	20	Inactive against histamine.	9
32	Prophenpyridamine (Inhiston; Tri-Meton)	Guinea pig	1-20	Antagonizes histamine.	1,10
33	Pyrilamine (Mepyramine; Pyranisamine; Neoantergan)	Guinea pig	2.5-20	Antagonizes histamine.	1,2
34	Pyrrolazote	Guinea pig	2.5-5	Antagonizes histamine.	1,2
35	Scopolamine	Man	0.6	Antagonizes metha choline.	5
36	N-2-Thiazolyl-N-(p-Methoxybenzyl)-   $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-ethylenediamine (194 B)	Guinea pig	20	Antagonizes histamine.	1
37	Thonzylamine (Neohetramine)	Guinea pig	20	Antagonizes histamine.	1,2,11
38	Trasentin	Gulnea pig	20	Inactive againsi histamine.	9
344	Tripelennamine (Pyribenzamine)	Man	20	Antagonizes histamine.	8
		Man	15-20	(Antagonizes) methacholine.	8,12
		Guinea pig	5-20	Antagonizes histamine.	1,2,9,11

/1/ See Headnote, Page 250.
Contributor: Hawkins, D. F.
References: [1] Feinberg, S. M., Malkiel, S., Bernstein, T. B., and Hargis, B. J., J. Pharm. Exp. Ther. $99: 195,1950$. [2] Feinberg, S. M., Norén, B., and Feinberg, R. H., J. Allergy 19:90, 1948. [3] Halpern, B. N., Arch. internat. pharm. dyn., Par. 68:339, 1942. [4] Schaumann, O., Arch. exp. Path. 196:109, 1940. [5] Beakey, J. F., Bresnick, E., Levinson, L., and Segal, M. S., Ann. Allergy 7:113, 1949. [6] Feinberg, S. M., Quart. Bull. Northwest. Univ. M. School 22:27, 1948. [7] Herxhelmer, H., Arch. Internat. pharm. dyn., Par. 106:371, 1956. [8] Rubitsky, H. J., Bresnick, E., Levinson, L., Risman, G., and Segal, M. S., N. England J. M. $241: 853,1949$. [9] Mayer, R. L., Brousseau, D., and Eisman, P. C., Proc. Soc. Exp. Biol. 64:92, 1947. [10] Lindner, E., Arch. exp. Path. 211:328, 1950. [11] Relnhard, J. F., and Scudi, J. V., Proc. Soc. Exp. Biol. 66:512, 1947. [12] Herxheimer, 11., Brit. M. J. 2:901, 1949.
138. EFFECTS OF EXTERNAL IONIZING RADIATION ON THE RESPIRATORY SYSTEM: MAMMALS


 dose equal pairs per micron of water, for the particular biological system and biological effect under consideration and for the condition under which the radiation is peceived; $\mathrm{n}=$ neutron, a nuclear particle of zero charge and mass number $1 ; \mathrm{mc}=$ millicurie, the quantity of radionucleid disintegrating at the rate of $3.7 \times 10^{7}$ atoms per second.
Type

$$
\begin{gathered}
\text { Exposure } \\
\text { or } \\
\text { Administration } \\
\text { (C) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Accumulated } \\
& \text { age or Exposure }
\end{aligned}
$$

$$
\text { Effect }{ }^{1}
$$



$\begin{array}{c}\text { Symptom } \\ \text { Manifestation }\end{array}$	ence
1 G$)$	(H)
24 hr	1
15 da and at	1


Effect 1

-     - 

$\square$ (f)
Dyspnea.
Respiration rapid and shallow.
Pulmonary edema.
7 th da

 , roentgen, the quantity of $X$ - or gamma radiation such that the associated corpuscular emission per 0.001293 ged
 the appropriate value of the biological effectiveness of the radiation in question relative to that of X-radiation with an average specific ionization of 100 ion pairs per micron of water, for the particular biological system and biological effect under consideration and for the condition under which the radlation

	Animal	Type of Radiation	Exposure or Administration	Dosage	Accumulated Dosage or Exposure Time	Effect ${ }^{1}$	Initial   Symptom Manifestation	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
11	$\begin{gathered} \text { Man (con- } \\ \text { cluded) } \end{gathered}$	$\begin{aligned} & \mathrm{X} \text { ray } \\ & 230-250 \mathrm{KV} \end{aligned}$	Neck and thorax		2450-3000 r	Pneumonitis.	1 wk	10
12		$\begin{array}{\|c} \hline \text { X ray } \\ 250 \mathrm{KV} \\ \hline \end{array}$	Thorax, repeated exposure (therapy)		$\begin{array}{r} 4500 \mathrm{r} \\ 52 \mathrm{da} \end{array}$	Pulmonary fibrosis.		11
13		$\begin{aligned} & \text { X ray } \\ & 250-1000 \mathrm{KV} \\ & \hline \end{aligned}$	Thorax	100-200 r/da	1850-4000 r	Pneumonitis.	1 mo	12
14		$\begin{aligned} & \text { X ray } \\ & 250-1000 \mathrm{KV} \end{aligned}$	Thorax	123-300 r/da	3,200-12,600 r	Pneumonitis.	2 da	13
						Fibrosis.	6 wk	
15		$\begin{aligned} & \mathrm{X} \text { ray } \\ & 250-1000 \mathrm{KV} \end{aligned}$	Thorax	$500 \mathrm{r} / \mathrm{da}$	3000-6000 r	Pneumonitis.	6 wk	14
16		$\begin{gathered} X \text { ray } \\ 1 \text { mev } \end{gathered}$	Oropharynx, repeated exposure (therapy)	$500 \mathrm{r} / \mathrm{da}$	4000-5000 r	Laryngeal edema with fibrosis, apical pulmonary fibrosis.	3-5 wk	15
17		$\begin{gathered} X \text { ray } \\ 1 \mathrm{mev} \end{gathered}$	Lower left abdomen, repeated exposure (therapy)		$\begin{gathered} 5000 \mathrm{r} \\ 3 \mathrm{mo} \end{gathered}$	Dyspnea, rapid respiration.	9 yr	16
18		$\begin{gathered} \text { X ray } \\ 2 \text { mev } \\ \hline \end{gathered}$	Thorax	$200 \mathrm{r} / \mathrm{da}$	3000-5000r	Pneumonitis, fibrosis, pleural effusion.	2 mo	17
9		X ray	Thorax, repeated exposure (therapy)		$800-1000 \mathrm{r}$   Threshold: 600 r	Pleuropneumonitis.		18
20		X ray	Thorax, repeated exposure (therapy)		800-15,000 r	Pneumonitis.	1 da	19
21		X ray		100-200 r/da	8240 r	Pulmonary fibrosis.		20
			exposure (therapy)	$200 \mathrm{r} / \mathrm{da}$	4600 r	Pulmonary infiltration.		
22		X ray	Thorax, repeated exposure (therapy)		12,000 r	Pulmonary exudation, atelectasis, fibrosis.		21
23		X ray	Thorax, repeated exposure (therapy)	175-250 r/da	7 da	Pulmonary fibrosis.	1 mo	22
24		Radium (gamma)	Thorax and adjacent areas	$1.0-1.5 \mathrm{mg}$		Pulmonary fibrosis.		2
25		Cobalt ${ }^{60}$	Axillary, supraclavicular, parasternal; repeated exposure (therapy)		$\begin{aligned} & 5000 \mathrm{r} \\ & 15-25 \mathrm{da} \end{aligned}$	Cough, dyspnea, pneumonitis, pulmonary fibrosis.		23


138. EFFECTS OF EXTERNAL IONIZING RADIATION ON THE RESPIRATORY SYSTEM: MAMMALS (Continued)




 $3.7 \times 10^{7}$ atoms per second.


						sclerotic processes. Frequently, calcification. Slight proliferation of bronchial epithelium. Degenerative changes also noted.		
48		X ray	Entire body, single	800 r		Hydrothorax.	24 hr	45
		200 KVP	exposure	(LD-50/30)		Pulmonary hemorrhage and edema.	6-12 da	
49		$\begin{aligned} & \text { X ray } \\ & 260 \mathrm{KVP} \end{aligned}$	Entire body, single exposure	630 r		Accelerated respiration.	80-180 min	46
50		$\begin{aligned} & \text { X ray } \\ & 260 \mathrm{KVP} \\ & \hline \end{aligned}$	Head, single exposure	$240 \mathrm{r} / \mathrm{min}$	14,000 r	Decreased respiration.	30 min	47
51		$\begin{aligned} & \mathrm{X} \text { ray } \\ & 160 \mathrm{KVP} \\ & 200 \mathrm{KVP} \end{aligned}$	External	300-5400 r		Early edema and congestion, petechial hemorrhage, and lymphangiectasia. Hypertrophy and anaplasia of alveolar	$2 \mathrm{hr}-5 \mathrm{mo}$	31
52		Radon	Probably external	$\begin{gathered} 1925-2800 \\ \mathrm{mc} \mathrm{hr} \end{gathered}$		lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline membrane infrequent. Degeneration of elastica of alveoli, pleura, and vessels. Pleura relatively resistant. ${ }^{3}$	5-6 wk	
53		X ray	Head, single exposure	1000-4000 r		Dyspnea.	12 hr	48
54		X ray	Thorax, repeated exposure		6400-13,000 r	Degenerative changes in bronchial epithelium and lung stroma. Inflammatory processes in peribronchial, perivascular, and alveolar tissues.		20
55		X ray	Thorax, repeated exposure	Intensive		Pulmonary edema, congestion, fibrosis, atelectasis.		49
56		Radium	Entire body, repeated exposure	0.11-8.8 r/da	Life span	Lung tumors.	Terminal	33
5	Rat	X ray	Entire body, single	809-920 r	Lethal	Increased $\mathrm{O}_{2}$ consumption.	24 hr	50
		200 KV	exposure	$648-972 \mathrm{r}$	Lethal	Increased $\mathrm{O}_{2}$ consumption.	24 hr	
						Decreased $\mathrm{O}_{2}$ consumption.	$\begin{array}{r} \text { Terminal } \\ 9-10 \mathrm{da} \end{array}$	
				648 r	Non-lethal	Increased $\mathrm{O}_{2}$ consumption.	1-2 wk	
				54-432 r	Non-lethal	Increased $\mathrm{O}_{2}$ consumption.	Transient	
58		$X$ ray	Entire body, single	300-1000 r		Small decrease in basal $\mathrm{O}_{2}$ consumption.	1-3 da	51
		220 KV	exposure	800 r		Basal $\mathrm{O}_{2}$ consumption increased.	4th da	
59		$\begin{gathered} \mathrm{Xray} \\ 250 \mathrm{KV} \end{gathered}$	Thorax, single exposure	3000 r		Pulmonary fibrosis.		52
60		Xray 160 KVP 200 KVP 1000 KVP	External	1200-3000 r		Early edema and congestion, petechial hemorrhage, and lymphangiectasia. Hypertrophy and anaplasia of alveolar lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline membrane infrequent. Degeneration of elastica of alveoli, pleura, and vessels. Pleura relatively resistant. ${ }^{3}$	$1 \mathrm{hr}-12 \mathrm{wk}$	31

 Abbreviations and definitions: $K V=$ kilovolt, a unit of electrical potential equal to 1000 volts; $K V P=k i l o v o l t$ peak, the crest value of the potential wave in air produces, in air, ions carrying one electrostatic unit of electrical charge of either sign; rem = roentgen equivalent for man (or mammal). the absorbed dose equal the radiation in question relative to that of X-radiation with an average specific ionization of 100 ion the appropriate value of the biological effectiveness of the radiation in question relative to that of X-radiation with an average specific ionization of lation recelved; $n=$ neutron, a nuclear particle of zero charge and mass number $1 ; \mathrm{mc}=$ millicurie, the quantity of radionucleid disintegrating at the rate of $3.7 \times 10^{7}$ atoms per second.

	Animal	Type of Radiation	Exposure or Administration	Dosage	Accumulated Dosage or Exposure Time	Effect ${ }^{1}$	Initial Symptom Manifestation	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
61	$\begin{aligned} & \text { Rat (con- } \\ & \text { cluded) } \end{aligned}$	$\begin{aligned} & \text { X ray } \\ & 250 \mathrm{KVP} \end{aligned}$	External, single exposure on anesthetized animals	3000 r		Animals with complete atelectasis of irradiated lung: shift of mediastinum to collapsed side. Compensatory emphysema of non-irradiated lung. Proliferation, hypertrophy. and squamous metaplasia of bronchial and tracheal epithelium frequent. Inflammatory cell exudation and abscess formation. Peribronchial fibrosis. Thickening of blood vessel walls, perivascular fibrosis, and capillary obliteration. $100 \%$ incidence of pneumonitis, with high mortality usually caused by bilateral pneumonia. Animals with no collapse of irradiated lung: changes minimal or none at all.	$10-60 \mathrm{da}$	53
62		$\begin{aligned} & \text { X ray } \\ & \quad 250 \mathrm{KVP} \\ & \hline \end{aligned}$	Thorax, single exposure	3000 r		Atelectasis, pulmonary collapse, fibrosis.		54
63	Swine	$\begin{aligned} & X \text { ray } \\ & 200 \mathrm{KVP} \end{aligned}$	External	12,300 r		Early edema and congestion, petechial hemorrhage, lymphangiectasia. Hypertrophy and anaplasia of alveolar lining cells. Anaplasia and stratification in bronchi and bronchioles. Hyaline membrane infrequent. Degeneration of elastica of alveoli pleura and vessels. Pleura relatively resistant. ${ }^{3}$	1 wk	31
64		$\begin{aligned} & \text { X ray } \\ & 1000 \mathrm{KVP} \end{aligned}$	Entire body, single exposure	600 r		Pulmonary edema and hemorrhage.	Terminal	55
65		Bomb (Bikini)	Entire body, single exposure	20,000 r		Increased respiratory rate.	5 da	56
66		Atomic bomb source (gamma)	Entire body, single exposure	700 r		Increased respiratory rate. Atelectasis; constricted bronchioles, pulmonary edema, and hemorrhage.	Terminal (7th da)	57

[^25] dose of radiation, fractionation and protraction, secondary infection.
Contributors：（a）Michaelson，S．，and Ingram，M．，（b）Chu，F．C．，and Glicksman，A．S．，（c）Stannard，J．N


## 

The tabulation below is a selection of studies in which there was either a clear－cut effect of the radiation or clearly no demonstrable effect，thereby making possible an approach to an estimate of effective doses．It is not the purpose of this compilation to imply that a true threshold exists，for more complex
 of exposure，assuming an average effective half－life and exponential kinetics of loss．In some instances，these calculations may overestimate the dose heeded to produce damage；however，this is not true generally because biological removal is moderately rapid compared with the periods of exposure． Abte of $3.7 \times 10^{7}$ atoms per second；$\mu \mathrm{c}=$ microcurie， $3.7 \times 10^{4}$ disintegrations per second； $\mathrm{c} / \mathrm{L}=$ curies per liter； mc － $\mathrm{hr} / \mathrm{L}=\mathrm{millicuries} \times \mathrm{hours} \mathrm{per}$ liter
$\square$

$\underbrace{\stackrel{\rightharpoonup}{u}}_{\text {H゙山゙ }}$	島	


	Animal	Type of Radiation	Exposure or Administration	Dosage
	（A）	（B）	（C）	（D）
1	Man	Radium，radon and daughters（largely alpha）	Calculation of radiation dose to lung	$1 \times 10^{-11} \mathrm{c} / \mathrm{L}$


	Animal	Type of Radiation	Exposure or Administration	Dosage	Calculated Lung Dosage	Effect	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
2	$\begin{aligned} & \text { Man (con- } \\ & \text { cluded) } \end{aligned}$	Radium, radon and daughters (largely alpha)	Calculation for exposure of upper bronchial epithelium in a mine where lung cancer was reported	$3 \times 10^{-9} \mathrm{c} / \mathrm{L}$	$\begin{gathered} 0.65 \mathrm{rad} / \mathrm{wk}(560 \\ \mathrm{rad} \mathrm{in} 17 \mathrm{yr}) \end{gathered}$	Lung cancer occurs, but not proven to be result of radon and daughters exposure.	2,3
					3000 rem in 17 yr	No measurable effect on larger bronchi.	4
3		Radium, radon and daughters (mostly alpha)	Repeated inhalation in mine atmosphere for $3-y r$ period	60 rep radium equivalent		Dyspnea, pulmonary fibrosis.	5
4		Radium, radon and daughters (mostly alpha)	Industrial exposure by inhalation for 13-23 yr	$50-75 \mathrm{mg}$		Lung carcinogenesis, but casual relationship not proven.	6
5		Thorium and daughters (largely alpha)	Calculation of lung dose in patients administered 75 ml thorotrast	$0.01 \mathrm{rep} / \mathrm{da}$	85 rad in 25 yr (240 rad in 70 yr)	$50 \%$ self-absorption assumed. No measurable effect on lung; damage seen in other tissues.	7
6	Cat	Radon (mostly alpha)	Medulla oblongata, single exposure	43-83 $\mu \mathrm{c}$		Immediate stimulation of respiratory center.	8
7	Mouse	Aqueous radon solution (largely alpha)	Injection	$\begin{gathered} 0.013-0.017 \\ \mathrm{mc} / \mathrm{g} \end{gathered}$	570 rad to lung (285 rad to whole body)	Acute pathologic changes; lung damage not described in detail. LD-50 expected.	9
8		Radon free of daughters (alpha)	Inhalation	$4.3 \mathrm{mc}-\mathrm{hr} / \mathrm{L}$	$\begin{aligned} & \text { Approximately } \\ & 280 \mathrm{rad} \\ & \hline \end{aligned}$	Increased cellularity of bronchial mucosa 5-7 mo after exposure	10
9		Plutonium 239 (alpha)	Intratracheal injection	$0.06 \mu \mathrm{c} \mathrm{PuO} 2$ per animal	1,890-22,000 rad ${ }^{1}$	Squamous cell carcinomas seen in 3 out of 10 animals after 1 yr .	11
10		Ruthenium 106 oxide particles (beta)	Intratracheal injection	$\begin{aligned} & 0.45-3.0 \mu \mathrm{c} \\ & \text { per animal } \end{aligned}$	110 rad for 0.45 $\mu \mathrm{c} ; 710 \mathrm{rad}$ for $3.0 \mu \mathrm{c}$	Lower dose produced increase in papillary adenoma. Higher dose produced one malignant tumor (not a squamous cell carcinoma).	11,12
11		Carrier-free phosphorus ${ }^{32}$ (beta)	Subcutaneous injection	25-2000 $\mu \mathrm{c}$	93 rad for $25 \mu \mathrm{c}$; approximately 1000 rad for $250 \mu \mathrm{c}$; approximately 7500 rad for $2000 \mu \mathrm{c}$	No change that could be ascribed to radiation. Doses of 250 and $2000 \mu \mathrm{c}$ were acutely toxic, $25 \mu \mathrm{c}$ were not.	13
12		lodine 131 (beta, gamma)	Subcutaneous injection	10-1000 $\mu \mathrm{c}$	5,000-10,000 rad for more than $80 \mu \mathrm{c}$	Tracheal tumors. Dose to trachea difficult to estimate because of short range of the $1^{131}$ beta.	14



Contributors: (a) Stannard, J. N., (b) Michaelson, S., and Ingram, M.

References: [1] U. S. Public Health Service Bull., No. 494, 1957. [2] Evans, R., and Goodman, J. Indust. Hyg. 22:89, 1940. [ 3] Furth, J., in "Radiation Biology," (ed., Hollaender, A.), vol 1, part 1I, chap. 18, New York: McGraw-Hill, 1954. [4] Evans, R. D., Acta Unio Intern. contra Cancrum 6:1229, 1950. [5] Rajewsky, B., Radiology 32:57, 1939. [6] Pirchan, A., and Sik1, H., Am. J. Cancer 16:68̄1, 1932. [7] Hursh, J. B., et al, Acta radiol., Stockh. 47:481, 1957. [8] Nemenov, M. I., et al, Bull. Roentg. Radiol. 19:37, 1938. [9] Hollcroft, J. W., and Lorenz, E., J. Nat. Cancer Inst. 12:533, 1951. [10] Scott, J. K., Univ. Rochester Atomic Energy Project, Rept. No. UR-411, 1955. [11] Wager, R., Hanford Atomic Products Operation, Annual Rept. No. HW-41500, 1956. [12] Bair, W. J., unpublished. [13] Warren, S., et al, Radiology 55:557, 1950. [14] Gorbman, A., Proc. Soc. Exp. Biol. 71:237, 1949. [15] Thomas, R. G., and Stannard, J. N., Univ. Rochester Atomic Energy Project, Rept. No. UR-430, 1956. [16] Casarett, G. W., ibid, Rept. No. UR-201, 1952. [17] Mound Laboratory, Rept. No. MLM-761, 1952. [18] Fink, R. M., "Biological Studies with Polonium, Radium, and Plutonium," U. S. A. E. C., National Nuclear Energy Series, Div. V1, vol 3, chap. 8, New York: McGraw-Hill, 1950. [19] Abrams, R., et al, Univ. Chicago, Rept. No. CH-3875, 1946. [20] Bloom, W., "Histopathology of Irradiation," U. S. A. E. C., National Nuclear Energy Series, Div. IV, vol 22 I, chap. 15, New York: McGraw-Hill, 1948. [21] Siebert, H. C., and Abrams, R., Univ. Chicago, Rept. No. CH-3539, 1946. [22] Lisco, H., and Finkel, M., Fed. Proc. 8:360, 1949. [23] Cember, H., Univ. Pittsburgh Graduate School of Public Health, AEC Contract AT (30-1) 912, Rept. No. 9, 1957. [24] Cember, H., et al, Am. M. Ass. Arch. Indust. Health 12:628, 1955. [25] Cember, H., ibid 15:449, 1957. [26] Kushner, M., et al, AEC Contract AT (30-1) 1925, New York Univ., Bellevue Med. Center, Progress Rept., 1957. [27] Tessmer, C. F., and Jennings, F. L., Radiol. Res. 599, 1956.

Part I: VOLUNTARY CONTROL
Section 1: Breathhol ding
Ranges in parentheses are estimate "c" of the $95 \%$ range (cf Introduction).

Breathholding Time sec		Alveolar Air			
		Before		After	
		$\mathrm{O}_{2}$, \%	$\mathrm{CO}_{2}$, \%	$\mathrm{O}_{2}, \%$	$\mathrm{CO}_{2}$, \%
	(A)	(B)	(C)	(D)	(E)
1	47(30-77)	14.85(13.67-16.12)	4.92(4.05-6.02)	10.13(6.12-11.44)	6.72(5.28-8.08)

Contributor: Craig, F. N.
Reference: Hill, L., and Flack, M., J. Physiol., Lond. 37:77, 1908.
Section 2: Voluntary Hyperventilation
Subjects at rest.

	Total Ventilation   $\mathrm{L} / \mathrm{min}$	Alveolar $\mathrm{CO}_{2}^{1}$	
		Constant Frequency \%	Constant Tidal Volume \%
	(A)	(B)	(C)
1	5	6.08	5.86
2	10	4.37	4.71
3	20	2.86	3.54
4	40	2.19	2.59

/1/ Recalculation of published data.
Contributor: Craig, F. N.
Reference: Sunahara, F. A., Girling, F., Snyder, R. A., and Topliff, D., J. Aviat. M. 28:13. 1957.

Part II: EXERCISE
Section 1: Effect on Expired and Alveolar $\mathrm{CO}_{2}$

Condition		$\mathrm{O}_{2}$ Uptake   $\mathrm{L} / \mathrm{min}$	Total Ventilation   $L / \min$	$\mathrm{CO}_{2}$		
		$\begin{gathered} \text { Expired Air } \\ \% \end{gathered}$		$\begin{gathered} \text { Alveolar Air } \\ \% \end{gathered}$		
	(A)		(B)	(C)	(D)	(E)
1	Rest, bed	0.24	7.7	3.19	5.97	
2	Rest, standing	0.33	10.4	3.14	5.70	
3	Walking	0.67	16.3	4.25	6.04	
4		1.07	24.8	4.62	6.10	
5		1.60	37.3	4.67	6.36	
6		2.01	46.5	4.72	6.20	
7		2.54	60.9	4.79	6.10	

Contributor: Craig, F. N.
Reference: Douglas, C. G., and Haldane, J. S., J. Physiol., Lond. 45:235, 1912-1913.
Section 2: Effect on Composition of Expired Air
Bicycle ergometer.

$\mathrm{O}_{2}$ Uptake   L/min		Total Ventilation $\mathrm{L} / \mathrm{min}$	Expired Air ${ }^{1}$		
		$\mathrm{O}_{2}$, \%	$\mathrm{CO}_{2}$, \%		
	(A)		(B)	(C)	(D)
1	0.25	6.5	17.05	3.29	
2	0.50	10.5	16.35	3.99	
3	1.00	20.0	16.00	4.54	
4	1.50	30.0	15.95	4.84	
5	2.00	42.5	16.15	4.80	
6	2.50	56.5	16.65	4.34	

/1/ Recalculation of published data.
Contributor: Craig, F. N.
Reference: Bock, A. V.. Vancaulaert, C., Dill, D. B., Folling, A., and Hurxthal, L. M., J. Physiol., Lond. 66:136, 1928.

Part II: EXERCISE (Concluded)
Section 3: Effect on Composition of Expired Air, Exercise vs Recovery
Treadmill experiment. $\mathrm{O}_{2}$ consumption three times basal.

	Conditions	$\mathrm{O}_{2} . \%{ }^{\text {] }}$	$\mathrm{CO} 2 . \% 1$
	(A)	(B)	(C)
Male			
1	Rest	16.77	3.95
2	Exercise	15.78	4.68
3	Recovery	16.81	4.27
Female			
4	Rest	17.09	3.47
5	Exercise	16.09	4.18
6	Recovery	17.09	3.86

/1/ Recalculation of published data.
Contributor: Craig, F. N.
Reference: Bruce, R. A., Pearson, R., Lovejoy, F. W., $\mathrm{Yu}, \mathrm{P} . \mathrm{N} .$, and Brothers, G. B., J. Clin. lnvest. 28:1431, 1949.

Section 4: Effect on Blood Lactic Acid and Composition of Alveolar Air Bicycle ergometer.

$\mathrm{O}_{2}$ Uptake L/min		Alveolar ${ }^{\text {d }}$		$\begin{gathered} \text { Blood Lactic Acid } \\ \mathrm{mEq} / \mathrm{L} \end{gathered}$
		$\mathrm{O}_{2}$, \%	$\mathrm{CO}_{2}$. \%	
	(A)	(B)	(C)	(D)
1	0.4	14.55	5.47	1.2
2	0.8	14.75	5.40	1.3
3	1.2	14.06	5.96	1.6
4	1.6	13.99	6.24	2.2
5	2.0	14.33	6.17	3.7
6	2.2	14.75	5.96	5.1

/1/ Recalculation of published data.
Contributor: Craig, F. N.
Reference: Dill, D. B., Edwards, H. T., Folling, A., Oberg, S. A.. Pappenheimer, A. M., Jr., and Talboll. J. H., J. Physiol., Lond. 71:48, 1931.

Part lII: HEAT
Section 1: Increased Body Temperature; Subjects at Rest in Hot Baths
Four subjects. $O=$ oral, $R=$ rectal.

Temperature			Alveolar ${ }^{1}$		Total Ventilation   $\mathrm{L} / \mathrm{min}$
	Body, ${ }^{\circ} \mathrm{C}$	Bath, ${ }^{\circ} \mathrm{C}$	$\mathrm{O}_{2}$, \%	CO2, \%	
	(A)	(B)	(C)	(D)	(E)
1	36.80		14.82	5.58	7.0
1	39.7 O	42	17.82	3.27	18.0
2	38.2 R	37	14.87	5.46	8.5
	39.3 R	41	16.04	3.36	38.0
3	37.8 R		15.61	4.93	5.0
3	39.2 R	43	16.04	3.10	39.0
4	36.7 O		13.36	6.58	9.5
4	39.20	42	16.11	3.82	25.5

/1/ Recalculation of published data.
Contributor: Craig. F.N.
Reference: Hill, L., and Flack, M., J. Physiol., Lond. 38:57. 1909.
Section 2: Increased Body Temperature during Exercise
Bicycle ergometer. Room lemperalure, $34^{\circ} \mathrm{C}$.

Exercise min	Rectal Temperature ${ }^{\circ} \mathrm{C}$	Total Venlilation $\mathrm{L} / \mathrm{min}$	O2 Uptake L/min	$\underset{\%}{\text { Alveolar } \mathrm{CO}_{2}{ }^{1}}$
(A)	(B)	(C)	(D)	(E)
10	38.0	45	2.1	6.17
2.20	38.4	47	2.1	5.90
330	38.8	48	2.1	5.47
440	39.2	50	2.1	5.34
5 50	39.6	52	2.1	5.19

[^26]Contributor: Craig, F. N.
Reference: Dill, D. B., Edwards, H. T., Bauer, P. S., and Levenson, E. J., Arbeitsphysiologie 4:508, 1931.
140. SUMMARY, FACTORS AFFECTING COMPOSITION OF RESPIRED AIR: MAN (Continued)

Part IV: $\mathrm{CO}_{2}$ INHALATION
Section 1: Various Exposure Times
Subjects at rest. R.Q. = respiratory quotient.

$\mathrm{CO}_{2}$ Inhalation min		Total Ventilation L/Min	Inspired		Expired		$\mathrm{O}_{2}$ Uptake $\mathrm{cc} / \mathrm{min}$	$\mathrm{CO}_{2}$ Output cc/min	R.Q.	
		$\mathrm{O}_{2}$. \%	$\mathrm{CO}_{2}$, \%	$\mathrm{O}_{2}$, \%	$\mathrm{CO}_{2}$, \%					
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
1	0	7.3	20.93	0.03	16.76	3.38	318	243	0.77	
2	3	33.8	19.42	5.83	18.24	6.48	446	206	0.46	
3	11	43.2	19.27	5.99	18.30	6.54	466	225	0.48	
4	18	46.6	19.11	6.10	18.24	6.75	447	293	0.66	

Contributor: Craig, F.N.
Reference: Campbell, J. M., Douglas, C. G., Haldane, J. S., and Hobson, F. G., J. Physiol., Lond. 46:301, 1913.
Section 2: Various Concentrations

Inspired $\mathrm{CO}_{2}$   $\%$		Total Ventilation   $\mathrm{L} / \mathrm{min}$	Alveolar $\mathrm{CO}_{2}{ }^{1}$   $\%$
1	0.18	$(\mathrm{~A})$	12.9
2	1.02	16.6	$(\mathrm{C})$
3	2.22	15.6	6.34
4	4.17	27.2	6.45
5	5.31	41.1	6.69
6	7.50	71.0	6.83

/1/Recalculation of published data.
Contributor: Craig, F. N.
Reference: Barcroft. J., and Margaria, R., J. Physiol., Lond. 72:175, 1931.

Section 3: During Exercise
One subject.

Time ${ }^{1}$ min		$\begin{gathered} \text { Treadmill Speed } \\ \text { mi/hr } \end{gathered}$	Inspired		Expired		Total Ventilation $\mathrm{L} / \mathrm{min}$	$\mathrm{O}_{2}$ Uptake $\mathrm{L} / \mathrm{min}$	
		O2. \%	$\mathrm{CO}_{2}$, \%	O2. \%	$\mathrm{CO}_{2}$, \%				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	0	1.5	17.36	1.93	14.21	5.03	15.0	0.43	
2	16	1.5	16.54	4.36	14.20	6.37	22.0	0.47	
3	31	1.5	15.81	6.45	14.60	7.47	37.5	0.41	
4	52	3.0	17.36	1.93	13.95	5.06	24.0	0.75	
5	63	3.0	16.54	4.36	14.04	6.65	35.0	0.78	
6	81	3.0	15.81	6.45	14.03	8.07	51.5	0.82	
7	104	4.0	17.36	1.93	13.78	5.42	36.0	1.17	
8	121	4.0	16.54	4.36	13.69	6.95	47.0	1.20	
9	150	4.0	15.81	6.45	13.39	8.50	60.0	1.32	

11/ Start of each test
Contributor: Craig, F.N.
Reference: Craig, F. N., J. Appl. Physiol. 7:467, 1955.
Part V: $\mathrm{O}_{2}$ INHALATION
Section 1: Various Concentrations

Inspired		Expired	
$\mathrm{O}_{2}, \%$		$\mathrm{CO}_{2}, \%$	$\mathrm{O}_{2}, \%$
	$(\mathrm{~A})$	$(\mathrm{B})$	$(\mathrm{C})$
1	80.24	0.20	72.21
2	63.67	0.14	57.57
3	20.93	0.03	14.50
4	15.63	0.07	10.60
5	12.78	0.07	7.80
6	11.33	0.10	8.96
7	11.09	0.10	7.10
8	6.23	0.09	4.30

Contributor: Craig, F.N.
Reference: Haldane, J. S., and Priestley, J. G., J. Physiol., Lond. 32:225, 1905.

## Part V: $\mathrm{O}_{2}$ INHALATION (Concluded)

Section 2: $\mathrm{N}_{2}$ in Expired Air
$\mathrm{N}_{2}$ as an increment over the $\mathrm{N}_{2}$ contained in an inspired gas mixture containing $1 \%$ of $\mathrm{N}_{2}$ in $\mathrm{O}_{2}$. Subjects at rest, submerged in water. Ranges in parentheses are estimate "c" of the $95 \%$ range (cf Introduction).

Time on Gas Mixture   min		$\mathrm{N}_{2}$Increment   $\%$$\quad$ (A)
1	1	$(\mathrm{~B})$
2	4	
3	8	
4	13	$0.76(1.58-0.41)$
5	30	$0.17(0.28-0.07)$
6	60	
7	90	$0.11(0.18-0.11)$

Contributor: Craig, F. N.
Reference: Blevins, W. V., Frankel, H., Garren, H., and Craig, F. N., Chemical Corps Medical Laboratories Research Rept. No. 216, Army Chemical Center, Maryland, 1953.

## Part VI: ADDED RESISTANCE

The effect of added resistance on the composition of alveolar air. Resistance the same on inspiration and expiration.

Resistance $\mathrm{mm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{cc} / \mathrm{sec}$	$\mathrm{O}_{2}, \% 1$	$\mathrm{CO}_{2}, \%^{1}$
(A)	(B)	(C)
$10.077^{2}$	13.93	5.70
20.308	13.50	5.95
30.0773	14.18	5.60

/ / Recalculation of published data. /2/ Before added resistance. /3/ After added resistance.

Contributor: Craig, F.N.

Reference: Cain, C. C., and Otis, A. B., J. Aviat. M. 20:149, 1949.

## Part VIl: ADDED DEAD SPACE

Average of three subjects.

Added Dead Space L		$\begin{gathered} \text { Total Ventilation } \\ \mathrm{L} / \mathrm{min} \end{gathered}$	Expired		Alveolar		
		$\mathrm{O}_{2}, \%$	$\mathrm{CO}_{2}$. \%	O2. \%	$\mathrm{CO}_{2}$. \%		
	(A)		(B)	(C)	(D)	(E)	(F)
1	0	8.6	17.93	3.00	15.92	4.79	
2	1.0	17.7	19.41	1.51	15.52	4.90	
3	2.0	28.9	20.02	0.86	14.40	5.95	
4	3.0	38.8	20.34	0.54	10.32	6.99	

Contributor: Craig. F.N.

Reference: Swann, H. E., Jr. (thesis), Univ. of Maryland, 1950.
140. SUMMARY, FACTORS AFFECTING COMPOSITION OF RESPIRED AIR: MAN (Concluded)

Part VIII: ACIDOSIS
One subject.

Day		Ingested $\mathrm{NH}_{4} \mathrm{Cl}$   mM	Alveolar $\mathrm{CO}_{2} 1$   $\%$
1	1	$(\mathrm{~A})$	$(\mathrm{B})$

/1/ Recalculation of published data.

Contributor: Craig, F.N.

Reference: Haldane, J. B., J. Physiol., Lond. 55:265, 1921.

Part IX: ALKALOSIS
One subject.

Time   hr		Condition	Alveolar $\mathrm{CO}_{2}$   $\%$
(A)	(B)	(C)	
1		Control	5.8
2	0.5	Ingestion $57.5 \mathrm{~g} \mathrm{NaHCO}_{3}$	6.2
3	3.5	Peak excretion rate of $\mathrm{NaHCO}_{3}$	6.8
4	8.5	Urine flow returned to normal	6.1

Contributor: Cralg, F.N.

Reference: Davies, H. W., Haldane, J. B., and Kennaway, E. L.. J. Physiol., Lond. 54:32, 1920.

## Part X: INHALED PHOSGENE RETENTION

The amount retained is the difference between the amount inspired and the amount recovered in the expired air. That retained is expressed as a fraction of the amount inspired. Values in parentheses are estimate "c" of the $95 \%$ range (cf Introduction).

Species	Retained Gas   $\%$	Reference	
$(\mathrm{A})$	$(\mathrm{B})$	$(\mathrm{C})$	
$\mathbf{1}$	Rhesus monkey	$0.792(0.512-0.980)$	1
2	Dog	$0.740(0.518-0.937)$	2
3	Goat	$0.628(0.365-0.941)$	3

Contributor: Craig, F. N.

References: [1] Weston, R. E., and Karel, L., J. Indust. Hyg. 29:29, 1947. [2] Weston, R. E., and Karel, L., J. Pharm. Exp. Ther. 88:195, 1946. [3] Karel, L., and Weston, R. E., J. Indust. Hyg. 29:23, 1947.
Ranges in parentheses are estimate "d" of the $95 \%$ range (cf Introduction)
$R=$ rest, $E=$ exercise.

Disease ${ }^{\text {l }}$		No. of Subjects, Dynamic Status	Maximal Breathing Capacity ${ }^{2}$ \%	$\begin{gathered} \text { Vital } \\ \text { Capacity }{ }^{2} \\ \% \end{gathered}$	Residual   Volume ${ }^{2}$   \%	```O Ventilatory Equivalent %2,3```	Alveolar $\mathrm{O}_{2}$   Pressure 4,5 mm Hg	Arterial Blood			$\mathrm{O}_{2}$ Diffusing Capacity ${ }^{4,6}$ $\mathrm{ml} / \mathrm{min} / \mathrm{mm} \mathrm{Hg}$	Reference	
		Partial Pressure $\begin{gathered} \mathrm{O}_{2}{ }^{4} \\ \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$						Partial Pressure $\begin{gathered} \mathrm{CO}_{2}{ }^{4} \\ \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$	O2 Saturation $\% 4$				
	(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)
1	$\begin{gathered} \text { Extensive } \\ \text { parenchymal } \\ \text { tuberculosis } \end{gathered}$	62 R	80(40-110)	80(40-110)	110(50-150)		$90(80-110)$	$70(65-90)$	$39(34-42)$	$90(85-97)$	15(6-20)	$\begin{gathered} 1,4-6,13 \\ 24 \end{gathered}$	
2		E				120(100-150)	100(95-105)	65(60-85)	39(30-39)	88(80-94)			
3	Tuberculous pleuritis. "fibrothorax"	$\begin{array}{r} 18 \mathrm{R} \\ \mathrm{E} \end{array}$	60(40-80)	50(25-60)	60(30-80)	130(100-170)	80(80-110)	70(50-80)	39(30-42)	90(80-92)		2, 3	
5	Widespread bronchiectasis	12 R	90(50-100)	80(40-100)	100(50-100)		90(80-110)	70(60-90)	39(34-42)	90(80-92)	$18(15-25)$	5,24	
7	Silicosis ${ }^{8}$	$\begin{aligned} 110 \mathrm{R} \\ \mathrm{E} \end{aligned}$	90(70-120)	80(50-110)	110(80-180)	120(100-160)	$\begin{aligned} & 90(80-100) \\ & 110(95-115) \end{aligned}$	$\begin{aligned} & 75(65-90) \\ & 70(60-80) \end{aligned}$	$\begin{array}{\|l\|} 39(34-45) \\ 38(34-40) \end{array}$	$\begin{array}{\|} 92(85-95) \\ 88(80-92) \\ \hline \end{array}$	$\begin{aligned} & 14(9-25) \\ & 16(13-22) \end{aligned}$	$\begin{gathered} 5,6,9,11,15 \\ 21,24 \end{gathered}$	
8 9	ldiopathic fibrosis 9	$\begin{array}{rr} 27 & \mathrm{R} \\ & \mathrm{E} \end{array}$	$80(60-110)$	70(50-90)	90(80-180)	140(110-160)	$100(90-105)$ $110(105-115)$	$60(30-80)$ $50(30-80)$	$\left[\begin{array}{l}35(30-40) \\ 34(30-40)\end{array}\right.$	$\begin{aligned} & 80(60-85) \\ & 75(50-90) \end{aligned}$	$\begin{aligned} & 9(5-12) \\ & 15(12-18) \end{aligned}$	$\begin{gathered} 5,15,19,22 \\ 24,26 \end{gathered}$	
10 11	$\begin{gathered} \hline \text { Widespread } \\ \text { sarcoidosis } \end{gathered}$	$\begin{array}{r} 58 \text {, R } \\ \\ \\ E \end{array}$	80(50-170)	65(35-120)	$80(60-120)$	150(110-170)	$100(95-102)$ $110(105-115)$	$\left\{\begin{array}{l}85(64-90) \\ 65(40-85)\end{array}\right.$	$38(35-41)$ $37(32-42)$	$\begin{aligned} & 88(80-96) \\ & 85(75-97) \\ & \hline \end{aligned}$	$\begin{aligned} & 10(6-16) \\ & 15(10-17) \end{aligned}$	$\begin{gathered} 6-8,15,17 \\ 23-26 \end{gathered}$	
12	Beryllium granulomatosis	$\begin{array}{rr} 36 & \mathrm{R} \\ & \mathrm{E} \end{array}$	90(70-120)	60(40-80)	80(70-110)	160(120-300)	$105(95-110)$ $112(100-120)$	$70(60-90)$ $55(30-80)$	$38(35-42)$ $35(30-40)$	$\begin{aligned} & 90(88-96) \\ & 75(60-85) \\ & \hline \end{aligned}$	$\begin{aligned} & 8(5-10) \\ & 15(12-25) \\ & \hline \end{aligned}$	$\begin{gathered} 6,15,20,21 \\ 26 \end{gathered}$	
14	Hamman-Rich syndrome	$\begin{array}{ll} 3 & R \\ & E \end{array}$	65(50-100)	50(40-60)	50(40-60)	160(150-200)	114	35	41	$80(70-90)$   87	14	10,15,18	
16	Diatomaceous earth fibrosis	30 R	103(70-120)	106(95-130)	113(70-160)		97(85-105)	91(80-110)	41(35-50)	$\begin{aligned} & 95(90-97) \\ & 93(90-96)^{10} \end{aligned}$		12	
18	Asbestosis	57 l	90(70-100)	70(60-90)		150(120-180)	$\begin{aligned} & 85(80-100) \\ & 95(90-100) \end{aligned}$	$\begin{aligned} & 75(65-90) \\ & 60(50-80) \end{aligned}$	$\begin{aligned} & 40(35-42) \\ & 38(35-40) \end{aligned}$	$\begin{aligned} & 92(88-96) \\ & 88(70-90) \end{aligned}$		16,24	

[^27]Contributors: (a) Filley, G. F., (b) Armstrong, B. W., (c) Nims, R. G.


## 142. COMPARATIVE PATHOLOGY OF THE PNEUMOCONIOSES

The term pneumoconiosis is used in a generic sense to include the deposition of any insoluble exogenous particles in lung tissue, regardless of the presence or absence of sequellae. There are many more pneumoconioses than the ones here listed, including those considered benign or asymptomatic [1], and those manifestly of a mixed variety in which silica is the more significant component. It must be strongly emphasized that the tabulation here presented should be considered to apply to the respective pneumoconioses only when they are of moderate severity. It is obvious that the amount of anatomic, physiologic, and immunologic alteration depends largely upon whether the involvement by the particular pneumoconiosis is mild, moderate, or severe. Any other application of this tabulation would be misleading and result in confusion.

	General Effect	Specific Effect	Anthracosis	Silicosis	Asbestosis	Chronic Berylliosis	Bauxite Fume Pneumoconiosis (Shaver's Disease)	Reference
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
1	Anatomic	Emphysema	+	+	+	+	+	$\begin{gathered} \text { C, 3-5;D,6;E,7; } \\ F, 8-11 ; G, \\ 12-14 \end{gathered}$
2		Hilar fibrosis	0	+	0	?	+	D,15;G,12-14
3		Nodular fibrosis	0	+	0	+	0	$\begin{gathered} D, 15,16 ; F, 8-11 ; \\ G, 12-14 \end{gathered}$
4		Alveolar fibrosis	$0^{0}$	0	+	+	+	$\begin{gathered} \mathrm{C}, 5,17,18 ; \mathrm{D} \\ 19-22 ; \mathrm{E}, 23 ; \\ \mathrm{F}, 8-11 ; \mathrm{G} \\ 12-14 \end{gathered}$
5		Vascular sclerosis	0	+	+	+	+	$\begin{array}{r} \mathrm{D}, 6,24 ; \mathrm{E}, 25 ; \mathrm{F}, \\ 8,-11, G, 12-14 \\ \hline \end{array}$
6		$\begin{array}{l}\text { Pleural } \\ \text { fibrosis }\end{array}$	0	+	+	+	+	$\begin{gathered} \mathrm{E}, 7 ; \mathrm{F}, 8-11 ; \mathrm{G} \\ 12-14 \end{gathered}$
7		Granulomatous inflammation	$7^{0}$	0	0	+	0	F,8-11;G,12-14
8	$\begin{aligned} & \text { Physi- } \\ & \text { ologic } \end{aligned}$	Reduced ventilatory movernents	+	+	+	+	+	$\begin{gathered} \mathrm{C}, 26,27 ; \mathrm{D}, 28 \mathrm{i} \\ \mathrm{E}, 23 ; \mathrm{F}, 8-11 \\ \mathrm{G}, 12-14 \end{gathered}$
9		Reduced respiratory surface	$\int 0^{1}$	+	0	+	+	$\begin{aligned} & \mathrm{C}, 5,17,18 ; \mathrm{F}, \\ & 8-11 ; \mathrm{G}, 12- \\ & 14 \end{aligned}$
10		Impaired gaseous diffusion	$0$	02	+	+	+	F,8-11;G,12-14
11		Pulmonary hypertension (cor pulmonale)	+	+	+	+	+	$\begin{aligned} & \mathrm{C}, 27 ; \mathrm{F}, 8-11 ; \mathrm{G}, \\ & 12-14 \end{aligned}$
12	Immunologic ${ }^{3}$	Increased susceptibility to tuberculosis	?	+	?	? ${ }^{4}$	? 4	$\begin{gathered} \mathrm{C}, 3-5,17,18 ; \mathrm{D}, \\ 19 ; \mathrm{E}, 7,19,29 . \\ 30 \end{gathered}$
13		lncreased   incidence   pulmonary   cancer	0	0	?	? ${ }^{4}$	${ }^{4}$	$\begin{gathered} \text { D, 19,29; E,29, } \\ 31,32 \end{gathered}$

/1/ Only in cases of progressive massive fibrosis. /2/Except in the presence of diffuse alveolar fibrosis. /3/The propriety of classifying the increased incidence of pulmonary cancer under the heading of immunologic effect is debatable; it is done here for the sake of convenience and simplicity. /4/Total number of cases reported is too small.

Contributor: Gross, P.

References: [1] Sander, O. A., in "Clinical Cardiopulmonary Physiology," ed. Gordon, B. L., p 350, New York: Grune and Stratton, 1957. [2] Di Biasi, W., Virchows Arch. 319:505, 1951. [3] Heppleston, A. G., J. Path. Bact., Lond. 59:453, 1947. [4] Fletcher, C. M., in "ILO 3rd Internat. Conf. of Experts on Pneumoconiosis, Sydney, 1950: Record of Proceedings," vol 2, p 150, Geneva: International Labor Office, 1953. [5] Hart, P. D., and Aslett, E. A., in "Chronic Pulmonary Disease in South Wales Coalminers," Special Rept. Series No. 243, vol I, London: Medical Research Council, 1942. [6] Matz, P. B., Am. J. M. Sc. 196:548, 1938. [7] Stone, M. J., Am. Rev. Tuberc. 41:12, 1940. [8] Hardy, H. L., in "Pneumoconiosis, "6th Saranac Symposium, Trudeau School of Tuberculosis, ed. Vorwald, A. J., et al, p 133. New York: Paul B. Hoeber, Inc., 1950. [9] Wright, G. W., ibid, p 173. [10] Vorwald, A. J., ibid, p 190. [11] Vorwald, A. J., in "Clinical Cardiopulmonary Physiology," ed. Gordon, B. L., p 359, New York: Grune and Stratton, 1957. [12] Wyatt, J. P., and RiddeII, A. R., Am. J. Path. 25:447, 1949. [13] Riddell, A. R., in "Pneumoconiosis," 6th Saranac Symposium, Trudeau School of Tuberculosis, ed. Vorwald, A. J., et al, p 459, New York: Paul B. Hoeber, Inc., 1950. [14] Shaver, C. G., and Riddell, A. R., J. Indust. Hyg. 29:145, 1947. [15] Di Biasi, W., Tuberkulosearzt 7:343, 1953. [16] Gardner, L. U., Pub. Health Rept., Wash. $50: 695,1935$. [17] Gough, J., J. Path. Bact., Lond. 51:277. 1940. [18] Fletcher, C. M., in "Beiträge zur Silicose-Forschung; Bericht über die Medizinischwissenschaftliche Arbeitstagung Uber Silicose," (Sonderband) p 119, Bochum: Bergbau-Berufsgenossenschaft, 1951. [19] Union of South Africa Rept. of the Departmental Committee of Enquiry into the Relationship between Silicosis and Pulmonary Disability and the Relationship between Pneumoconiosis and Tuberculosis, Pretoria: The Government Printer, 1955. [20] Gardner, L. U., J. Indust. Hyg. 14:18, 1932. [21] Gardner, L. U., ibid 19:111, 1937. [22] Vigliani, E. C., and Mottura, G., Brit. J. Indust. M. 5:148, 1948. [23] Di Biasi, W., Arch. Gewerbepath. 8:139, 1937. [24] Geever, E. F., Am. J. M. Sc. $214: 292,1947$. [25] Vorwald, A. J., personal communication. [ 26 ] Motley, H. L., in "Clinical Cardiopulmonary Physiology, "ed. Gordon, B. L., p 331, New York: Grune and Stratton, 1957. [27] Levine, E. R., and Liu, C. K., ibid, p 447. [28] Rossier, P. H., in "ILO 3rd Internat. Conf. of Experts on Pneumoconiosis, Sydney, 1950; Record of Proceedings," vol 2, p 26, Geneva: International Labor Office, 1953. [29] Merewether, E. R. A., ibid, vol 1, p 32. [30] Cartier, P., ibid, vol 1, p 32. [31] Lynch, K. M., Mclver, F. A., and Cain, J. R., Am. M. Ass. Arch. Indust. Health 15:207, 1957. [32] Isselbacher, K. J., Klaus, H., and Hardy. H. L., Am. J. M. 15:721, 1953.
143. PHYSIOLOGIC CLASSIFICATION OF HYPOXIAS
Hypoxias are presented in four major groups: (1) Anoxic. Failure in oxygenation of pulmonary blood flow (low pOz in pulmonary venous blood). (2) Hemic. interfering with oxygen utilization.

	Type	Cause	Mechanism	Clinical State	Reference
	(A)	(B)	(C)	(D)	(E)
Anoxic					
1	Ambient	Dilution of oxygen	Lowered $\mathrm{pO}_{2}$ in inspired air.	Fire damp, black damp.	1.7
2		Rarified atmosphere		Mountain sickness, high altitude blackout.	2-7
3		Selective reduction $\mathrm{O}_{2}$		In experimental studies, anesthesia accidents.	5-7
4	Respiratory	Ventilatory insufficiency	Lowered $\mathrm{pO}_{2}$ in alveolar air.	Obstructive lesions: emphysema, bronchospasm, respiratory tract obstruction, paralysis of respiratory muscles, tetanus, strychnine poisoning.   Space-occupying lesions: pneumothorax, pleural effusions, certain consolidations, thoracic cage deformity. CNS depression from drugs, anesthetics, CNS lesions.	8,9,14
5		Alveolar wall block	lmpaired alveolo-capillary diffusion.	Fibrosis or edema of alveolar wall; infection, pneumoconiosis, mitral stenosis, left ventricular failure.	8,10
6		Physiologic intrapulmonary shunt	Blood passage through non-ventilated segments of lung.	Certain consolidations, incomplete bronchial obstruction.	11
7		Pulmonary arterio-venous shunt	Shunt of unoxygenated blood around normal alveoli.	Pulmonary hemangioma or arterio-venous shunt.	12


8	Anemic	Reduction in total circulating hemoglobin	```Decreased concentration of oxygen in whole blood. Conversion of Hb into COHb, metHb or sulfHb.```	Anemias of blood loss, deficiency state, hemolysis or bone marrow depression.	13,14
9.	Toxic	Reduction in functional circulating hemoglobin		Toxicity of CO, nitrites, chlorates, various coal tar derivatives; rare congenital metabolic disorders.	14,15
10	Volumetric	Blood volume loss	Low circulating blood flow.	Shock associated with hemorrhage, burns, trauma or infection.	116
11		Volume capacity increase		Peripheral vascular collapse, states with sequestration of blood.	16
12	Cyanotic congenital cardiac	Anomalous inflow or outflow routes of the heart	Routing of venous blood into left atrium or aorta.	Anomalous vena caval drainage, transposition of great vessels, persistent truncus arteriosus.	17,18
13		Absence of one or more cardiac chambers	Mixing of bloods in common cardiac chamber.	Cor biloculare, cor triloculare biatriatum.	18
14		Abnormal communication between lesser and greater circulations	Ejection of venous blood into left heart or into aorta (right to left shunt).	Fallot type: pulmonary or tricuspid stenosis, or atresia with interatrial or interventricular communication. Eisenmenger type: pulmonary hypertension with "reverse" shunt through atrial septal defect, ventricular septal defect or persistent ductus arteriosus.	18-20
15	Minute flow discrepancy	Myocardial fault	Low cardiac output resulting from diseased myocardium.	Heart failure, myocardial infarction, myocarditis.	21-24
16		Constrictive lesion of heart	Low cardiac output resulting from poor dlastolic filling.	Cardiac tamponade, constrictive pericarditis, arrhythmia, thoracic wall deformity.	25-27


17	$\begin{aligned} & \hline \text { Minute flow } \\ & \text { discrepancy } \\ & \text { (concluded) } \end{aligned}$	Obstructive lesion of heart	Low cardiac output resulting from high resistance to flow.	Heart valve lesions, increased pulmonary or systemic vascular resistance.	19,27
18		Relative minute flow insufficiency	Oxygen demands of tissues in excess of minute flow supply.	Beriberi, thyrotoxicosis, arterio-venous fistula.	27,28
19	Peripheralvascular	Arterial obstruction	Distal ischemia.	Coarctation of aorta, atherosclerosis, thrombosis, embolism, arteritis, arteriolitis; laceration, division, extrinsic pressure on artery.	29-32
20		Venous stasis	Peripheral congestion.	Congestive heart failure, venous obstruction, venous valve incompetence.	32
21		Lymph stasis	Low capillary blood flow as a result of high tissue tension	Chronic infection of lymphatics, general edematous states, idiopathic.	32
22		Vasospastic states	Distal ischemia resulting from abnormal degree of angiospasm.	Raynaud's disease, arterial or venous spasm, certain cold injuries.	32-34


Contributors: (a) Wesolowski, S. A., (b) Bruce, R., (c) Finch, C. A., (d) Selzer, A., (e) Stickney, J. C.
References: [1] Haldane, J. S., and Priestley, J. C., "Respiration," p 426, London: Oxford University Press, 1935. [2] Douglas, C. G., Haldane, J. S.,
Henderson, Y., and Schneider, E. C., Philos. Trans. Roy. Soc. London, B 203:185, 1913. [3] Hingston, R. W. G., Geographical J., Lond. 65:4, 1925.
Philos. Trans. Roy. Soc. A., and
1948. 402, Phila Christopher's Textbook of Surgery, " 13] Castle, W. B., in Cecil's "Textbook of

 pitq! "O 'x!̣ydes pue Burwe
 'Chernical Anatomy, Physiology and Pathology of Extracellular Fluid," Cambridge: Harvard Univ. Press, 1954.

Dyspnea is defined as breathing associated with effort or distress, including subjective breathlessness and objective evidence of laborcd breathing.

Part I: GENERAL CAUSES

1	Abnormal hemoglobins	$\left\lvert\, \begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18\end{aligned}\right.$					Fear
2	Acidosis						Increased body metabolism
3	Anemia						Neuromuscular defects
4	Apprehension						Pain
5	Cardiac and respiratory congenital deformities						Pulmonary edema
6	Congestive heart failure						Pulmonary embolism
7	Exercise						Pulmonary fibrosis
8	Exhaustion						Pulmonary infection
9	Fatigue						Respiratory obstruction, acute and chronic

Contributor: Tomashefski, J. F.
References: [1] Richards, D. W., Jr., Circulation 7:15, 1953. [2] Means, J. H., Medicine 3:309, 1924. [3] Cornroe, J. H., Forster, R. E., Du Bois, A. B., Briscoe, W. A., and Carlson, E., "The Lung," Chicago:Yearbook Publishers, 1955. [4] Christie, R. V., Quart. J. M. 7:421, 1938. [5] Gordon, B. L., "Clinical Cardiopulmonary Physiology," New York:Gruen and Stratton, 1957.

Part Il: MECHANISMS INVOLVED

General		Specific	Reference
	(A)	(B)	(C)
1	Breathing: decreased capacity	Anatomical restriction of ventilation.	1,2
		Decreased lung compliance.	
		Increased effort of breathing.	
		Mechanical airway resistance.	
2	Breathing: increased work of	Oxygen consumption of respiratory muscles large in relation to flow of oxygen through these muscles.	1,3,4
		Alveolar-capillary block.	5,6
3	Lungs: decreased diffusing capacity	Loss of lung tissue and decreased diffusing surface area.	
4	Lungs: impaired distribution of air and blood	Altered ventilation perfusion relationships.	$5,7,8,9$
		Decreased effective alveolar ventilation.	
		Increased respiratory dead space.	
	Neuroanatomical; neurophysiological	Central receptors: thalamic and cortical centers.	10,11
5		Mechanoreceptors, chemoreceptors: sensory receptors possibly located in lung parenchyma, airways, joints, muscles, aortic and carotid bodies.	
	Physiochemical	Alterations of ventilation or respiratory drive.	11,12
6		Increased respiratory stimulation as seen with hypercapnia, hypoxia.	
7	Tissue level: impaired gas transport and exchange		a

Contributor: (a) Tomashefski, J. F.
References: [1] Otis, A. B., Physiol. Rev. 34:449, 1954. [2] Fenn, W. O., Am. J. M. 10:77, 1951. [3] Mead, J., and Whittenberger, J. L., J. Appl. Physiol. 5:779. 1953. [4] Cournand, A., Richards, D. W., Jr., Bader, R. A., Bader. M. E., and Fishman, A. P., Trans. Ass. Am. Physiol. 67:162, 1954. [5] Donald, K. W., Riley, R. L.., Renzetti, A. D., Jr., and Cournand, A., J. Appl. Physiol. 4:497, 1952. [6] Austrian, R., McClement, J. H., Renzetti, A. D., Jr., Riley, R. L., and Cournand, A., Am. J. M. 11:665, 1951. [7] Riley, R. L.. and Cournand, A., J. Appl. Physiol. 12:825, 1949. [8] Riley, R. L., and Cournand, A., ibid 4:78, 1951. [9] Riley, R. L., Cournand, A., and Donald, K. W., ibid 4:102, 1951. [10] Comrae, J. H., Forster, R. E., Du Bois, A. B., Briscoe, W. A., and Carlson, E., "The Lung," Chicago: Yearbook Publishers, 1955. [11] Cournand, A., and Richards, D. W., "Physiologic Derangements of the Respiratory System, "p 416, New York:McGraw-Hill, 1957. [12] Gray, J. S., "Pulmonary Ventilation and Its Physiologic Regulation," Springfield, Illnois:Thomas, 1950.

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values, unless otherwise specified, are cubic millimeters oxygen per million cells per hour for mature protozoa. $B=b l o o d s t r e a m ; C=c u l t u r e ; ~ G=i n$ presence of glucose.

	Species	$\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Rate	Remarks	Reference
(A)		(B)	(C)	(D)	(E)
1	Balantidium coli	37	$9.40{ }^{1}$	C; G.	1
2		28	4.231	C; G.	1
3	Leishmania brasiliensis	28	0.42	C; G.	2,3
4		32	0.32	C; G	2,3
5		37	0.65	C; G.	2,3
6	L. donovani	25	0.44	C; G.	2-5
7		28	0.18	C; G.	2-5
8		32	0.27	C; G.	2-5
9		37	0.38	C; G.	2-5
10	L. tropica	28	0.39	C; G.	2-4
11		32	0.31	C; G.	2-4
12		37	0.45	C; G.	2-4
13	Leptomonas ctenocephali	28	$0.27{ }^{2}$	C; G.	6
14	Paramecium calkinsi	25	250	Reactive for mating.	7
15		25	450	Non-reactive for mating.	7
16	Plasmodium cathemerium	38	0.10	1/4 grown: G.	8
17		38	0.25	3/4 grown; G.	8
18	P. cynomolgi	38	0.47	Segmenters; G.	8
19	P. inui	38	0.09	Rings, amebic.	8
20	P. knowlesi	38	0.08	Rings.	8
21		38	0.34	3/4 grown segmenters; G.	8
22	P. lophurae	38	0.18	1/2-3/4 grown; G.	8
23	Strigomonas fasciculata	28	0.372	C; G.	6
24	S. oncopelti	28	$0.41^{2}$	C; G.	6
25	Trichomonas foetus	28	2.15	C: G.	9
26	T. hepatica	38	6.00	C; G.	10
27	T. vaginalis	38	2.69	C; G.	11
28		38	0.96	C.	11
29	Trypanosoma congolense	37	1.53	B; G.	12
30	T. conorhini	28	0.26	C; G.	12
31	T. cruzi	28	0.44	B; G.	2,12
32		37	1.09	B; G.	2,12
33		37	1.24	B; G.	2,12
34		28	0.25	C; G.	2,3,13
35		32	0.43	C; G.	2,3,13
36		37	0.33	C: G.	2,3,13
37	T. equinum	37	1.66	B; G.	12
38	T. equiperdum	28	0.53	B; G.	2,12
39		37	0.91	B; G.	2.12
40		37	1.85	B; G.	2.12
41	T. evansi	37	1.66	B; G.	12
42	T. gambiense	37	1.70	B; G.	12
43		28	0.14	$\mathrm{C} ; \mathrm{G}$.	2,12
44		30	0.38	C; G.	2,12
45		37	0.21	C; G.	2.12
46	T. hippicum	37	0.66	B; G.	2.14
47		38	2.00	B; G.	2.14
48	T. lewisi	37	0.69	B; G. Old.	2
49		37	0.50	B; G. Young.	15,16
50		37	$125.5{ }^{3}$	$B, 4$ da, untreated hosts; G.	17
51		37	$92.4{ }^{3}$	$B, 4$ da, treated hosts; G.	17
52	T. pipistrelli	30	0.13	C; G.	12
53	T. rhodesiense	28	0.77	B; G.	2,18
54		37	1.03	B; G.	2,18
55		37	1.94	B: G.	2,18

$/ 1 / \mathrm{cu} \mathrm{mm} \mathrm{O}_{2}$ per 1,000 organisms per hr. $/ 2 /$ Calculated from dry weight. $/ 3 / \mathrm{cu} \mathrm{mm} \mathrm{O}_{2}$ per $2 \times 108$ organisms per $h r$.
145. $\mathrm{O}_{2}$ CONSUMPTION: PROTOZOA (Concluded)

Values, unless otherwise specified, are cubic millimeters oxygen per million cells per hour for mature protozoa. $B=$ bloodstream; $C=$ culture; $G=$ in presence of glucose.

Species	Temp   ${ }^{\circ} \mathrm{C}$	Rate	Remarks	Reference
(A)	(B)	(C)	(D)	(E)
56	Trypanosoma vivax, rat strain	36.5	1.17	B; G. Old.
57		36.5	2.00	B; G. Young.
58	T. vivax, sheep strain	36.5	0.63	B; G. Old.
		36.5	2.82	B; G. Young.

Contributors: (a) Silverman, M., (b) Vernberg, W. B., (c) Von Brand, T., (d) Wichterman, R., (e) Ivey, M.
References: [1] Agosin, M., Von Brand, M., and Von Brand, T., J. Infect. Dis. 93:101, 1953. [2] Von Brand, T., and Johnson, E. M., J. Cellul. Physiol. 29:33, 1947. [3] Chang, S. L., J. Infect. Dis. 82:109, 1948. [4] Adler, S., and Ashbel, R., Arch. zool. ital. 20:521, 1934. [5] Fulton, J. D., and Joyner, L. P., Trans. Roy. Soc. Trop. M. Hyg., Lond. 43:273, 1949. [6] Lwoff, A., Zbl. Bakt. 130:498, 1934. [7] Boell, E. J., and Woodruff, L. L., J. Exp. Zool. 87:385, 1941. [8] Maier, J., and Coggeshall, L. T., J. Infect. Dis. 69:87, 1941. [9] Riedmuller, L., Zbl. Bakt. 137:428, 1936. [10] Williams, R., Massart, L., and Peeters, G., Naturwissenschaften 30:169, 1942. [11] Read, C. P., and Rothman, A., Am. J. Hyg. 61:249, 1955. [12] Von Brand, T., Tobie, E. J., and Mehlman, B., J. Cellul. Physiol. 35:273, 1950. [13] Von Brand, T., Johnson, E. M., and Rees, C. W., J. Gen. Physiol. 30:163, 1946. [14] Harvey, S. C., J. Biol. Chem. 179:435, 1949. [15] Moulder, J. W., Science 106:168, 1947. [16] Moulder, J. W., J. Infect. Dis. $83: 42,1948$. [17] Zwiesler, J., and Lysenka, M., J. Parasit., Lanc. 40:531, 1954. [18] Christophers, S. R., and Fulton, J. D., Ann. Trop. M. Parasit., Liverp. 32:43, 1938. [19] Desowitz. R., Exp. Parasitol. 5:250, 1956.

## 146. $\mathrm{O}_{2}$ CONSUMPTION: HELMINTHS

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have speclal utility as an annotated bibliography. Values, unless otherwise specified, are cubic millimeters oxygen per milligram dry substance per hour for adult animals. $G=$ in presence of glucose.

	Species	$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Rate	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)
1	Ascaridia galli	37	2.5		1
2	Ascaris lumbricoides	30	0.38	Eggs, 0-2 da.	2
3		30	0.80	Eggs, 10-20 da.	2
4		30	0.15	Eggs, 45 da.	2
5		37	0.821	Small.	3
6		37	0.331	Large.	3
7		37	0.591	Males.	4
8		37	0.321	Females.	4.5
9		39	0.421	Small.	6
10	Diphyllobothrium latum	37	2.7	Proglottids.	7
11		37	15.0	Proglottids, G.	7
12		22	0.34	Plerocercoids, G.	7
13		22	0.67	Plerocercoids, G.	7
14	Euplanaria tigrina	20	1.8	Starved.	8
15		20	1.4	Normal fed.	8
16		25	2.0	Starved.	8
17		25	2.2	Normal fed.	8
18		30	2.5	Normal fed.	8
19		35	3.5	Starved.	8
20		35	2.6	Normal fed.	8
21	Eustrongylides ignotus	37	$0.56{ }^{1}$	Larvae.	9
22	Fasciola hepatica	37.5	1.94		1
23	Gorgoderina attenuata	21	0.40		10
24	Gynaecotyla adunca	23.6	0.132		11
25		30.4	$0.29{ }^{2}$	In air.	11
26		30.4	$0.13^{2}$	In $5 \% \mathrm{O}_{2}$.	12
27		30.4	$0.10^{2}$	In $100 \% \mathrm{O}_{2}$.	12
28	llaemonchus contortus	30	9.7	Eggs (morula).	1
29		30	10.7	Eggs (blastula).	1
30		30	12.6	Larvae.	1
31	Heterakis spumosa	38	4.0		13
32	Monieza expansa	37.5	1.1	Head region; G.	14

/1/ Calculated on dry matter percentage. /2/Based on volume determinations.

## 146. $\mathrm{O}_{2}$ CONSUMPTION: HELMINTHS (Concluded)

Values, unless otherwise specified, are cubic millimeters oxygen per milligram dry substance per hour for adult animals. $G=$ in presence of glucose.

	Species	$\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Rate	Remarks	Reference
	(A)	(B)	(C)	(D)	(E)
33	Monieza expansa (concluded)	37.5	0.9	Mature proglottids; G.	14
34		37.5	0.6	Gravid proglottids; G.	14
35	Nematodirus spp	37	5.1		1
36	Neoaplectana glaseri	30	12.6		1
37	Nippostrongylus muris	30	18.4	Larvae, 1 da.	1
38		30	13.0	Larvae, 4 da.	1
39		30	9.2	Larvae, 12 da.	1
40		37	6.8		1
41	Ostertagia circumcincta	38	7.4		13
42	Paramphistomum cervi	38	0.03		13
43	Planaria alpina	5	30		15
44		15	240		15
45	P. gonocephala	5	40		15
46		15	170		15
47	Schistosoma mansoni	37.5	6.0	Pairs.	16
48		37.5	8.7	Pairs; G.	16
49		37.5	9.1	Males; G.	16
50		37.5	10.7	Females; G.	16
51			8.5	Pairs, untreated hosts; G .	17
52			2.9	Pairs, treated hosts; G.	17
53	Strongylus equinus	38	3.3		13
54	S. vulgaris	38	3.6		13
55	Syphacia obvelata	38	4.4		13
56	Tetrameres confusa		0.24		18
57	Trichinella spiralis	37.5	2.35	Larvae	19
58		37.5	2.37	Larvae; G.	19

Contributors: (a) Chang, S. L., (b) Silverman, M., (c) Vernberg, W. B., (d) Von Brand, T., (e)Sawaya, P.
References: [1] Rogers, W, P., Parasitology, Lond, 39:105, 1948. [2] Passey, R., and Fairbairn, D., Canad. J. Biochem. Physiol. 33:1033, 1955. [3] Kreuger, F., Zool. Jahrb. Abt. allgem. Zool. 57:1, 1936. [4] Adam, W., Zschr. vergl. Physiol. 16:229, 1932. [5] Von Brand, T., ibid 21:220, 1934. [6] Laser, H., Biochem. J., Lond. 38:333, 1944. [7] Friedheim, E. A., and Baer, J. G., Biochem. Zschr. 265:329. 1933. [8] Sawaya, P., and Ungaretti, M. D., Bol.fac.filosof. ciênc. e letras, Univ. Săo Paulo, Zoologia 13:330, 1948. [9] Von Brand, T., Biol. Bull. 82: 1, 1942. [10] Goodchild, C., J. Parasit., Lanc. 40:591, 1954. T11] Hunter, W., and Vernberg, W., $\operatorname{Exp}$. Parasitol. 4:54, 1955. [12] Hunter, W., and Vernberg, W.. ibid 4:427, 1955. [13] Lazarus, M., Austral. J. Sc. Res. B 3: 245,1950 . [14] Alt, H. L., and Tischer, O. A., Proc. Soc. Exp. Biol. 29:222, 1931. [15] Blăsing. I., Zool. Jahrb. 64:112, 1953. [16] Bueding, E., J. Gen. Physiol. 33:475, 1950. [17] Bueding. E., Peters, L.. Koletsky, S., and Moore, D., Brit. J. Pharm. 8:15, 1953. [18] Villella, G., and Ribeiro, L., Anais da Acad. Brasileina de Ciencias 27:87, 1955. [19] Stannard, J. N., McCoy, O. R., and Latchford, W. B., Am. J. Hyg. 27:666, 1938.

## 147. $\mathrm{O}_{2}$ CONSUMPTION: INVERTEBRATES

Like our other tables coverlng oxygen consumptlon, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values, unless otherwise specified, are cubic mlllimeters oxygen per gram fresh weight per hour for adult animals.

	Class and/or Species	Temp ${ }^{\circ} \mathrm{C}$	Rate	Reference
	(A)	(B)	(C)	(D)
Porifera				
1	Suberites massa	22.4	24.1	1
Coelenterata				
	Hydrozoa			
2	Carmarina hastata	16	6.0	2
3		20	8.0	2
4		25	2.0	3
	Scyphozoa			
5	Aurelia aurita	13	3.4	4
6		17	5.0	4
7	Rhizostorna pulmo	16	7.2	2
8		26	15.3	5
Anthozoa				
9	Anemonia sulcato	18	13.4	6
	Ctenophora			
10	Beroe ovata	16	5.0	2
11	Cestus veneris	16	2.6	2
12		25	25.0	3
	Asteroidea Echinodermata			
13	Asterias rubens	15	30	7
14	A. rubens, Baltic Sea	15	21	8
15	A. rubens, North Sea	15	24	8
	Echinoidea			
16	Strongylocentrotus lividus	25	15	3
	Holothuroidea			
17	Holothuria impatiens	25	17	3
18	H. stellata	25	4	3
	Ophiuroidea			
19	Ophioderma longicauda	25	8	9
20		25	32	3
	Mollusca			
21	Eladone moschata	16	181	9
22	Octopus vulgaris	25	28	3
23		16	47	10
24		16	87	2
25		20	117	2
26		25	68	3
27		25	102	3
28	Sepia officinalis	15	320	3
	Gastropoda			
29	Aplysia limacina	16	30	9
30	Australorbis glabratus	10	16.5	11
31		30	133	11
32	Helix pomatia	20	94	12
33	Limax agrestis	20	350	13
34	Lymnaea stagnalis	10	36.7	11
35		20	123	11
36	Pleurobranchea meckeli	25	36	3
37	Pterotrachea coronata	16	7.8	2
38		20	11	2
39	Tethys leporina	16	12	2
40		20	15	2
	Pelecypoda			
41	Mytilus sp	20	22	14
42		22.3	55	15
43	M. edulis	14	13	10
44	M. galloprovincialis	25	18	3

147. $\mathrm{O}_{2}$ CONSUMPTION: INVERTEBRATES (Continued)

Values, unless otherwise specified, are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	र-\% Class and/or Species	Temp ${ }^{\circ} \mathrm{C}$	Rate	Reference
	(A)	(B)	(C)	(D)
Annelida				
	Oligochaeta			
45	Glossoscolex sp, small	25	109	16
46	Glossoscolex sp, large	25	38	16
47	Limnodrilus claparedeanus	18.5	496	17
48	L. hofmeisteri	25	$1010^{1}$	18
49	Lumbricus sp	18.5	64	19,20
50		20	170	13
51	L. communis	21.5	206	21
52	L. herculeus	10	45	22
53	L. terrestris	20.5	138	21
54	Pheretima hawaya, small	25	271	16
55	P. hawaya, large	25	60	16
56	Pontoscolex sp, small	25	272	16
57	Pontoscolex sp, large	25	145	16
58	Tubifex sp	25	200	23
59	Tubifex tubifex	18.7	408	17
	Polychaeta			
60	Arenicola sp	12	30	24
61	Chaetopterus pergamentaceus	15	8	25
62	Glycera siphonostoma	25	15	6
63	Nereis virens	15	26	25
64	Sabella pavonina	10	62	26
65		17	43	26
66	Spirographis spallanzani	25	135	27
	Sipunculoidea			
67	Sipunculus nudus	16	50	9
	Crustacea Arthropoda			
68	Asellus sp (isopod)	17	348	28
69	A. aquaticus (isopod)	10	700	29
70	Astacus fluviatilis (crayfish)	15	30	30
71	A. leptodactylus (crayfish)	20	70	31
72	A. torrentium (crayfish)	20	100	32
73	Callianaxa subterranea	15	930	3
74	Carcinus maenus (shore crab)	15	625	3
75	Dronia vulgaris (crab)	15	3000	3
76	Emerita talpodia	20	112	33
77	Eriphia spinifrons	15	1828	3
78	Galathea squamifera (crab)	15	215	3
79	Homarus americanus (lobster)	15	507	25
80	llia nucleus	15	253	3
81	Maja verrucosa (crab)	15	1460	3
82	Ocypode albicans (ghost crab)	26	139	34
83	Pachygrapus marmoralus (shore crab)	15	1137	3
84	Paguristis maculata	15	1600	3
85	Palaemon serratus (prawn)	16	106	9
86	P. squilla (prawn)	19	128	10
87	Palinurus vulgaris (rock lobster)	15	12,874	3
88	Pandalina brevirostrus	15	20	35
89	Pandalus montagui (prawn)	15	289	35
90	Pilumnus hirtellus	15	160	3
91	Pugettia producta (kelp crab)	15	100	36
92	Sicyonia sculpa	15	443	3
93	Spirontocaris cranchi	15	6	35
94	S. securifrons	15	349	35
95	Talorchestia meglopthalma (beach flea)	17	180	28
96		20	246	37
97	Trichodactylus petropolitanus	20	$0.80{ }^{2}$	38
98		20	$0.19^{1}$	38
99		20	$0.25{ }^{3}$	38

/1/ Normal fed. /2/ Starved. /3/ Dry weight.
147. $\mathrm{O}_{2}$ CONSUMPTION: INVERTEBRATES (Continued)

Values, unless otherwise specified, are cubic millimeters oxygen per gram fresh weight per hour for adult andmals.

	Class and/or Species	$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Rate	Reference
	(A)	(B)	(C)	(D)
Arthropoda (concluded)				
	Onychophora			
100	Epiperipatus brasiliensis	25	230	39
101	Peripatus accacioi	10	37	40
102		20	92	40
103		30	226	40
	Insecta			
104	Aedes aegypti (mosquito), $0^{\circ}$	26	2330	41
105	¢	26	4200	41
106	Anopheles quadrimaculatus (mosquito), $0^{\circ}$	26	2300	41
107	\%	26	2840	41
108	Apis mellifera, (hive bee)	20	17.466	42
109	True flight	20	87,000	43
110	Culex sp (mosquito)	20	575	45
111	C. pipiens, of	26	3430	41
112	¢	26	2580	41
113	Drosophila sp (fruil fly)	20	1560	46
114	True flight	20	21,800	46
115	D. repleta (fruit fly)	20	1680	47
116	True flighti	20	21,000	47
117	Formica sp (ant)	20	532	48
118	Geotrupes sp	21	447	48
119	Limnophilus vittatus (trichopterid)	10	500	29
120	Lucelia sericata, true flight	20	95,600	49
121	Melanotus communis (click beetle)	21	1920	28
122		27	2400	28
123	Melolontha sp (beetle)	20	724	50
124		20	960	51
125	Musca sp (house fly)	20	3200	51
126		20	5112	42
127	M. domestica	20	1980	28
128	Passalus cornutus (beetle)	17	30	28
129	Periplaneta orientalis (cockroach)	20	277	12
130		25	450	51
131	Venessa sp (butterfly)	20	600	14
132	True flight	20	100,000	14
133	Zootermopsis angusticollis (termite)	20	400	52
134	Z. nevadensis (termite)	20	423	53

Contribulor: Flemister, L.J.
References: [1] Putter, A., Zschr. allgem. Physiol. 16:65, 1914. [2] Vernon, H. M., J. Physiol., Lond. 19:18, 1896. [3] Montuori, A., Arch. ital. biol. 59:213, 1913. [4] Thill, H., Zschr. wiss. Zool. 150:51, 1937. [5] Krumbach, M., Zool. Jahrb. Abl. allgem. Zool. 53:212, 1933. [6] Von Buddenbrock, W., Zschr. vergl. Physiol. 26:303, 1938. [7] Meyer, H., Zool. Jabrb. Abt. allgem. Zool. 55:349, 1935. [8] Bock, K. J., and Schlieper, C., Kielers Meeresforschungen 9:201, 1953. [9] Cohnheim, O., Zschr. physiol. Chem. 76:298, 1912. [10] Jolyet, and Regnard, Arch. Physiol. pp 44-62, 584-633, 1877. [11] Von Brand, T., and Mehlman, B., Biol. Bull. 104:301, 1953. [12] Vernon, H. M., J. Physiol., Lond. 21:443, 1897. [13] Thunberg, T., Skand. Arch. Physiol. 17:133, $\overline{1905}$. [14] Krogh, A., "The Comparative Physiology of Respiratory Mechanisms," Philadelphia: Univ. of Pa. Press, 1941. [15] Bruce, R., Biochem. J., Lond. 20:829, 1926. [16] Mendes, E. G., and Valente, D., Bol. fac. filosof. ciênc. e letras, Univ. Säo Paulo, Zoologia 18:91. 1953. [17] Koenen, M. L., Zschr. vergl. Physiol. 33:436, 1951. [18] Mendes, E. G., Gonzalez, M. D., and Coutinho, M. L., Bol. fac.filosof. ciênceletras, Univ. São Paulo, Zoologia 16:289, 1951. [19] Lesser, E. J., Zschr. Biol. 50:421, 1908. [20] Lesser, E. J., Zschr. Biol. 51:294, 1908. [21] Konopacki, M., Mem. Acad. Sc., Cracovie, p 357, 1907. [22] Johnson, M. L., J. Exp. Biol. $18: 266,1942$. [23] Brazda, P., Proc. Soc. Exp. Biol. 42:734, 1939. [24] Borden, M. A., J. Marine Biol. Ass., Plymouth 17:709. 1931. [25] Bosworth, M. W., et al, J. Cellul. Physiol. 9:77, 1936. [26] Ewcr, R. F., and Fox, II. M., Proc. Roy. Soc., Lond., B129:137, 1940. [27] Mendes, E. G., Pubbl. Staz. Zool. Napoli 22:349, 1950. [28] Edwards, G. A., J. Cellul. Physiol. 27:53, 1946. [29] Fox, H. M., and Baldes, E. J., J. Exp. Biol. 12:174, 1935. [30] Lindstedt, P., Zschr. Fischerei 14:193, 1914. [31] Wolsky, A., and Holmes, B. E., Ungar. biol. forsch. Arch. 6:123, 1933. [32] Wolsky, A., ibid 7:116, 1934. [33] Edwards, G. A., and lrving, L., J. Cellul. Physiol. 21:169, 1943. T34] Flemister, L. J., and Flemister, S. C., Biol. Bull. 101:259, 1951. [35] Fox, 11. M., Proc. Zool. Soc., Lond. 106:945, 1936. [36] Weymouth, F. W., et al, Physiol. Zool. 17:50.1944. [37] Edwards, G. A., and lrving, L., J. Cellul. Physiol. 21:183, 1943. [38] Valente, D., Bol. fac. filosof. ciênc. eletras, Univ. São Paulo, Zoologia 9:98, 1945. [39] Morrison, 1’. R., Biol. Bull. 91:181, 1946. [40] Mendes, E. G., and Sawaya, P., Ciencia e Cultura 9:120, 1957. [41] Mercado, T. I., Trembley, H. L., and Von Brand, T., Physiol. comparala et Oecologia 4:200, 1956. [42] Paron, M., Ann. dessc. nat. Zool. 9:1, 1909. [43] Jongbloeb, J., and Wiersma, C. A., Zschr. vergl. Physiol. $21: 519,1934$. [44] Ellinger, T., Zschr. physiol. chem. Biol. 2:113, 1915. [45] Chadwick, L. E., Biol. Bull. 93:229, 1947. [46] Chadwick, L. E., and Gilmour. D., Physiol. Zool. 13: 398, 1940. [47] Slowzoff, B., Biochem. Zschr. 19:497, 1909. [48] Davis, R. A., and Fraenkel, G., J. Exp. Biol. 17:40 , 1940. [49] Rcgnault and Reiset, Ann. de chim. et dephys. 3:26, 1849. [50] Battelli, F.. and Stern, L., Biochem. Zschr. 56:50, 1913. [51] Davis, J. G., and Slaler, W. K., Biochem. J., Lond. 22:331, 1928. [52] Cook, S. F., and Smith, R. E., J. Cellul. Physiol. $19: 211,1942$. [53] Cook, S. F., Biol. Bull. 63:246, 1932.

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Animal	$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Rate	Reference
	(A)	(B)	(C)	(D)
$\ldots$ Ascidicea				
1	Ascidia mentula	25	4.8	1
- .... Thaleacea				
2	Salpa max. africana	25	23.0	1
3	S. pinnata	16	8.0	2
4		20	12.0	2
5	S. tilesii	16	2.0	2
6		20	2.8	2
Cephalochordata				
7	Amphioxus sp	25	149	1
8	A. lanceolatus	16	35	2
9		20	45	2
Pisces				
10	Anguilla vulgaris (eel)	25	128	1
11	Arapaima gigas (pirarucus)	25	9	3
12	Astronotus ocellatus (cichlid)	20	1.3	4
13	Cichla temensis (cichlid)	20	0.9	4
14	Cobitis fossilis	20	51	5
15	Crenichthys baileyi	21	284	6
16		37	546	6
17	Cyprinus carassius (goldfish)	20	113	7
18	Resting	20	85	8
19	Active	20	160	8
20	C. carpio	19.5	100	9
21	C. tinca	20	104	10
22	Esox lucius (pike)	18	102	10
23	Heliasis chromis	16	93	2
24		20	162	2
25	Lepidosiren paradoxa (lungfish)	20	42	3
	Protopterus aethiopicus (African lungfish)			
26	Fasting	20	10	11
27	Feeding	20	52	11
28	Salmo trutta (trout)	15	226	10
29	Sargus rondeletti	25	375	1
30	Scomber scombrus (mackerel)	20	726	12
31	Serranus scriba	16	116	2
32		20	151	2
33	Sparus auratus	19	175	13
34	Spheroides maculatus (puffer)	20	62	14
35	Stenotomus chrysops (scup)	20	174	12
36	Tautog onitis (tautog)	20	62	12
37	Tautogolabus adspersus (cunner)	21	120	15
38		26	192	15
Amphibia				
39	Molge sp	20	110	16
40	M. vulgaris (newt)	20	123	17
41	Rana esculenta	20	70	17
42	Winter	20	85	18
43	Summer	20	437	18
44	R. fusca, winter	20	100	19
45	Summer	20	210	19
46	R. mugiens	25.3	106	20
47	R. temporaria	16	86	17
48		20	89	17
49	Winter	19	85	18
50	Summer	19	554	18
51	Typhlonectes compressicauda (coecilid)	20	33	21

148. $\mathrm{O}_{2}$ CONSUMPTION: VERTEBRATES OTHER THAN MAMMALS (Continued)

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.


Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Animal	Temp C	Rate	Reference
	(A)	(B)	(C)	(D)
Aves (concluded)				
	Wild (concluded)			
104	Corturnix corturnix	10	2080	36
105	Emberiza calandra	10	3222	36
106	E. citrinella	10	4551	36
107	Fringilla coelebs	10	3621	36
108	Guardelis linaria	10	5566	36
109	Lullula arborea	10	3672	36
110	Passer montana	10	4427	36

Contributor: Flemister, L.J.
References: [1] Montouri, A., Arch. ital. biol. 59:213, 1913. [2] Vernon, H. M., J. Physiol., Lond. $19: 18,1896$. [3] Sawaya, P., Bol. fac. filosof. ciênc. e letras, Univ. Sǎo Paulo, Zoologia 11:255, 1946. [4] Sawaya, P., ibid 11:333, 1946. [5] Baumert, W., "Chemische Untersuchungen über die Respiration des Schlampeitzgers," 1855.
[6] Sumner, F. B., and Lanham, U. N., Biol. Bull. 82:313, 1942. [7] Ege, R., and Krogh, A., Int. Rev. Hydrobiologie 6:48, 1914. [8] Fry, F. E., and Hart, J. S., Biol. Bull. 94:66, 1948. [9] Knauthe, K., Pflügers Arch. 73:490, 1898. [10] Lindstedt, P., Zschr. Fischerei 14:193, 1914. [11] Smith, H. W., J. Cellul. Physiol. 6:43, No. 335, 1935. [12] Baldwin, F. M., Proc. Iowa Acad. Sc. 30:173, 1924. [13] Jolyet and Regnard, Arch. Physiol. pp 44-62, 584-633, 1877. [14] Hall, F. G., Biol. Bull. 61:457, 1931. [15] Haugaard, N., and Irving, L., J. Cellul. Physiol. 21:19, 1943. [16] Hill, A. V., J. Physiol., Lond. 43:379, 1911. [17] Vernon, H. M., J. Physiol. 21:443, 1897. [18] Bohr, C., Skand. Arch. Physiol. 10:74, 1899. [19] Bohr, C., ibid 15:23, 1903. [20] Krehl, L., and Soetbeer, F., Pflügers Arch. 77:611, 1899. [21] Sawaya, P., Bol. fac. filosof. ciênc. e letras, Univ. São Paulo, Zoologia 12:43, 1947. [22] McCutcheon, F. H., Physiol. Zool. 16:255, 1943. [23] Benedict, F. G., "The Physiology of Large Reptiles," Carnegie Institution of Washington, 1932. [ 24] Cohnheim, O., Zschr. physiol. Chem. 76:298, 1912. [25] Potts, R., Landwirtsch. Versuchs. Stationen 18:81, 1875. [26] Clausen, H. J., J. Cellul. Physiol. 8:367, 1936. [27] Benedict, F. G., and Fox, E. L., Pflügers Arch. 322:357, 1933. [28] Voit, E., Zschr. Biol. 41:113, 1901. [29] Benedict, F. G., et al, Storrs Agr. Exp. Sta. Bull. 177:1, 1932. [30] Riddle, S., Mo. Rsch. Bull. $166: 59,86,1932$. [31] Hari, Y., and Kriwuscha, A., Biochem. Zschr. 88:345, 1918. [32] Hari, Y., ibid 87:313, 1917. [33] Pearson, O. P., Scient. Am. 188:69, 1953. [34] Pearson, O. P., Condor 52:145, 1950. [35] Scholander, P. F., et al, Biol. Bull. 99:259. 1950. [36] De Bont, A. F., Ann. Soc. Roy. Zool. Belgique 75:75, 1944.

## 149. $\mathrm{O}_{2}$ CONSUMPTION: MAMMALS

Like our other tables covering oxygen consumption, this one should be used with utmost caution and circumspection. The figures reflect order of magnitude; often a value may not prove accurate for a particular requirement. The table, however, does have special utility as an annotated bibliography. Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals, unless otherwise indicated.

	Animal	Rate	Remarks	Reference
	(A)	(B)	(C)	(D)
Monotremata				
1	Anteater, spiny (Echidna sp)	1100		1
2	Platypus, duckbilled (Ornithorynchus sp)	460		1
	Marsupiala			
3	Cat, Australian native (Dasyurus sp)	560		1
4	Kangaroo, rat (Bettongia sp)	950		1
5	Opossum, Australian (Trichosaurus sp)	700		1

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals.

	Animal	Rate	Remarks	Reference
	(A)	(B)	(C)	(D)
Insectivora				
6	Shrew, long-tailed (Sorex c. cinereus)	13,700		2
7	Shrew, Monterey (S. trowbideii montereyensis)	7200		2
8	Shrew, short-tailed (Blarina brevicauda kirtlandi)	5200		3
9	Shrew, Sonoma (Sorex pacificus sonomae), of	6100		2
10	¢	5500		2
11	Shrew, wandering (S. v. vagrans)	8600		2
Chiroptera				
12	Bat, big brown (Eptesicus f. fuscus)	800		3
13	Bat, little brown (Myotis 1. lucifugus)	1500		3
Edentata				
14	Armadillo	201		4
15	Sloth, three-toed (Choloepus sp)	216		5
16	Sloth, two-toed (Bradypus sp)	168		5
Sirenia				
17	Manatee (Trichechus latirostris)	120		6
Odontoceti				
18	Porpoise (Tursiops truncatus)	360		7
Proboscidea				
19	Elephant, Indian, f	155	37 yr .	8
Perissodactyla				
20	Horse	250		9
Artiodactyla				
21	Cattle	184		10
22		390		9.11
23	Pig	220		11
24	Sheep	220		10
25		340		9.11
Rodentia				
26	Dormouse (Myoxus arbor)Guinea pigHamster (Cricetus auratus)Hamster, golden	15	Hibernating. Awake.	12
27		852		12
28		816		10
29		1050		12
30		70	Hibernating.	13
31		2900	Awake.	13
32	Lemming (Dicrostonyx groenlandicus rubicatus)	1700		14
33	Mouse (Mus sp)	2500	Resting.	9
34		20,000	Running.	9
35	Mouse, California harvest (Reithrodontomys megalotus longicaudus)	3800	Resting.	2
36	Mouse, deer	1650	Basal.	15
37	Mouse, deer (Peromyscus maniculatus)	3600	Resting.	3
38	Mouse, Gapper's redback (Clethrionomys g. gapperi)	3600	Resting.	3
39	Mouse, house	1530	Basal.	15
40	Mouse, house (Mus musculus)	3500	Resting.	3
41	Mouse, jumping (Zapus hudsonius americanus)	4200	Resting.	3
42	Mouse, kangaroo (Microdipodos megacephalus nastutus), of	3700		2
43	\%	3400		2
44	Mouse, meadow (Microtus p. pennsylvanicus)	3300	Resting.	3
45	Mouse, northern whitefoot (Peromyscus maniculatus gracilis)	3000	Resting.	3
46	Mouse, pine (Pitymys pinetorum scalopsoides)	4300	Resting.	3
47	Mouse, Rhoad's redbacked (Clethrionomys gapperi rhoadi)	3800	Resting.	3
48	Mouse, white	1600	Basal.	15
49	Mouse, white (Mus musculus)	3600	Resting.	3
50	Mouse, woodland jumping (Napaeozapus i. insignis)	3100		3
51	Rabbit	640		9
52		850		9
53	Rat (Rattus sp)	2000		,
54	O	692	$6-9 \mathrm{mo}$	16
55	Rat, white (Rattus rattus)	770		17
56	Rat, jungle (Proechlmys semispinosus)	1270		14
57	Squirrel, arctlc ground (Citellus parryii)	600		14
58	Squirrel, flying (Glaucomys v. volens)	2000		3
59	Woodchuck (Marmota sp)	14	libernating.	18
60		262	Awake.	18

Values are cubic millimeters oxygen per gram fresh weight per hour for adult animals, unless otherwise indicated.

	Animal	Rate	Remarks	Reference
	(A)	(B)	(C)	(D)
Carnivora				
61	Bear, polar (Thalarctos maritimus)	700	Cubs.	14
62	Cat (Felis catus)	710		9
63	Coati (Nasua navica)	500		14
64	Dog (Canis familiaris)	580		9
65		250	Young.	19
66	Dog, Eskimo (Canis familiaris)	785	Pups.	14
67	Fox, arctic white (Alopex lagopus)	505		14
68	Raccoon (Procyon carnivorous)	395		14
69	Seal (Phoco vitulina)	540		20
70	Seal (Phocaena communis)	300		21
71	Weasel (Mustela rixosa)	5000		14
72	Man (Homo sapiens)	220	Resting.	10
73		4000	Maximal work.	22
74	Marmoset (Leontocebus geoffroyi)	1040		14
75	Monkey, night (Aotus trivirgatus)	510		14

References: [1] Martin, C. J., Trans. Roy. Soc., Lond., B 195:1, 1903. [ 2] Pearson, O. P., Science $108: 44,1948$. [3] Pearson, O. P., Ecology 28:127. 1947. [4] Scholander, P. F., et al. J. Cellul. Physiol. 21:53, 1943.
[5] lrving, L., et al, ibid 20:189, 1942. [6] Scholander. P. F., and Irving, L., ibid 17:169, 1941. [7] lrving, L., et al, ibid 17:145, 1941. [8] Benedict, F. G., "The Physiology of the Elephant," Carnegie Institution of Washington, 1936. [9] Heilbrunn, L. V., "An Outline of General Physiology." 3rd ed., Philadelphia: W. B. Saunders Co., 1952. [10] Brody, S., "Bioenergetics and Growth," New York: Reinhold Publishing Corp., 1945. [11] Voit, E., Zschr. Biol. 41:113, 1901. [12] Kayser, C., Ann. Physiol. 15:1087, 1939. [13] Lyman. C. P., J. Exp. Zool. 109:55, 1948. [14] Scholander, P. F., et al, Biol. Bull. $99: 259,1950$. [15] Morrison, P. R., J. Cellul. Physiol. 31:281, 1948. [16] Moses, S., Proc. Soc. Exp. Biol. 64:54, 1947. [17] Herrington, L. P., "Heat Production and Thermal Conductance in Small Animals," New York, 1941. [18] Benedict, F. G., and Lee, R. C.. "Hibernation and Marmot Physiology," Carnegie Institution of Washington, 1938. [19] Krogh. A., Internat. Zschr. physik. chem. Biol. 1:491, 1914. [20] lrving, L., et al, J. Cellul. Physiol. 7:137, 1935. [21] Scholander, P. F.. Hvalraadets Skrifter No. 22, Det Norske Videnskaps Akademi i Oslo, 1940. [2̄$]$ Robinson, S., Edwards, A. T., and Dill, D. B., Science N. S. 85: 409, 1937.
150. RESPIRATORY EXCHANGE CHARACTERISTICS: VERTEBRATES

Values in parentheses are estimate "c" of the $95 \%$ range (cf Introduction).

Animal		Inspired Airl vol \%		Expired Airl vol \%		Respiratory Exchangel vol \%		$\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$	Reference
		$\mathrm{O}_{2}$	$\mathrm{CO}_{2}$	$\mathrm{O}_{2}$	$\mathrm{CO}_{2}$	$\mathrm{O}_{2}$	$\mathrm{CO}_{2}$		
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
1	Man	20.95	0.03	16.30	4.50	14.00	5.60	0.850	1
2	Dog (Canis familiaris)			16.30	3.46	13.66	5.68	0.780	2
3	Horse (Equus caballus)							0.960	3
4	Rat, albino (Rattus norvegicus)							$\begin{aligned} & 0.894 \\ & (0.754-1.072) \end{aligned}$	4
5	Guillemot (Cepplus grylle)			15.05	4.83				5
6	Chicken (Gallus domesticus)			13.50	6.50			$\begin{aligned} & 0.764 \\ & (0.71-0.96)^{2} \end{aligned}$	6
7	```Turtle (Malaclemys centrata)3```					16.46	4.69	$0.71{ }^{4}$	7,8
8	Frog (Rana esculenta) ${ }^{5}$							1.926	9
10 9	Puffer fish (Spheroides maculatus) ${ }^{5}$	0.318		0.1498		0.318		0.327	$\begin{aligned} & 9 \\ & 10 \end{aligned}$

T1/Dry air. /2/Average is for 5 days, including day of last feeding; range is for $1-5$ hours, 4 days after feeding. $13 / 28^{\circ} \mathrm{C}$. /4/Calculated in part from data for painted turtle (Chrysemys marginata). $/ 5 / 20^{\circ} \mathrm{C}$. /6/Cutaneous respiration. /7/ Pulmonary respiration. /8/ Sea water.
Contributor: McCutcheon, F. H.
References: [1] Nims, L. F., in Fulton's "Textbook of Physiology," Philadelphia: W. B. Saunders Co., 1949.
[2] Romijn, C., Arch. néerl. physiol. 27:347, 1943. [3] Heilbrunn, L. V., "An Outline of General Physiology," Philadelphia: W. B. Saunders Co., 1952. [4] Krantz, N. C., and Carr, C. J., J. Nutrit. 9:363, 1935. [5] Krogh, A., "The Comparative Physiology of Respiratory Mechanisms," Philadelphia: Univ. of Pennsylvania Press, 1941.
[6] Dukes, H. H., "Physiology of Domestic Animals," New York: Comstock, 1947. [7] Hall, F. G., J. Metab. Res. 6:293, 1924. [8] McCutcheon, F. H., Physiol. Zool. 16:255, 1943. [9] Krogh. A., Skand. Arch. Physiol., Berl. I5:328, 1904. [10] Hall, F. G., Biol. Bull. 61:457, 1931.

Values for oxidation quotient $\left(\mathrm{QO}_{2}\right)$ are expressed in cumm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated. Fresh tissue was immersed in a buffered medium (phosphate or bicarbonate) in a closed chamber containing oxygen at 1 atmosphere pressure and maintained at $37{ }^{\circ} \mathrm{C}$ (some determinations at $37.5^{\circ}$ and $38^{\circ} \mathrm{C}$ ). The decrease in amount of gaseous $\mathrm{O}_{2}$ was measured as it was used by the tissue. As the rate of oxidation is limited by the amount of oxidizable nutrient available to the tissue, glucose or other nutrient was added, when necessary, to the medium.

Part 1: BLOOD-FORMED ELEMENTS, BLOOD VESSELS, LYMPH NODES, MARROW, SPLEEN, THYMUS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Tissue \& Animal \& Medium \& \(\mathrm{QO}_{2}\) \& Reference \\
\hline \& (A) \& (B) \& (C) \& (D) \& (E) \\
\hline 1 \& \multirow[t]{3}{*}{Aorta} \& \multirow[t]{2}{*}{Man} \& Krebs phosphate \& 0.26 \& 1 \\
\hline 2 \& \& \& Krebs phosphate, glucose \& 0.10 \& 2 \\
\hline 3 \& \& Rat \& Krebs-Ringer, glucose \& 1.03 \& 3 \\
\hline 4 \& \multirow[t]{15}{*}{Erythrocytes \({ }^{1}\)} \& Man \& Ringer glucose \& 0.045 \& 4 \\
\hline 5 \& \& Horse \& Ringer glucose \& 0.06 \& 5 \\
\hline 6 \& \& \multirow[t]{2}{*}{Rabbit} \& Saline \& 0.008 \& 6 \\
\hline 7 \& \& \& Serum \& 0.10 \& 7 \\
\hline 8 \& \& Rat \& Ringer glucose \& 0.038 \& 8 \\
\hline 9 \& \& \multirow[t]{5}{*}{```
Chicken embryo, 3 da
4da
6 ~ d a
8da
9 da
```} \& \multirow[t]{5}{*}{Ringer phosphate, glucose} \& 0.472 \& 9 \\
\hline 10 \& \& \& \& \(0.26{ }^{2}\) \& 9 \\
\hline 11 \& \& \& \& 0.142 \& 9 \\
\hline 12 \& \& \& \& 0.0562 \& 9 \\
\hline 13 \& \& \& \& \(0.044^{2}\) \& 9 \\
\hline 14 \& \& \multirow[t]{4}{*}{Chicken} \& Saline: Ringer glucose \& 0.14 \& 4, 10, 11 \\
\hline 15 \& \& \& Serum \& 0.30 \& 12 \\
\hline 16 \& \& \& Krebs-Ringer phosphate \& 0.17 \& 13 \\
\hline 17 \& \& \& Serum \& 0.58-1.79 \& 14 \\
\hline 18 \& \& Turtle \& Saline \& 0.05 \& 4,10 \\
\hline 19 \& \multirow[t]{7}{*}{Leucocytes} \& \multirow[t]{3}{*}{Man} \& Heparinized plasma \& 6.9 \& 15 \\
\hline 20 \& \& \& Serum, glucose \& \(0.09{ }^{3}\) \& 6 \\
\hline 21 \& \& \& Serum \& 2.6 \& 16 \\
\hline 22 \& \& \multirow[t]{2}{*}{Rabbit, exudate} \& Citrated Ringer's solution \& 4.0-4.6 \& 17,18 \\
\hline 23 \& \& \& Serum \& 7.0 \& 18 \\
\hline 24 \& \& Rat \& Serum \& 9.0-9.2 \& 19,20 \\
\hline 25 \& \& Goose \& Citrated plasma glucose \& 4.4 \& 17 \\
\hline 26
27
28
29 \& Marrow, bone \& \multirow[t]{2}{*}{Rabbit} \& ```
Ringer-bicarbonate-glucose, pH 6.4
pH }7.
pH }7.
``` \& \[
\begin{aligned}
\& 2.8^{4} \\
\& 3.7^{4} \\
\& 2.64
\end{aligned}
\] \& 21
21
21
22 \\
\hline 29
30 \& Erythroid cells Myeloid cells \& \& Serum \& \[
9 \text { (approx.) }
\] \& \[
\begin{aligned}
\& 22 \\
\& 22 \\
\& \hline
\end{aligned}
\] \\
\hline 31 \& \multirow[b]{2}{*}{\begin{tabular}{l}
All cells \\
Nucleated cells
\end{tabular}} \& \multirow[t]{2}{*}{Rat} \& Neutralized serum \& 7.45 \& 23 \\
\hline 32
33 \& \& \& Normal serum \& \[
\begin{aligned}
\& 42.05 \\
\& 71.55
\end{aligned}
\] \& \[
\begin{aligned}
\& 24 \\
\& 24
\end{aligned}
\] \\
\hline 34 \& \multirow[t]{3}{*}{Node, lymph} \& Man \& Ringer glucose \& 3.8-5.9 \& 25-27 \\
\hline 35 \& \& \multirow[t]{2}{*}{Rat} \& Ringer glucose \& 4.4 \& 28 \\
\hline 36 \& \& \& Krebs-Ringer phosphate \& 0.876 \& 29 \\
\hline 37 \& \multirow[t]{2}{*}{Reticulocytes} \& \multirow[t]{2}{*}{Rabbit} \& Ringer glucose \& 0.25 \& 4,10 \\
\hline 38 \& \& \& Serum \& 1.75 \& 12 \\
\hline 39 \& \multirow[t]{4}{*}{Spleen} \& Guinea pig \& Saline \& 8.3 \& 30 \\
\hline 40 \& \& \multirow[t]{3}{*}{Rat} \& Ringer glucose \& 7.2-12.9 \& 8,31-34 \\
\hline 41 \& \& \& Serum \& 12.5 \& 20 \\
\hline 42 \& \& \& Krebs-Ringer phosphate \& \(1.42{ }^{6}\) \& 29 \\
\hline 43 \& \multirow[t]{3}{*}{Thrombocytes} \& Man \& \multirow[t]{2}{*}{Citrated plasma glucose} \& 6.2-8.4 \& \(15,19,35\) \\
\hline 44 \& \& Dog \& \& 5.1 \& 35 \\
\hline 45 \& \& Rat \& Serum \& 6.0 \& 20 \\
\hline 46 \& \multirow[t]{4}{*}{Thymus} \& \multirow[t]{4}{*}{Rat

$\quad 100 \mathrm{~g}$
400 g} \& Ringer glucose \& 5.5-5.8 \& 26,28 <br>
\hline 47 \& \& \& Krebs-Ringer phosphate \& 1.096 \& 29 <br>
\hline 48 \& \& \& Ca-free Krebs-Ringer phosphate, glucose \& 0.766
0.406 \& 36
36 <br>
\hline 49 \& \& \& \& 0.406 \& 36 <br>
\hline 50 \& Tonsil \& Man \& Ringer glucose \& 5.1 \& 27 <br>
\hline
\end{tabular}

/1/ Additlonal information on erythrocyte oxygen consumption on Pagc 103, Table 85. /2/ cu mm oxygen per million cells per hr. /3/ Micromoles oxygen per 10 million white blood cells per hr. /4/ cu mm oxygen per mg cell protein per hr . $/ 5 / \mathrm{cu} \mathrm{mm}$ oxygen per mg nitrogen per hr . $/ 6 / \mathrm{cu} \mathrm{mm}$ oxygen per mg wet weight per hr .

Values for oxidation quotient $\left(\mathrm{Q}_{2}\right)$ are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part 1: BLOOD-FORMED ELEMENTS, BLOOD VESSELS, LYMPH NODES, MARROW, SPLEEN, THYMUS (Concluded)
Contributors: (a) Vernberg, F. J.. (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Jandorf, B. J., (e) Quastel, J. H., and Scholefield, P. G.
References: [1] Kirk, J. E., Efferspe, P. G., and Chianz, S. R., J. Geront. 9:10, 1954. [2] Kirk, J. E., Laursen, T, J., and Schaus, R., ibid $10: 178,1955$. [3] Krantz, J. C., Jr., Carr, C. J., and Knapp, M. J., J. Pharm. Exp. Ther. 102:258, 1951. [4] Ramsay, R., and Warren, C. O., Jr., Quart. J. Exp. Physiol., Lond. 20:213, 1930. [5] Kawashima, Y., J. Biochem.. Tokyo 4:411, 1925. [6] McKinney, G. R., et al, J. Appl. Physiol. 5:335, 1953. [7] Negelein, E., Biochem. Zschr. 158:1立1, 1925. [8] Barker. S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [9] O'Connor, R. J., Brit. J. Exp. Path. 32:336, 1951. [10] Ramsay, R., and Warren, C. O., Jr., Quart. J. Exp. Physiol., Lond. 22:49, 1932. [11] Engelhardt, W. A., Biochem. Zschr. 251:343, 1932. [12] Wright, G. P., J. Gen. Physiol. 14:179, 1930. [13] Rubinstein, D., and Denstedt, E. F., J. Biol. Chem. 204:623, 1953. [14] Schlayer, C., Biochem. Zschr. 293:94, 1937. [15] Glover, E. C., Daland, G. A., and Schmitz, H. L., Arch. Int. M. 46:46, 1930. [16] Bird, R. M., Clements. J. A., and Barker, L. M., Cancer 4:1009, 1951.
[17] Fleischmann, W., and Kubowitz, F., Biochem. Zschr. 181:395, 1927. [18] Mac̄̄eod, J., and Rhoads, C. P., Proc. Soc. Exp. Biol. 41:268, 1939. [19] Fujita, A., Klin. Wschr. 7:897, 1928. [20] Fujita, A., Biochem. Zschr. 197:175, 1928. [21] Bird, R. M., and Evans, J. D., J. Biol. Chem. $178: 289,1949$. [22] Warren, C. O., Jr., Am. J. Physiol. 131:176, 1940. [23] Berwin, I., and Gordon, A. S., ibid 173:184, 1953. [24] Landau, D., and Gordon, A. S., Endocrinology 51:157, 1952. [25] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928.
[26] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [27] Wohlgemuth, J., and Klopstock, E., ibid 175:202, 1926. [28] Barker, S. B., and Schwartz, H. S., unpublished. [29] Barker, S. B., and Schwartz, H. S., Proc. Soc. Exp. Biol. 83:500, 1953. [30] Edson, N. L., and Leloir, L. F., Biochem. J., Lond. $30: 2319$, 1936. [31] Dickens, F., and Greville, G. D., ibid 27:832, 1933. [32] Dickens, F., and Simer, F., ibid 24:1301, 1920. [33] Murphy, J. B., and Hawkins, J. A., J. Gen. Physiol. 8:115, 1925. [34] Weil-Malherbe, H., Biochem. Zschr. 175:202, 1926. [35] Endres, G., and Kubowitz, F., ibid 191:395, 1927. [36] Birmingham, M. K., and Desbarats, M., Canad. J. M. Sc. 30:494, 1952.

Part Il: EPITHELIUM AND ASSOCIATED TISSUES

| Tissue |  | Animal | Medium | $\mathrm{Q}_{\mathrm{O}_{2}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (A) |  | (B) | (C) | (D) | (E) |
| 1 | Adipose, brown fat Retroperitoneal fat body White fat | Rat | Ringer phosphate | 0.4191 | 1 |
| 2 |  |  |  | 7.92 | 2 |
| 3 |  |  |  | 0.0491 | 1 |
| 4 | Cartilage, costal | Rabbit | Krebs-Ringer phosphate | 0.41 | 3 |
| 5 | Connective tissue cells, heart | Rat | Krebs phosphate | 0.853 | 4 |
| 6 | Cornea Epithelium Stroma | Rabbit | No suspending medium | 0.864 | 5 |
| 7 |  |  |  | 6.25 | 5 |
| 8 |  |  |  | 0.231 | 5 |
| 9 | Dermis | Rabbit | Krebs phosphate | 0.27 | 6 |
| 10 | Intestine, duodenum | Hamster | Phosphate saline | 22.7 | 7 |
| 11 |  | Rat |  | 23.0 | 7 |
| 12 |  |  | Krebs-Ringer phosphate, glucose | 3.6 | 8 |
| 13 | Upper jejunum |  | Phosphate saline | 21.5 | 7 |
| 14 |  | Hamster |  | 14.3 | 7 |
| 15 | Lower ileum | Rat |  | 13.5 | 7 |
| 16 |  | Hamster |  | 10.0 | 7 |
| 17 | Mucosa, gastric | Man | Ringer glucose | 9.6 | 9 |
| 18 |  | Rat |  | 7.2 | 10 |
| 19 | Colon | Rabbit | Ringer glucose; serum | 11.1 | 9 |
| 20 |  | Rat | Ringer glucose | 3.4-14.6 | 9.11 |
| 21 | Intestine |  |  | 9.4-23.3 | 12,13 |
| 22 | Duodenum |  |  | 8.8 | 11 |
| 23 | Jejunum |  |  | 15.6 | 11 |
| 24 | Ileum |  |  | 5.3 | 11 |
| 25 | Uterus | Rabbit | Serum | 6.1 | 14 |
| 26 | Skin Fetus | Man | Ringer glucose | 2.1(0.5-2.8) | 15 |
| 27 |  |  | Ringer phosphate | 1.8 | 16 |
| 28 |  | Guinea pig | Ringer glucose | 3.0 | 17 |

$/ 1 / \mathrm{cu} \mathrm{mm}$ oxygen consumed per mg wet weight per hr. / / / Micromoles oxygen consumed per g wet weight per hr. /3/ Micromoles oxygen consumed 1 million cells per hr.

Values for oxidation quotient $\left(\mathrm{QO}_{2}\right)$ are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part II: EPITHELIUM AND ASSOCLATED TISSUES (Concluded)

| Tissue |  | Animal | Medium | $\mathrm{QO}_{2}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| 29 | Skin (cencluded) Newborn | Mouse | Ringer glucose | 6.1 | 18 |
| 30 |  | Rat |  | 3.5 | 18 |
| 31 | $\begin{aligned} & 10-36 \mathrm{da} \\ & 79 \mathrm{da} \\ & \text { Ear } \end{aligned}$ |  |  | 4.9-3.6 | 19 |
| $\begin{aligned} & 32 \\ & 33 \end{aligned}$ |  |  |  | 1.8-2.0 | 19,20 |
|  |  | Guinea pig | Serum, Krebs-Ringer phosphate, glucose, streptomycin | 1.05 | 21 |
| 34 | Epidermis Ear | Man | Ringer glucose | 0.52-2.11 | 22 |
| 35 |  | Guinea pig | Serum, Krebs-Ringer phosphate, glucose, streptomycin | 5.29 | 23 |
| 36 |  | Rat |  | 3.69 | 23 |
| 37 |  | Mouse |  | 2.95 | 23 |
| 38 | Dermis, ear |  |  | 1.40 | 23 |
| 39 |  | Rat |  | 0.90 | 23 |
| 40 |  | Guinea pig |  | 2.21 | 23 |
| 41 |  | Frog | Ringer phosphate ( $24.8{ }^{\circ} \mathrm{C}$ ) | 0.96 | 24 |
| 42 | Synovial membrane | Man | Krebs-Ringer phosphate | 4.24 | 25 |

/4/ cu mm oxygen consumed per mg nitrogen per hour.
Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Jandorf, B. J., (e) Quastel, J. H., and Scholefield, P. G.
References: [1] Breibart, S., and Engel, F. L., Endocrinology 55:70, 1954. [2] Haugaard, N., and Marsh, J. B., J. Biol. Chem. 194:33, 1952. [3] Laskin, D. M., and Sarnat, B. G., Surg. Gyn. Obst. 96:493, 1953. [4] Harris, H., Brit. J. Exp. Path. 37:512, 1956. [5] Langham, M., J. Physiol. 117:461, 1952. [6] Scarpelli, D. G., Knouff, R. A., and Angere, C. A., Proc. Soc. Exp. Biol. 84:94, 1953. [7] Wilson, T. H., and Wiseman, G., J. Physiol., Lond. 123:126, 1954. [8] Rose, R. L., and Archdeacon, J. W., Trans. Kentucky Acad. Sc. 14:17, 1953.
[9] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [10] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [11] Dickens, F., and Weil-Malherbe, H., Biochem. J., Lond. 35:7, 1941.
[12] Warburg, O., Posener, K., and Negelein, E., Biochem. Zschr. 152:309, 1924. [13] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [14] Bell, W. B., Brooks, J., and Jowett. M., J. Cancer Res. 12:369, 1928. [15] Fitzgerald, L. R., Physiol. Rev. 37:325, 1957. [16] Barron, E. S., Meyer, J., and Miller, Z. B., J. lnvest. Derm. 11:97, 1948. [17] Wohlgemuth, J., ard Klopstock, E., Biochem. Zschr. 175:202, 1926. [18] Loebell, R. O., ibid $16 \overline{1: 2} 19,1925$. [19] Adams, P. D., Arch. Derm. Syph., Chic. 36:606, 1937. [20] Adams, P. D., J. Biol. Chem. 116:641, 1936. [21] Cruickshank, C. N., Exp. Cell. Res. 7:374, 1954. [22] Ohara, K., J. Jap. Physiol. Soc. 2:1, 1951. [23] Cruickshank, C. N., and Cooper, J. R., Exp. Cell. Res. 9:363, 1955. [24] Barch, S. H., Physiol. Zool. 26:223, 1953. [25] Thomas, D. P., and Dingle, J. T., Brit. J. Exp. Path. 36:195, 1955.

Part III: GLAND TISSUES

|  | Tissue | Animal | Medium | $\mathrm{Q}_{\mathrm{O}_{2}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| 1 | Adrenal, cortex Medulla | Cattle, beef | Potassium phosphate, $\mathrm{KCl}, \mathrm{MgCl}_{2}$ adenylic acid | 1.1 | 1 |
| 2 |  |  |  | 0.6 | 1 |
| 3 |  | Guinea pig | Serum | 6.0 | 2 |
| 4 |  |  | Potassium phosphate, $\mathrm{KCl}, \mathrm{MgCl}_{2}$ adenylic acid, citrate | 0.8 | 1 |
| 5 | Cortex |  |  | 6.0 | 1 |
| 6 |  | Mouse | Serum | 6.0 | 2 |
| 7 |  | Rat |  | 10.0 | 2 |
| 8 |  |  | Potassium phosphate, $\mathrm{KCl}, \mathrm{MgCl}_{2}$. potassium adenylate | 1.1 | 3 |
| 9 | Kidney | $\begin{aligned} & \text { Guinea pig, } 8 \mathrm{wk} \\ & 50-52 \mathrm{wk} \\ & 100 \mathrm{wk} \end{aligned}$ | Krebs-Ringer phosphate, glucose homogenates | 4.06 | 4 |
| 10 |  |  |  | 1.42 | 4 |
| 11 |  |  |  | 1.15 | 4 |
| 12 |  | Rat | Krebs-Ringer phosphate | 3.721 | 5 |
| 13 |  |  | Ringer phosphate | 16.3 | 6 |

$11 / \mathrm{cu} \mathrm{mm}$ oxygen consumed per mg wet weight tlssue per hr.

Values for oxidation quotient $\left(\mathrm{QO}_{2}\right)$ are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part III: GLAND TISSUES (Concluded)

| Tissue <br> (A) |  | Animal | Medium | $\mathrm{Q}_{\mathrm{O}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (B) | (C) | (D) | (E) |
| 14 | Kidney (concl'd) Cortex | Rat (concluded) | Krebs-Ringer phosphate, glucose | 11.61 | 7 |
| 15 | Pancreas | Cat | Ringer glucose | 6.0 | 8 |
| 16 |  | Dog |  | 3.2 | 9 |
| 17 |  | Guinea pig | Saline | 2.9 | 10 |
| 18 |  | Rabbit | Ringer glucose | 4.6 | 9 |
| 19 |  | Rat | Saline | 3.7 | 10 |
| 20 |  |  | Ringer glucose | 5.2 | 11 |
| 21 |  |  | Krebs-Ringer phosphate | $1.04{ }^{1}$ | 5 |
| 22 |  | Pigeon | Saline | 8.7 | 10 |
| 23 | Pituitary <br> Anterior lobe | Mouse | Serum | 8.0 | 2 |
| 24 |  | Rat, young |  | 12.0 | 2 |
| 25 |  | Rat | Ringer glucose | 5.9 | 12 |
| 26 |  |  | Krebs-Ringer phosphate | 5.43 | 13 |
| 27 | Posterior lobe |  | Ringer glucose | 6.6 | 12 |
| 28 |  |  | Krebs-Ringer phosphate | 5.42 | 13 |
| 29 | Salivary gland | Man | Ringer glucose | 6.2 | 14 |
| 30 |  | Guinea pig | Saline | 5.0 | 10 |
| 31 |  | Rat | Ringer glucose | 9.7-24.2 | 11,14 |
| 32 |  |  | Krebs-Ringer phosphate | $2.31{ }^{1}$ | 5 |
| 33 | Thyroid | Bull | Ringer phosphate | 3.5 | 15 |
| 34 |  | Bullock |  | 3.1 | 15 |
| 35 |  | Calf |  | 2.8 | 15 |
| 36 |  |  | Ringer glucose | 2.6 | 16 |
| 37 |  | Cow | Ringer phosphate | 3.8 | 15 |
| 38 |  | Dog | Serum | 9.1 | 17 |
| 39 |  |  | Ringer glucose | 2.0 | 16 |
| 40 |  | Hog |  | 2.1 | 16 |
| 41 |  | Rabbit | Ringer glucose, serum | 11.7 | 14 |
| 42 |  | Rat | Ringer glucose | 12.5-13.0 | 9 |

/ / cu mm oxygen consumed per mg wet weight tissue per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Sourkes, T. L., and Heneage, P., Endocrinology 50:73, 1952. [2] Fujita, A., Biochem. Zschr. 197:175, 1928. [3] Sourkes, T. L., and Heneage, P., Endocrinology 49:601, 1951. [4] Rafsky, H. A., Newman, B., and Horonick, A., J. Geront. 7:38, 1952. [5] Barker, S. B., and Schwartz, H. S., Proc. Soc. Exp. Biol. 83:500, 1953. [6] Paul, H. E., Paul, M. F., and Kopko, F., ibid 79:555, 1952. [7] Russell, R. L., and Westfall, B. A., Am. J. Physiol. 176:468, 1954. [8] Deutsch, W., and Raper, H. S., J. Physiol., Lond. 87:275, 1936. [9] Warburg, O., Posener, K., and Negelein, E., Biochem. Zschr. 152:309, 1924. [10] Edson, N. L., and Leloir, L. F., Blochem. J., Lond. 30:2319, 1936. [11] Barker, S. B., and Schwartz, H. S., unpublished. [12] Roberts, S., and Rock, M., unpublished. [13] Roberts, S., and Keller, M. R., Arch. Biochem. and Biophys. 44:9, 1953. [14] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [15] Weiss, B., J. Biol. Chem. 193:509, 1951. [16] Barker, S. B., unpublished. [17] Sturm, A., Zschr. ges. exp. Med. 74:555, 1930. [18] Walthard, B., ibid 79:451, 1931.

Values for oxidation quotient ( $\mathrm{Q}_{2}$ ) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour. unless otherwise indicated.

Part IV: LIVER

| Animal |  | Medium | $\mathrm{Q}_{\mathrm{O}}^{2}$ | Reference |
| :---: | :---: | :---: | :---: | :---: |
| (A) |  | (B) | (C) | (D) |
| 1 | Cow | Ringer glucoseSaline | 2.6 | 1 |
| 2 | Dog |  | 6.0 | 2 |
| 3 | Guinea pig |  | 8.1 | 3 |
| 4 |  | Ringer's solution | 5.0 | 4 |
| 5 | 8 wk | Krebs-Ringer phosphate | 1.14 | 5 |
| 6 |  |  | 1.11 | 5 |
| 7 | 100 wk |  | 0.97 | 5 |
| 8 | Fatty liver | Ringer's solution | 7.4 | 4 |
| 9 | Horse | Ringer glucose | 2.1 | 1 |
| 10 | Mouse | Ringer's solution | 18.7 | 6 |
| 11 |  |  | 8.8-13.8 | 7,8 |
| 12 |  | Krebs-Ringer phosphate | 5.44 | 9 |
| 13 | Rabbit | Ringer glucose | 4.2-7.7 | 1,10 |
| 14 | Rat | Ringer's solution | 7.0-10.2 | 11-13 |
| 15 |  | Ringer glucose | 6.5-11.6 | 1,6,7,12-19 |
| 16 |  | Krebs-Ringer phosphate glucose | 4.12 | 20 |
| 17 |  |  | 7.99 | 21 |
| 18 |  | $\left(37^{\circ} \mathrm{C}\right)$ | 16.871 | 22 |
| 19 |  | $\left(42^{\circ} \mathrm{C}\right)$ | $23.80{ }^{1}$ | 22 |
| 20 |  | Krebs-Ringer phosphate | 6.5 | 23 |
| 21 | Castrate |  | 5.2 | 23 |
| 22 | Cold adapted | Locke's solution | 19.25 | 24 |
| 23 | Cold adapted | Locke's sodium glycerophosphate | 9.19 | 25 |
| 24 | Room temperature |  | 7.87 | 25 |
| 25 | Room temperature | Locke's solution | 11.32 | 24 |
| 26 | Fetus | Serum, Ringer glucose | 7.1 | 14 |
| 27 | 3-21 da | Ringer glucose | 13.2 | 26 |
| 28 | 10 g | Krebs-Ringer phosphate | 11.0 | 27 |
| 29 | 300 g |  | 8.0 | 27 |
| 30 | Sheep | Ringer glucose | 2.5 | 1 |
| 31 | Chick, embryo, 6 da 12 da | Ringer glucose | 7.5 | 28 |
| 32 |  |  | 4.5 | 28 |
| 33 | 20 da |  | 1.5 | 28 |
| 34 | Hen | Serum | 14.5 | 29 |
| 35 | Arctic cod | Ringer phosphate ( $25^{\circ} \mathrm{C}$ ) | 0.8592 | 30 |
| 36 | Golden Orfe |  | $0.792^{2}$ | 30 |
| 37 | Menhaden | Phosphate buffer ( $30^{\circ} \mathrm{C}$ ) | $11.08^{3}$ | 31 |
| 38 | Scup |  | 14.873 | 31 |
| 39 | Toadfish |  | $4.42^{3}$ | 31 |

$/ 1 / \mathrm{cu} \mathrm{mm}$ oxygen consumed per 100 mg wet weight per 20 min . $/ 2 / \mathrm{cu} \mathrm{mm}$ oxygen consumed per mg wet weight per hr. $/ 3 / \mathrm{cu} \mathrm{mm}$ oxygen consumed per g wet weight per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Kleiber, M., (e) Quastel, J. H., and Scholefield, P. G.
References: [1] Kleiber, M., Proc. Soc. Exp. Biol. 48:419. 1941. [2] Krebs, H. A., in Oppenheimer's "Handbuch der Blochemie des Menschen und der Tiere," Jena: Fischer, 1933. [3] Edson, N. L., and Leloir, L. R., Biochem. J., Lond. 30:2319, 1936. [4] Meier, R., and Thoienes. E., Arch. Exp. Path., Lpz. 169:655, 1933. [5] Rafsky, 11. A., Newman, B., and Iloronick, A., J. Geront. 7:38, 1952. [6] Ogata, Y., Jap. J. M. Sc. III Biophysics 2:131, 1932. [7] Crabtree, H. G., Biochem. J., Lond. 23:536, 1928. [8] Laser, H., ibid 31:1671, 1937. [9] Lipsett, M. N., and Moore, F. J., J. Biochem. 192:743, 1951. [10] Ebina, T., Tohoku J. Exp. M. 13:424, 1929.
[11] Dickens, F., and Grevllle, G. D., Biochem. J., Lond. 27:832, 1933. [12] Meyerhof, O., and Lohmann, K., Biochem. Zschr. 171:381, 421, 1926. [13] Minaml, S., ibid 142:334, 1923. [14] Rosenthal, O., and Lasnitzki, A., ibid 196:340. 1928. [15] Dickens, F., and Simer, F., Hiochem. J., Lond. 24:1301, 1920. [16] E1liott, K. A., Greig, M. E., and Benoy, M. P., ibid 31:1003, 1937. [17] Grassheim, K., Zschr. Klin. Med. 103:380, 1926.
[18] Meyerhof, O., Lohmann, K.. and Meier, R., Biochem. Zschr. 157:459, 1925. [19] Warburg, O., Posener, K., and Negelein. E., ibid 152:309, 1924. [20] Russell, R. L., and Westfall, B. A., Am. J. Physiol. 176:468, 1954.

Values for oxidation quotient ( $\mathrm{Q}_{\mathrm{O}}$ ) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

## Part IV: LlVER (Concluded)

[21] Hoexter, F. M., Endocrinology 54:1, 1954. [22] Jasper, R. L., and Archdeacon, J. W., Physiol. Zool. 24:163, 1951. [23] Eisenberg, E., Gordan, G. S., and Elliott, H. W., Endocrinology 45:113, 1949. [24] Clark, $\bar{R}$. T., Jr., Chinn, H. 1., Ellis, J. P., Pawel, N. E., and Griswold, D., Am. J. Physiol. 177:207, 1954. [25] You, R. W., and Sellers, E. A., Endocrinology 49:374, 1951. [26] Hawkins, J. A., J. Gen. Physiol. 11:645, 1928. [27] Von Bertalanffy, L., and Perozynski, W. J., Biol. Bull. 105:240. 1953. [28] Carroll, M. J., Arch. Exp. Zellforsch. 22:592, 1939. [29] Tanyia, C., Biochem. Zschr. 189:175, 1927. [30] Peiss, C. N., and Field, J., Biol. Bull. $\underline{99}: 213,1950$. [31] Vernberg, F. J., ibid 106:360, 1954.

Part V: LUNG

|  | Animal | Medium | $\mathrm{Q}_{\mathrm{O}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) |
| 1 | Man, embryo | Ringer glucose | 3.7 | 1 |
| 2 | Cat |  | 3.9 | 2 |
| 3 | Guinea pig |  | 6.1 | 2 |
| 4 |  | Saline | 7.4 | 3 |
| 5 | Mouse | Ringer glucose | 7.3-8.0 | 4 |
| 6 |  |  | 7.1 | 5 |
| 7 | Rabbit |  | 6.7 | 2 |
| 8 | Rat, embryo | Serum | 10.0 | 6 |
| 9 | 10 g | Krebs-Ringer phosphate | 9.0 | 7 |
| 10 | 400 g |  | 6.0 | 7 |
| 11 | Adult | Saline | 7.9 | 3 |
| 12 |  | Ringer glucose | 4.4-7.8 | 2,8 |
| 13 | Pigeon | Ringer glucose | 3.6 | 2 |

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Krebs, H. A., in Oppenheimer's "Handbuch der Biochemie des Menschen und der Tiere," Jena: Fischer, 1933. [2] Simon, F. P., Potts, A. M., and Gerard, R. W., J. Biol. Chem. 167:303. 1947. [3] Edson, N. L., and Leloir, L. F., Biochern. J., Lond. 30:2319, 1936. [4] Ogata, Y., Jap. J. M. Sc., 111 Biophysics 2:131, 1932. [5] Moulder, J. W., and Weiss, E., J. Infect. Dis. 88:77, 1951. [6] Fujita, A., Biochem. Zschr. 197:175, 1928. [7] Von Bertalanffy, L., and Pirozynski, W. J., Biol. Bull. 105:240, 1953. [8] Laser, H., Biochem. Zschr. 248:9. 1932.

Part Vl: MUSCLE TISSUES

|  | Tissue | Animal | Mediura | $\mathrm{Q}_{\mathrm{O}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| 1 | Cardiac | Man | Krebs-Henseleit saline | 2.5 | 1 |
| 2 |  | Cat | Ringer glucose | 0.681 | 2 |
| 3 |  |  | Ringer phosphate | $1.30{ }^{1}$ | 3 |
| 4 | Atrium | Cattle, beef | Wollenberger | 1.461 | 4 |
| 5 | Ventricle |  |  | 1.481 | 4 |
| 6 | Conducting tissue |  |  | 0.271 | 4 |
| 7 |  | Dog | Ringer glucose | 0.941 | 2 |
| 8 |  | Young |  | 4.2 | 5 |
| 9 |  | Rat |  | 3.8-10.4 | 6,7 |
| 10 |  |  | Ringer phosphate | 2.7 | 8 |
| 11 |  | 10 g | Krebs-Ringer phosphate | 12.0 | 9 |
| 12 |  | 400 g |  | 6.9 | 9 |
| 13 | Auricle |  | Ringer phosphate, glucose | 8.8 | 10 |
| 14 | Ventricle |  |  | 9.5 | 10 |
| 15 | Skeletal | Man | Modified Holiinger technique | $0.24{ }^{2}$ | 11 |
| 16 |  | Rat | Ringer glucose | 2.3-3.1 | 6,7 |
| 17 | Levator ani |  | Krebs-Ringer phosphate | 3.50 | 12 |

$/ 1 / \mu \mathrm{l}$ oxygen consumed per mg wet weight per $\mathrm{hr} . / 2 / \mathrm{ml}$ oxygen consumed per 100 ml muscle per min.

Values for oxidation quotient ( $\mathrm{Q}_{2}$ ) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part VI: MUSCLE TISSUES (Concluded)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Tissue \& Animal \& Medium \& \(\mathrm{Q}_{2}\) \& Reference \\
\hline \& (A) \& (B) \& (C) \& (D) \& (E) \\
\hline 18 \& \multirow[t]{6}{*}{Skeletal, (concluded)} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Fish, scup \\
Toadfish \\
Menhaden
\end{tabular}} \& \multirow[t]{3}{*}{Phosphate buffer ( \(30^{\circ} \mathrm{C}\) )} \& \(0.41{ }^{3}\) \& 13 \\
\hline 19 \& \& \& \& \(0.727^{3}\) \& 13 \\
\hline 20 \& \& \& \& 1.0243 \& 13 \\
\hline 21 \& \& \multirow[t]{2}{*}{Frog, resting Electrical stimulation} \& Ringer glucose \& 0.18-0.24 \& 14-18 \\
\hline 22 \& \& \& Ringer's solution \& 0.79-4.24 \& 15,17 \\
\hline 23 \& \& Pigeon \& Saline \& 2.1 \& 19 \\
\hline 24 \& \multirow[t]{13}{*}{Papillary Diaphragm} \& Cat \& Lock's solution, glucose \& 3.60 \& 20 \\
\hline 25 \& \& Dog, young \& \multirow[t]{2}{*}{Ringer glucose} \& 1.9 \& 5 \\
\hline 26 \& \& Rabbit \& \& 2.4 \& 5 \\
\hline 27 \& \& \multirow[t]{10}{*}{Rat

10 g
300 g
Castrate} \& Saline, Ringer's solution \& 4.1-5.9 \& 6,14,19,21,22 <br>
\hline 28 \& \& \& Serum \& 5.9 \& 22 <br>
\hline 29 \& \& \& Ringer phosphate \& 3.4 \& 8 <br>
\hline 30 \& \& \& Ringer-Locke \& 0.971 \& 23 <br>
\hline 31 \& \& \& Krebs-Ringer phosphate \& 6.7 \& 24 <br>
\hline 32 \& \& \& \& 0.951 \& 25 <br>
\hline 33 \& \& \& \& 15.0 \& 9 <br>
\hline 34 \& \& \& \& 4.4 \& 9 <br>
\hline 35 \& \& \& \& 6.3 \& 12 <br>
\hline 36 \& \& \& \& 5.9 \& 12 <br>
\hline 37 \& \multirow[t]{2}{*}{Smooth, gastric} \& Man \& \multirow[t]{5}{*}{Ringer glucose} \& 1.3 \& 26 <br>
\hline 38 \& \& Rat \& \& 3.5 \& 6 <br>
\hline 39 \& \multirow[t]{5}{*}{Intestinal} \& Cat \& \& 1.4 \& 2 <br>
\hline 40 \& \& Frog \& \& 0.28 \& 16 <br>
\hline 41 \& \& Rabbit \& \& 2.6 \& 26 <br>
\hline 42 \& \& \multirow[t]{3}{*}{Rat} \& Saline \& 7.1 \& 19 <br>
\hline 43 \& \& \& Ringer glucose \& 6.3 \& 27 <br>
\hline 44 \& Jejunum \& \& Ringer-Locke \& 1.261 \& 23 <br>
\hline 45 \& \multirow[t]{2}{*}{Seminal vesicles} \& \multirow[t]{4}{*}{Guinea pig Castrate No tension 10 g tension} \& \multirow[t]{2}{*}{Ringer glucose} \& 1.7 \& 28 <br>
\hline 46 \& \& \& \& 1.4 \& 28 <br>
\hline 47 \& \multirow[t]{2}{*}{Taenia coli} \& \& \multirow[t]{2}{*}{Ringer's solution} \& 0.202 \& 29 <br>
\hline 48 \& \& \& \& 0.425 \& 29 <br>
\hline 49 \& Uterine \& Man \& Ringer glucose \& 0.6 \& 26 <br>
\hline
\end{tabular}

$/ 1 / \mu \mathrm{l}$ oxygen consumed per mg wet weight per $\mathrm{hr} . / 2 / \mathrm{ml}$ oxygen consumed per 100 ml muscle per min. $/ 3 / \mu \mathrm{m}$ oxygen consumed per $g$ wet weight per min.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J.H., and Scholefield, P. G.

References: [1] Burdette, W. J., J. Laborat. Clin. M. 40:867, 1952. [2] Shorr, E., Cold Spring Harbor Symposia Quant. Biol. 7:323, 1939. [3] Reilly, J., Arch. Biochem. and Biophys. 43:25, 1953. [4] Murray, J. B., Am. J. Physlol. 177:463, 1954. [5] Barker, S. B., unpublished. [6] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [7] Field, J., II, in Potter's "Methods in Medical Research," Chicago: The Year Book Publishers, 1948. [8] Paul, H. E., Paul, M. F., and Kopko, F., Proc. Soc. Exp. Biol. 79:555, 1952. [9] Von Bertalanffy, L., and Pirozynski, W. J., Biol. Bull. 105:240, 1953. [10] Ulbrick, W. C., and Whitehorn, W. V., Am. J. Physiol. 171:407, 1952. [11] Mottram, R. F., J. Physlol., Lond. 128:268, 1955. [12] Eiscnberg, E., Gordan, G. S., and Elliott, H. W., Endocrinology 45:113, 1949. [13] Vernberg, F. J., Biol. Bull. 106:360, 1954. [14] Meyerhof, O., Lohmann, K., and Meier, R., Biochem. Zschr. 157:459, 1925. [15] Gemmill, $\overline{\mathrm{C}}$. L., Am. J. Physiol. 112:294, 1935. [16] Meyerhof, O., and Lohmann, K., Biochem. Zschr. 171:381, 421, 1926. [17] Ochoa, S., ibid 227:116, 1930. [18] Saslow, G., J. Cellul. Physiol. $10: 385$, 1937. [19] Edson, N. L., and Leloir, L. F., Biochem. J., Lond. 35:7, 1941. [20] Lee, K. S., J. Pharm. Exp. Ther. 109:304, 1953. [21] Gemmill, C. L., Bull. Johns Hopklns Hosp. 68:329, 1941. [22] Takane, R., Biochem. Zschr. 171:403, 1926. [23] Borrow, A., and Penney, J. R., Exp. Cell. Res. 2:188, 1951. [24] Weiss, A. K., Am. J. Physiol. 177:201, 1954. [25] Barker, S. B., and Schwartz, H. S., Proc. Soc. Exp. Biol. 83:500, 1953. [26] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [27] Dlckens, F., and Weil-Malherbe, H., Biochem. J., Lond. 35:7, 1941. [28] Levey, H. A., and Szego, C. M., unpublished. [29] Bülbring. E., J. Physiol., Lond. 122:111, 1953.

Values for oxidation quotient ( $\mathrm{Q}_{2}$ ) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

## Part VII: NEOPLASMS

Section 1: Malignant

$/ 1 / \mu l$ oxygen consumed per $m g$ wet weight. $/ 2 / \mu l$ oxygen consumed per ml per hr. $/ 3 / 5 \times 10^{7}$ cells per ml.
Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.

References: [1] Murphy, J. B., and Hawkins, J. A., J. Gen. Physiol. 8:115, 1925. [2] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [3] Warburg, O., Posener, K., and Negelein, E., ibid 189:242, 1927. [4] Loebell, R. O., Biochem. Zschr. 161:219, 1925. [5] Minami, S., ibid 142:334, 1923. [6] Warburg, O., ibid 152:309, 1924. [7] Woodward, G. E., and Hudson, M. T., Cancer Res. 14:599, 1954. [8] Glover, E. C., Daland, G. A., and Schmitz, H. L.. Arch. Int. M. 46:46, 1930. [9] Bird, R. M., Clements, J. A., and Becker, L. M., Cancer 4:1009, 1951. [10] Crabtree, H. G., Biochem. J., Lond. 23:536, 1928. [11] Laser, H., Biochem. J., Lond. 31:1671, 1937. [12] Dickens, F., and Simer, F., ibid 24:1301, 1920. [13] Dickens, F., and Greville, G. D., ibid 27: 832, 1933. [14] Okamota, Y., Biochem. Zschr. 160:52, 1925. [15] Weil-Malherbe, H., Biochem. J., Lond. $32: 2257,1938$. [16] Crabtree, H. G., ibld 22:1 $\overline{289}, 1928$. [17] Warburg, O., Biochem. Zschr. 160:307, 1925. [18] Krebs, H. A., and Kubowitz, F., ibid 189:194, 1927. [19] South, F. E., Jr., and Cook, S. F., J. Gen. Physiol. 37:335, 1954. [20] Kalman, S. M., and Clewe, E. R., Stanford M. Bull. 11:216, 1953.

Section 2: Benign, and Hyperplastic Tissues

| Tissue | Animal | Medium | $\mathrm{Q}_{\mathrm{O}_{2}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: |
| (A) | (B) | (C) | (D) | (E) |
| 1 Goiter, colloid, resting | Man | Ringer glucose | 2.5-5.2 | 1,2 |
| 2 Hyperactive |  |  | 12.3 | 2 |
| 3 Heart, fibroblasts ${ }^{1}$, 1 transfer | Chicken, young | Serum glucose | 22.5 | 3 |
| 4 3-8 transfers |  |  | 12.8 | 3 |
| 53000 transfers |  |  | 12.0 | 3 |
| 6 Papilloma; bladder | Man | Ringer glucose | 8.5-13.0 | 4 |
| 7 Polyp, nasal |  |  | 4.2-5.9 | 4 |
| 8 Tonsil, hyperplastic |  |  | 6.6-14.7 | 4 |
| 9 Wart, skin |  |  | 1.5 | 5 |

/1/ ln tissue culture.
Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Quastel, J. H., and Scholefield, P. G.
References: [1] Rosenthal, O., and Lasnitzki, A., Biochem. Zschr. 196:340, 1928. [2] Walthard, B., Zschr. ges. exp. Med. 79:451, 1931. [3] Warburg, O., and Kubowitz, F., Biochem. Zschr. 189:242, 1927. [4] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [5] Crabtree, H. G., Biochem. J., Lond. 22:1289, 1928.

Values for oxidation quotient $\left(\mathrm{Q}_{2}\right)$ are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

## Part VIlI: NERVE TISSUES

Section 1: Central and Retinal

|  | Tissue | Animal | Medium | $\mathrm{QO}_{2}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| 1 | Brain | Man |  | 3.31 | 1 |
| 2 |  | Rat | Ringer phosphate | 5.4 | 2 |
| 3 |  |  |  | 3.3 | 3 |
| 4 |  |  | Krebs-Ringer phosphate | 1.302 | 4 |
| 5 |  |  | Krebs-Ringer phosphate, glucose ( $37^{\circ} \mathrm{C}$ )$\left(42^{\circ} \mathrm{C}\right)$ | 25.031 | 5 |
| 6 |  |  |  | $32.44{ }^{1}$ | 5 |
| 7 |  | Castrate, 30 da | Ringer phosphate | 7.3 | 2 |
| 8 |  | Chick embryo | Serum | 25 | 6 |
| 9 |  | Fish, Arctic cod | Ringer phosphate ( $25^{\circ} \mathrm{C}$ ), mince | 1.652 | 7 |
| 10 |  | Flounder <br> Golden orfe | Phosphate buffer ( $30^{\circ} \mathrm{C}$ ) | 6.963 | 8 |
| 11 |  |  | Ringer phosphate ( $25^{\circ} \mathrm{C}$ ), mince | 1.372 | 7 |
| 12 |  | Goldfish | Phosphate ( $27^{\circ} \mathrm{C}$ ), brei | 11.92 | 9 |
| 13 |  |  | Phosphate buffer ( $30^{\circ} \mathrm{C}$ ) | $13.04{ }^{3}$ | 10 |
| 14 |  | Menhaden Mullet |  | 13.523 | 8 |
| 15 |  | Pinfish |  | $9.30^{3}$ | 8 |
| 16 |  | Scup |  | $10.51{ }^{3}$ | 10 |
| 17 |  | Spot |  | $7.78{ }^{3}$ | 8 |
| 18 |  | Toadfish |  | $6.78{ }^{3}$ | 10 |
| 19 | Cerebral cortex | Man | Ringer glucose | 6.0-10.3 | 11 |
| 20 |  |  | Ringer's solution | 1.092 | 12 |
| 21 |  | Cat | Ringer glucose | 8.5-12.2 | 11,13 |
| 22 |  | Dog ${ }_{\text {ck }}$ |  | 6.7 | 14 |
| 23 |  |  | Phosphate saline, glucose | $2.44{ }^{4}$ | 14,15 |
| 24 |  | 3 wk |  | $2.72{ }^{4}$ | 14,15 |
| 25 |  | 5-7 wk |  | $4.84{ }^{4}$ | 14,15 |
| 26 |  | Guinea pig | Saline | 6.9 | 16 |
| 27 |  |  | Saline glucose | 11.7 | 17 |
| 28 |  |  | Saline phosphate, glucose | 5305 | 18 |
| 29 |  |  | Phosphate buffer | 536 | 19 |
| 30 |  |  | Saline, glucose, phosphate | 6205 | 18 |
| 31 |  | Monkey | Ringer glucose | 7.4-11.8 | 11 |
| 32 |  | Mouse | Ringer's solution | 11.0 | 20 |
| 33 |  | ```Pig, fetus 29-60 da 99 da Birth to adult``` |  | 5.5 | 21 |
| 34 |  |  |  | 6.5 | 21 |
| 35 |  |  |  | 8.5 | 21 |
| 36 |  | Rabbit | Ringer glucose | 7.3-10.4 | 22-24 |
| 37 |  |  | Phosphate buffer | 24.06 | 19 |
| 38 |  | $\begin{gathered} \text { Rat, } 5 \text { da } \\ 50 \text { da } \\ \text { Adult } \end{gathered}$ | Ringer glucose | 6.2 | 25 |
| 39 |  |  |  | 14.7 | 25 |
| 40 |  |  |  | 8.5-17.1 | 11.25-31 |
| 41 |  |  | Krebs-Ringer phosphate | 10.40 | 32 |
| 42 |  |  | Krebs-Ringer phosphate, glucose | 8.57 | 33 |
| 43 |  |  | Saline, glucose, phosphate | 5705 | 18 |
| 44 |  | Pigeon | Saline glucose | 14.6 | 17 |
| 45 | Cerebellum | $\begin{aligned} & \text { Dog, } 1 \text { wk } \\ & 3 \text { wk } \\ & 5-7 \mathrm{wk} \\ & \text { Adult } \end{aligned}$ | Phosphate saline, glucose | 3.164 | 14,15 |
| 46 |  |  |  | $3.48{ }^{4}$ | 14, 15 |
| 47 |  |  |  | $3.80{ }^{4}$ | 14,15 |
| 48 |  |  |  | $4.28{ }^{4}$ | 14,15 |
| 49 | Hippocampus | Frog | Ringer's solution | 2.4 | 34 |

$/ 1 / \mathrm{ml}$ oxygen consumed per 100 g brain per min. $/ 2 / \mu \mathrm{l}$ oxygen consumed per mg wet weight per hr. $/ 3 / \mathrm{\mu l}$ oxygen consumed per $g$ wet weight per min. /4/Converted to dry weight basis from author's data for fresh tissue. Since nerve tissue contalns approximately $75 \%$ water, a per mg dry weight value was obtained by multiplying by 4. $/ 5 / \mu 1$ mol. oxygen consumed per $g$ dry weight per hr . $/ 6 / \mu \mathrm{M}$ oxygen consumed per g wet weight per hr.

Values for oxidation quotient $\left(\mathrm{Q}_{2}\right)$ are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part VIII: NERVE TISSUES (Continued)
Section 1: Central and Retinal (Continued)

|  | Tissue | Animal | Medium | $\mathrm{Q}_{\mathrm{O}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| 50 | Medulla | Cat | Ringer glucose | 3.5 | 13 |
| 51 |  | $\begin{aligned} & \text { Dog, } 1 \mathrm{wk} \\ & 3 \mathrm{wk} \\ & 5-7 \mathrm{wk} \\ & \text { Adult } \\ & \hline \end{aligned}$ | Phosphate saline, glucose | $3.84{ }^{4}$ | 14,15 |
| 52 |  |  |  | 4.124 | 14,15 |
| 53 |  |  |  | 3.404 | 14,15 |
| 54 |  |  |  | $2.76{ }^{4}$ | 14,15 |
| 55 |  | $\begin{gathered} \text { Rat, } 5 \text { da } \\ 50 \mathrm{da} \\ \text { Adult } \\ \hline \end{gathered}$ | Ringer glucose | 3.4 | 25 |
| 56 |  |  |  | 9.0 | 25 |
| 57 |  |  |  | 2.5-4.9 | 25,35 |
| 58 | Thalamus | Dog, I wk 3 wk 5-7 wk Adult | Phosphate saline, glucose | $3.04{ }^{4}$ | 14,15 |
| 59 |  |  |  | $3.88{ }^{4}$ | 14,15 |
| 60 |  |  |  | 4.944 | 14,15 |
| 61 |  |  |  | 4.044 | 14,15 |
| 62 | Hypothalamus <br> Anterior <br> Posterior | Rat | Ringer glucose | 10.4 | 35 |
| 63 |  |  | Krebs-Ringer phosphate | 7.53 | 36 |
| 64 |  |  |  | 7.92 | 36 |
| 6566676869 | Spinal cord | Cat <br> 1 wk <br> 3 wk <br> Adult | Ringer glucose <br> Phosphate saline, glucose | 1.3 | 13 |
|  |  |  |  | $3.24{ }^{4}$ | 14.15 |
|  |  |  |  | 3.724 | 14,15 |
|  |  |  |  | $2.00{ }^{4}$ | 14,15 |
|  |  | Frog | Ringer glucose | 2.3 | 29 |
| 70 | Retina | Dog |  | 20.8 | 37 |
| 71 |  | Frog |  | 3.5 | 38 |
| 72 |  | Ox |  | 10.7 | 39 |
| 73 |  | Pig |  | 17.7 | 40 |
| 74 |  | Sheep | ```Krebs-Ringer solution, glucose pH 5 pH6 pH7 pH }7.``` | 0.74 | 41 |
| 75 |  |  |  | 3.67 | 41 |
| 76 |  |  |  | 7.47 | 41 |
| 77 |  |  |  | 8.90 | 41 |
| 78 |  | Rabbit <br> Alloxan diabetes Rat | Ringer phosphate, glucose | 10.9 | 42 |
| 79 |  |  |  | 8.7 | 42 |
| 80 |  |  | Ringer glucose | 22.0-32 | 22,31,38,40,43,44 |

/4/ Converted to dry weight basis from author's data for fresh tissue. Since fresh nerve tissue contains approximately $75 \%$ water, a per mg dry weight value was obtained by multiplying by 4.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Elliott, K. A., (e) Quastel, J. H., and Scholefield, P. G., (f) Himwich, 11. E.

References: [1] Wechsler, R. L., Dripps, R. R., and Kety, S. S., Anesthesiology 12:308, 1951. [2] Gordan, G. S., Bentinck, R. C., and Eisenberg, E., Ann. N. York Acad. Sc. 54:575, 1951. [3] Paul, H. E., Paul, M. F., and Kopko, F., Proc. Soc. Exp. Biol. 79:555, 1952. [4] Barker, S. B., and Schwartz, H. S., ibid 83:500, 1953. [5] Jasper, R. L., and Archdeacon, J. W., Physiol. Zool. 24:163, 1951. [6] Warburg, O., and Kubowitz, F., Biochem. Zschr. 189:242, 1927. [7] Peiss, C. N., and Field, J., Biol. Bull. 99:213, 1950. [8] Vernberg, F. J., and Gray, 1. E., ibid $104: 445,1953$. [9] Freeman, J. A., ibid 99:416, 1950. [10] Vernberg, F. J., ibid 106:360, 1954. [11] Elliott, K.A., J. Neurophysiol. 11:473, 1948. [12] Elliott, H. W., and Sutherland, V. C., J. Cellul. Physiol. 40:221. 1952. [13] Craig. F. N., and Beecher, H. K.. J. Neurophysiol. 6:135, 1943. [14] Himwich, H. E., and Fazekas, J. F., Am. J. Physiol. 132:454, 1941. [15] Himwich, H. E., "Braiñ Metabolism and Cerebral Disorders," Baltimore: Williams and Wilkins Co., 1951. [16] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [17] Edson, N. L., and Leloir, L. F., ibid 30:2319, 1936. [18] Mcllwain. H., ibid 50:132, 1951. [19] Webb, J. L., and Elliott, K. A., J. Pharm. Exp. Ther. 103:24, 1951. [20] Ogata, Y., Jap. J. M. Sc., Ill Biophysics 2:131, 1932. [21] Flexner, J. B., Flexner, L. B., and Strauss, W. L., Jr., J. Cellul. Physiol. 18:355, 1941. [22] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [23] Ebina, T., Tohoku J. Exp. M. 13:424, 1929. [24] Krebs, H. A., and Rosenhagen, H., Zschr. ges. Neur. Psychiat. 134:643, 1931. [25] Chester, A., and Himwich, H. E., Am. J. Physiol. 141:513, 1944. [26] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [27] Dickens, F., and Simer, F., ibid 24:1301, 1920. [28] Elliott, K. A., Greig, M. E., and Benoy, M. P., ibid 31:1003, 1937. [29] Loebell, R. O., Biochem. Zschr. 161:219, 1925. [30] Meyerhof, O., and Lohmann,

## Part VIII: NERVE TISSUES (Concluded)

Section 1: Central and Retinal (Concluded)
K., ibid 171:381, 421. 1926. [31] Warburg, O., Posener, K., and Negelein, E., ibid 152:309, 1924. [32] Peiss, C. N., and Field, J., Arch. Biochem. and Biophys. 36:276, 1952. [33] Hoexter, F. M., Endocrinology 54:1. 1954. [34] Pearce, J., and Gerard, R. W., Am. J. Physiol. 136:49, 1942. [35] Roberts. S., and Rock, M., unpublished. [36] Roberts, S., and Keller, M. R., Arch. Biochem. and Biophys. 44:9, 1953. [37] Sellei, C., Weinstein, P., and Jany, J., Biochem. Zschr. 247:146, 1932. [38] Negelein, E., ibid $1 \overline{65}: 122,1925$. [39] Greig, M. E., Munro, M. P., and Elliot, K. A., Biochem.J., Lond. 33:443, 1939. [40] Laser, H., ibid 31:1671, 1937. [41] Röe, O., Acta Ophth., 32:181, 1954. [42] Illing, E. K., and Gray, C. H., Endocrinology 7:242, 1951. [43] Rabbie, W. A., and Leinfelder, P. J., Am. J. Ophth. 32:208, 1949. [44] Elliott, K. A., and Baker, Z., Biochem. J., Lond. 29:2433, 1935.

Section 2: Peripheral
Values for oxidation quotient ( $\mathrm{Q}_{2}$ ) are expressed in cu mm oxygen consumed per g fresh weight of tissue per hour. Values in parentheses are ranges, estimate " $c$ " of the $95 \%$ range (cf introduction).

| Tissue |  | Animal | Temp, ${ }^{\circ} \mathrm{C}$ | $\mathrm{QO}_{2}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (A) |  | (B) | (C) | (D) | (E) |
| $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | Axon, isolated giant Single giant | Cuttlefish (Sepia officinalis) | 21 | 160 | 1 |
|  |  | Squid (Loligo pealii) | 16 | 681 (47-86) | 2 |
| 3 | Cardiac, inferior | Cat | 36 | 136 (96-182) | 3 |
| 4 | Cervical sympathetic | Rabbit | 36 | $154(114-265)$ | 3 |
| 5 | Intercostal | Cow | 37 | 208 ${ }^{2}$ (154-240) | 4 |
| 6 | Lateral line | Dogfish (Mustelus canis) | 22 | 753 (45-124) | 5 |
| 7 | Phrenic | Dag | 38 | 140 | 6 |
| 8 |  | Rat | 36 | $151(135-167)$ | 3 |
| 9 | Sciatic | Frog (Rana esculenta) | 14.6 | $16^{4}(11-21)$ | 7 |
| 10 |  | (R. pipiens) | 21.5 | $42^{5}$ (20-80) | 8 |
| 11 |  |  | 22.0 | $37^{6}(19-62)$ | 9 |
| 12 |  | (R. temporaria) | 14.6 | 237 (17-27) | 7 |
| 13 |  |  | 15.2 | 14.58 (12-19) | 10 |
| 14 |  | Dog | 38 | 120.09 | 8 |
| 15 |  | Rabbit | 37 | 288.010 (200-350) | 11 |
| 16 | Splanchnic | Cow | 37 | 542 11 (369-669) | 4 |
| 17 | Stellar nerve trunk | Cuttlefish (Sepia officinalis) | 21 | $7412(62-95)$ | 1 |
| 18 |  | Squid (Loligo pealii) | 16 | 741 | 2 |
| 19 | Vagus | Dog | 38 | 180 (135-195) | 12 |
| 20 | Ventral cord | Lobster (Homarus americanus) | 24 | 12313 (107-139) | 13 |

/1/ Using oxygen electrode. /2/In blood; reduced to 41 at $17^{\circ} \mathrm{C}$. /3/Corrected for temperature; mean R. Q., 0.83 (0.77-0.88). /4/In winter; increased to 21 in spring; steady for 20 hr . /5/ Mostly in winter frogs; increased by half in summer; Q10 was 2.2. /6/ Figures calculated from Fenn's data by Gerard (1932); increased to 56 in summer. /7/ In winter; increased to 28 in spring; $Q_{10}, 2.2$. /8/ In winter. $/ 9 /$ Reduced to 30 at $22^{\circ} \mathrm{C}$; not altered if degenerated for a week. / $10 / 235 \mathrm{in} 2 \mathrm{nd} \mathrm{hr}$. / /1/ In blood; not significantly different in Tyrode; slightly higher in calves; reduced to 68 at $17{ }^{\circ} \mathrm{C}$. /12/ In sea water. / $13 /$ In sea water, decreases by $1.5 \%$ per hr.

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Keynes, R. D.

References: [1] Cardot, H., Faure, S., and Arvanitaki, A., J. physiol. path. gén. 42:849, 1950. [2] Connelly, C. M., Biol. Bull. 103:315, 1952. [3] Larrabee, M. G., and Bronk, D. W., Cold Spring Harbor Symposia Quant. Biol. 17:245, 1952. [4] Rosenbaum, H., Biochem. Zschr. 247:189, 1932. [5] Fenn, W. O., Am. J. Physlol. 80:327. 1927. [6] Chang. T. 11., Gerard, R. W., and Shaffer, M., ibid 101:19. 1932. [7] Gerard, R. W., ibid 82:381, 1927. [8] Gerard, R. W., Proc. Soc. Exp. Biol. 27:1052, 1930. [9] Fenn, W. O., Am. J. Physiol. 92:349. 1930. [10] Meyerhof, O., and Schmitt, F. O., Biochem. Zschr. 208:445, 1929. [11] Sherif, M. A., J. Pharm. Exp. Ther. 38:231, 1930. [12] Gerard, R. W., and Mclntyre, M. D. (quoted by Gerard, R. W.). Physiol. Rev. 12:469. 1932. [13] Chang, T. H1., Proc. Soc. Exp. Biol. 28:954, 1931.
151. $\mathrm{O}_{2}$ CONSUMPTION: ANIMAL TISSUES (Continued)

Values for oxidation quotient ( $\mathrm{QO}_{2}$ ) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part IX: REPRODUCTIVE TISSUES

|  | Tissue | Animal | Medium | $\mathrm{QO}_{2}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| Male |  |  |  |  |  |
| 1 | Mammary gland | $\begin{aligned} & \text { Rat, } 15-25 \mathrm{wk} \\ & >50 \mathrm{wk} \end{aligned}$ | Ringer phosphate | 3.4 | 1 |
| 2 |  |  |  | 1.9 | 1 |
| 3 | Prostate |  | Ringer glucose | 7.6 | 2 |
| 4 |  |  | Krebs-Ringer phosphate | 1.521 | 3 |
| 5 | Seminal vesicles <br> Castrate | Gulnea pig | Ringer's solution | 4.62 | 4 |
| 6 |  |  | Ringer glucose | 6.1 | 5 |
| 7 |  |  |  | 2.8 | 5 |
| 8 |  | Rat | Krebs-Ringer phosphate | 0.771 | 3 |
| 9 |  |  |  | 2.7 | 6 |
| 10 | SpermatozoaEpididymal | Bull | Ringer phosphate | 6.6 | 7 |
| 11 |  |  | Horse serum | 11.2 | 8 |
| 12 |  |  | Horse serum, glucose | 12.8 | 8 |
| 13 |  |  | Whole serum ${ }^{3}$ | 90 | 9 |
| 14 |  |  | Whole serum ${ }^{4}$ | 180 | 9 |
| 15 |  |  | Ringer phosphate | 2.6 | 10 |
| 16 | Epididymal | Guinea pig |  | 8.0 | 8 |
| 17 |  |  | Serum | 18.4 | 8 |
| 18 | Ejaculated | Rabbit | Ringer phosphate | 4.4 | 11 |
| 19 |  | Ram |  | 9.0 | 11 |
| 20 |  | Rat | Serum | 7.7 | 12 |
| 21 |  | Fowl |  | 2.8 | 11 |
| 22 | Testis | Rabbit | Ringer glucose | 7.7 | 13 |
| 23 |  | Rat |  | 7.5-14.3 | 14-20 |
| 24 |  |  | Serum | 11.0 | 12 |
| 25 |  |  | Ringer phosphate | 2.5 | 21 |
|  |  | Fer |  |  |  |
| 26 | Mammary gland | Rat, virgin <br> 15-25 wk <br> $>50$ wk <br> Normal <br> Breeder <br> Castrate <br> Pregnant <br> Termination of pregnancy <br> Parturition <br> Lactating <br> 4th da <br> 12 th da <br> $15-22 \mathrm{da}$ <br> 24 da <br> Weaning, 2 da after 7 da after | Ringer, bicarbonate, glucose | 20.02 | 22 |
| 27 |  |  | Ringer phosphate | 2.9 | 1 |
| 28 |  |  |  | 2.2 | 1 |
| 29 |  |  | Ringer phosphate, glucose | 3.7 | 23 |
| 30 |  |  | Ringer phosphate | 4.0 | 1 |
| 31 |  |  | Ringer phosphate, glucose | 3.9 | 23 |
| 32 |  |  |  | 10.2 | 23 |
| 33 |  |  | Ringer glucose | 1.3 | 24 |
| 34 |  |  | Ringer, bicarbonate, glucose | $52^{2}$ | 22 |
| 35 |  |  | Ringer phosphate, glucose | 10.1 | 23 |
| 36 |  |  | Ringer, bicarbonate, glucose | 100.02 | 22 |
| 37 |  |  |  | 105.02 | 22 |
| 38 |  |  | Ringer glucose | 10.0 | 24 |
| 39 |  |  | Ringer, bicarbonate, glucose | $70.0{ }^{2}$ | 22 |
| 40 |  |  | Ringer glucose | 5.5 | 24 |
| 41 |  |  | Ringer phosphate, glucose | 5.1 | 23 |
| 42 | Ovary | Mouse | Serum | 9.0 | 12 |
| 43 |  | Rat | Ringer glucose | 5.7 | 2 |
| 44 |  |  | Krebs-Ringer phosphate | $1.14{ }^{1}$ | 3 |
| 45 | Uterus |  |  | 0.731 | 3 |
| 46 |  |  |  | 5.1 | 25 |
| 47 |  | Castrate <br> Castrate <br> Castrate <br> Castrate, plus estrogen | Ringer glucose | 5.3 | 25 |
| 48 |  |  | Ringer's solution | 3.7 | 2 |
| 49 |  |  |  | 5.2 | 25 |
| 50 |  |  |  | 7.9 | 25 |
| 51 | Uterus, endometrium | $\begin{gathered} \text { Man, } 1-5 \mathrm{da} \\ 6-10 \mathrm{da} \\ 18 \mathrm{da} \end{gathered}$ | Potassium pyruvate, glucose | 1.97 | 26 |
| 52 |  |  |  | 3.49 | 26 |
| 53 |  |  |  | 2.68 | 26 |

$/ 1 / \mathrm{cumm}$ oxygen consumed per mg wet weight per hr . / /2/ $\mu \mathrm{l}$ oxygen consumed per mg nitrogen per hr. /3/109 sperm $/ \mathrm{ml}$. $/ 4 / 2 \times 109$ sperm $/ \mathrm{ml}$. /5/ Micromoles oxygen per $g$ wet weight per hr .

Values for oxidation quotient ( $\mathrm{Q}_{2}$ ) are expressed in cu mm oxygen consumed per mg dry weight of tissue per hour, unless otherwise indicated.

Part IX: REPRODUCTIVE TISSUES (Concluded)

|  | Tissue | Animal | Medium | $Q_{\mathrm{O}_{2}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| Female (concluded) |  |  |  |  |  |
| 54 | Uterus, endometrium (concluded) | Man, menopausal | Potassium pyruvate, glucose | 1.28 | 26 |
| 55 |  |  | Saline solution, glucose | 2.35 | 27 |
| 56 | Proliferation, early |  | Krebs-Ringer glucose | 3.24 | 28 |
| 57 | Late |  |  | 4.40 | 28 |
| 58 | Secretory, early |  |  | 3.87 | 28 |
| 59 | Late |  |  | 4.88 | 28 |

/5/ Micromoles oxygen per g wet weight per hr.
Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Elliott, K. A., (e) Jandorf, B. J., (f) Quastel, J. H., and Scholefield, P. G.

References: [1] Tuba, J., and Fraser, M. S., Canad. J. M. Sc. 30:14, 1952. [2] Barker, S. B., and Schwartz, H. S., unpublished. [3] Barker, S. B., and Schwartz, 1I. S., Proc. Soc. Exp. Biol. 83:500, 1953. [4] Humphrey, G. F., and Robertson, M., Austral. J. Exp. Biol. 31:131, 1953. [5] Levey, H. A., and Szego, C. M., unpublished. [6] Porter, J. C., and Melampy, R. M., Endocrinology 51:412, 1952. [7] Lardy, H. A., and Phillips, P. H., J. Biol. Chem. 148:333, 1943. [8] Redenz, E., Biochem. Zschr. 257:234, 1933. [9] Bishop, M. W., and Salisbury, G. W., Am. J. Physiol. 180:107, 1955. [10] Lardy, H. A., Hansen, R. G., and Phillips, P. H., Arch. Biochem., N. Y. 6:41, 1945. [11] Lardy, H. A., and Phillips, P. H., Am. J. Physiol. 138:741, 1943. [12] Fujita, A., Biochēm. Zschr. 197:175, 1928. [13] Ebina, T., Tohoku J. Exp. M. 13:424, 1929. [14] Barker, S. B., and Klitgaard, H. M., Am. J. Physiol. 170:81, 1952. [15] Dickens, F., and Greville, G. D., Biochem. J., Lond. 27:832, 1933. [16] Dickens, F., and Simer, F., ibid 35:7, 1941. [17] Edson, N. L., and Leloir, L. F., ibid $\frac{3}{30}: 2319,1936$. [18] Elliott, K. A., Greig, M. E., and Benoy, M. P., ibid 31:1003, 1937. [19] Warburg, O., Posener, K., and Negelein, E., Biochem. Zschr. 152:309, 1924. [ 20] Weil-Malherbe, H., Biochem. J., Lond. 32:2257, 1938. [21] Paul. H. E., Paul, M. F., and Kopko, F., Proc. Soc. Exp. Biol. 79:555, 1952. [22] Hoover, C. R., and Turner, C. W., Endocrinology 54:666, 1954. [23] Tuba, J., Rawlinson, H. E., and Shaw, L. G., Canad. J. Res. 28:217, 1950. [24] Folley, S. J., and French, T. H., Biochem. J., Lond. 45:270, 1949. [25] Roberts, S., and Szego, C. M., J. Biol. Chem. 201:21, 1953. [26] Hagerman, D. D., and Villee, C. A., Endocrinology 53:667, 1953. [27] Hagerman, D. D., and Villee, C. A., J. Biol. Chem. 203:425, 1953. [28] Stuermer, V. M., and Stein, R. J., Am. J. Obst. 63:359, 1952.

Part X: PLACENTAL TISSUES

| Tissue | Animal | Medium | $\mathrm{Q}_{2}$ | Reference |
| :---: | :---: | :---: | :---: | :---: |
| (A) | (B) | (C) | (D) | (E) |
| 1 Allantois | Chick | Ringer glucose | 22.3 | 1 |
| 2 Chorio-allantois |  |  | 10.4 | 2 |
| 3 Chorio-allantois and yolk sac |  | Krebs saline phosphaie | 5.6 | 3 |
| 4 Chorion | Rat | Ringer glucose | 13.5 | 1 |
| 5 Decidua | Man | Serum | 2.5 | 4 |
| 6 Placenta, 7 wk | Man | Salt solution, pyruvate, glucose | 3.1 | 5 |
| $7 \quad 15 \mathrm{wk}$ |  |  | 2.8 | 5 |
| 830 wk |  |  | 2.2 | 5 |
| $9 \quad 0.4 \mathrm{mg}$ | Mouse | Serum | 7.5 | 0 |
| $10 \quad 10.9-13.7 \mathrm{mg}$ |  |  | 6.4 | 6 |
| 11 Fetal side | Rabbit |  | 5.3 | 4 |
| 12 Uterine side |  |  | 3.4 | 4 |
| 13 | Rat | Horse serum | 3.9 | 4 |
| 1420 da |  | Ringer's solution | 7.3 | 7 |

Contributors: (a) Vernberg, F. J., (b) Fitzgerald, L. R., (c) Barker, S. B., (d) Elliott, K. A., (e) Quastel, J. H., and Scholefield, P. G.
References: [1] Laser, H., Biochem. J., Lond. 31:1671, 1937. [2] Brown, B., and Odenheimer, K., Stanford M. Bull. 11:218, 1953. [3] Moulder, J. M., and Weiss, E., J. Infect. Dis. 88:68, 1951. [4] Bell, W. B., Brooks, J., and Jowett, M., Cancer Res. 12:369, 1928. [5] Villee, C. A., J. Biol. Chem. 205:113, 1953. [6] Fujita, A., Biochem. Zschr. 197:175, 192音. [7] Murphy, J. B., and Hawkins, J. A., J. Gen. Physiol. 8:115, 1925.

## 152. $\mathrm{O}_{2}$ CONSUMPTION: FETAL TISSUES

Values presented in these tables should be considered representative, but not exact, as rarely are enough data presented to justify statistical treatment, and rarely is independent confirmatory information available. Unless otherwise specified, values are for a single, intact embryo.

Part I: SHEEP
Based on blood-flow and blood-gas analysis.

|  | Age, da | Wet Weight, g | $\mu / \mathrm{O}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ |  | Age, da | Wet Weight, g | $\mu \mathrm{Hl} \mathrm{O} / \mathrm{hr}$ | $\mu \mathrm{lo} \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) |  | (A) | (B) | (C) | (D) |
| 1 | 78 | 250 | 120,000 | 474 | 10 | 127 | 2850 | 672,000 | 234 |
| 2 | 95 | 570 | 426,000 | 750 | 11 | 129 | 2750 | 1,512,000 | 4861 |
| 3 | 99 | 920 | 378,000 | 408 | 12 | 130 | 2850 | 726.000 | 252 |
| 4 | 106 | 960 | 552,000 | 576 | 13 | 136 | 2810 | 864.000 | 396 |
| 5 | 108 | 1050 | 498,000 | 474 | 14 | 137 | 3850 | 1,200,000 | 312 |
| 6 | 111 | 1200 | 276,000 | 228 | 15 | 138 | 3650 | 930,000 | 252 |
| 7 | 112 | 1000 | 252,000 | 252 | 16 | 141 | 4100 | 1.320,000 | 324 |
| 8 | 123 | 2040 | 558,000 | 234 | 17 | 144 | 3500 | 840.000 | 240 |
| 9 | 126 | 3000 | 738.000 | 246 | 18 | 152 | 2800 | 984,000 | 258 |

/1/The author believes this value too high, but cannot define the source of error.
Contributor: Fitzgerald, L. R.
Reference: Barcroft, J., "Researches on Prenatal Life," Springfield, 111.: Charles C. Thomas, 1947.
Part 11: RAT
In Lines 1-10, values are based on Cartesian Diver technique; with the exception of Lines 37 and 39 , values in Lines 11-44 are based on Warburg manometric technique. Medium: $\mathrm{A}=0.8 \% \mathrm{NaCl}$, phosphate buffer, $\mathrm{pH} 7.4 ; \mathrm{B}=\mathrm{serum}+$ 0.025 M bicarbonate buffer $+0.2 \%$ glucose; $\mathrm{C}=\operatorname{ser} u m+0.025 \mathrm{M}$ bicarbonate buffer +0.011 M glucose; $\mathrm{D}=\mathrm{Krebs}$ solution; $\mathrm{E}=$ Ringer-phosphate, pH 7.4.

|  | Age da | Stage | Medium | $\begin{gathered} \text { Dry Weight } \\ \text { mg } \end{gathered}$ | $\mu \mathrm{O} \mathrm{O}_{2} / \mathrm{hr}$ | $\mathrm{QO}_{2}{ }^{1}$ | $Q_{M}^{O_{2}^{2}}$ | $Q_{\mathrm{MI}}^{\mathrm{N}_{2}}$ | QS ${ }^{4}$ | R.Q. | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) | (K) |
| 1 |  | Follicular ovum | A |  | 0.00111 | 29 |  |  |  |  | 1 |
| 2 |  | 1 cell | A |  | 0.00072 | 29 |  |  |  |  | 1 |
| 3 |  | 2 cells | A |  | 0.00072 | 29 |  |  |  |  | 1 |
| 4 |  | 2-4 cells | A |  | 0.00073 | 29 |  |  |  |  | 1 |
| 5 |  | 3-4 cells | A |  | 0.00080 | 32 |  |  |  |  | 1 |
| 6 |  | 8 cells | A |  | 0.00106 | 42.5 |  |  |  |  | 1 |
| 7 |  | $8-16$ cells | A |  | 0.00094 | 38 |  |  |  |  | 1 |
| 8 |  | 1-16 cells | A | 0.0002 | 0.00073 |  |  |  |  |  | 2 |
| 9 | 8 |  | A |  | 0.01 | 19.5 |  |  |  |  | 2 |
| 10 | 10 |  | A |  | 0.2 | 13.5 |  |  |  |  | 2 |
| 11 |  |  | B | 0.11 |  |  | 12.8 |  |  |  | 3 |
| 12 |  |  | B | 0.36 |  |  |  | 18.0 |  |  | 3 |
| 13 |  |  | B | 0.39 |  |  |  | 26.3 |  |  | 3 |
| 14 |  |  | B | 0.46 |  |  | 15.9 |  |  |  | 3 |
| 15 |  |  | B | 0.47 |  |  |  | 32.0 |  |  | 3 |
| 16 |  |  | B | 0.57 |  |  |  | 27.3 |  |  | 3 |
| 17 |  |  | B | 0.67 |  |  | 8.2 |  |  |  | 3 |
| 18 |  |  | B | $0.90{ }^{5}$ | 12 | 13.3 |  |  | 13.2 |  | 3 |
| 19 |  |  | B | $0.90{ }^{6}$ | 10.5 | 11.8 |  |  | 15.0 |  | 3 |
| 20 |  |  | B | $1.00{ }^{5}$ | 14.6 | 14.6 |  |  | 15.8 |  | 3 |
| 21 |  |  | B | $1.00{ }^{6}$ | 13.6 | 13.6 |  |  | 17.8 |  | 3 |
| 22 |  |  | B | $1.10^{5}$ | 11.7 | 10.6 |  |  | 9.2 |  | 3 |
| 23 |  |  | B | $1.10^{6}$ | 11.6 | 10.6 |  |  | 11.0 |  | 3 |
| 24 |  |  | C | 1.34 |  |  |  | 26 |  |  | 4 |
| 25 |  |  | C | 1.68 |  |  |  | 20 |  |  | 4 |
| 26 |  |  | B | 1.87 |  |  |  | 14.5 |  |  | 3 |
| 27 |  |  | B | 1.88 |  |  |  | 16.8 |  |  | 3 |
| 28 |  |  | B | 2.40 | 36.7 | 14.3 | 6.7 |  |  |  | 3 |
| 29 |  |  | B | 2.48 |  |  |  | 15.1 |  |  | 3 |
| 30 |  |  | B | 2.50 |  |  | 0 |  |  |  | 3 |
| 31 |  |  | B | 2.55 |  |  | 0 |  |  |  | 2 |
| 32 |  |  | B | 2.62 |  |  |  | 10.0 |  |  | 3 |

$/ 1 / \mathrm{Q}_{\mathrm{O}_{2}}=$ cu mm $\mathrm{O}_{2}$ consumed per mg dry weight tissue per hr. $/ 2 / \mathrm{Q}_{\mathrm{M}}^{\mathrm{O}_{2}}=\mathrm{cu} \mathrm{mm}$ lactic acid formed in $\mathrm{O}_{2}$ per mg dry weight tissue per $\mathrm{hr} . / 3 / \mathrm{Q}_{\mathrm{M}}=\mathrm{cu} \mathrm{mm}$ lactic acid formed in $\mathrm{N}_{2}$ per mg dry weight tissue per hr. $/ 4 / \mathrm{QS}=\mathrm{cu}$ mm acid (carbonic + lactic) formed per mg dry weight tissue per hr. /5/ Membranes intact. /6/ Membranes destroyed.

With the exception of Lines 37 and 39, values in Lines 11-44 are based on Warburg manometric lechnique. Medium: $\mathrm{A}=0.8 \% \mathrm{NaCl}$, phosphate buffer, $\mathrm{pH} 7.4 ; \mathrm{B}=$ serum +0.025 M bicarbonate buffer $+0.2 \%$ glucose; $\mathrm{C}=$ serum + 0.025 M bicarbonate buffer +0.011 M glucose; $\mathrm{D}=$ Krebs solution; $\mathrm{E}=$ Ringer-phosphate, pH 7.4 .

|  | $\begin{gathered} \text { Age } \\ \text { da } \end{gathered}$ | Stage | Medium | Dry Weight mg | $\mu \mathrm{lO} \mathrm{O}_{2} / \mathrm{hr}$ | $\mathrm{QO}_{2}{ }^{1}$ | $Q_{M}^{O_{2}^{2}}$ | $Q_{M}^{N_{2}^{3}}$ | QS ${ }^{4}$ | R. Q. | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) | (K) |
| 33 |  |  | B | 3.105 | 38.7 | 12.5 |  |  | 12.2 |  | 3 |
| 34 |  |  | B | $3.10{ }^{6}$ | 41.2 | 13.3 |  |  | 14.4 |  | 3 |
| 35 |  |  | B | 4.75 |  |  |  | 9.5 |  |  | 3 |
| 36 |  |  | B | 4.89 |  |  |  | 10.7 |  |  | 3 |
| 37 | 12 |  | D |  | 47 |  |  |  |  |  | 5 |
| 38 | 13 |  | E | 8.0 | 55 | 7.2 |  |  |  |  | 6 |
| 39 | 13 |  | D |  | 65 |  |  |  |  |  | 5 |
| 40 |  |  | E | 10.0 |  |  |  |  |  | 1.04 | 7 |
| 41 |  |  | B | 10.6 |  |  |  | 7.5 |  |  | 3 |
| 42 |  |  | E | 30 |  |  |  |  |  | 1.04 | 7 |
| 43 | 13-14 |  | E |  |  | 9 | 0.5 | 2 |  | 0.7-1.0 | 8 |
| 44 | 13-14 |  | E ${ }^{7}$ |  |  | 11 |  | 12 |  | 1.00 | 8 |
| 45 | 14 |  | D |  | 145 |  |  |  |  |  | 5 |
| 46 | 15 |  | D |  | 113 |  |  |  |  |  | 5 |
| 47 | 16 |  | D |  | 154 |  |  |  |  |  | 5 |

$/ 1 / \mathrm{Q}_{\mathrm{O}_{2}}=$ cu $\mathrm{mm} \mathrm{O}_{2}$ consumed per mg dry weight tissue per hr. $/ 2 / \mathrm{Q}_{\mathrm{M}}^{\mathrm{O}_{2}}=\mathrm{cu} \mathrm{mm}$ lactic acid formed in $\mathrm{O}_{2}$ per mg dry weight tissue per $\mathrm{hr} . / 3 / \mathrm{Q}_{\mathrm{M}}=\mathrm{cu} \mathrm{mm}$ lactic acid formed in $\mathrm{N}_{2}$ per mg dry weight tissue per hr . $/ 4 / \mathrm{QS}=\mathrm{cu}$ mm acid (carbonic + lactic) formed per mg dry weight tissue per hr . / $5 / \mathrm{Membranes}$ intact. /6/ Membranes destroyed. /7/ Medium contained added glucose.
Contributor: Fitzgerald, L. R.
References: [ 1] Boell, E. J., and Nicholas, J. S., J. Exp. Zool. 109:267, 1948. [2] Boell, E. J., and Nicholas J. S., Science $90: 411,1939$. [3] Negelein, E., "The Metabolism of Tumors," (ed. Warburg, O., ), London: Constable, 1930. [4] Kuomanomido, S., Biochem. Zschr. 193:315, 1928. [5] Mislivechkova, A., Cesk. Morfol. 2:118, 1954. [6] Kleiber, M., Cole, H. H., and Smith, A. H., J. Cellul. Physiol. 22:167, 1943. [7] Dickens, F., and Simer, F., Biochem. J., Lond. 24:1301. 1930. [8] Dickens, F., and Greville, G. D., ibid 27:832, 1933.

Part III: GUINEA PIG
Values derived from blood-flow and blood-gas measurements.

| Wet Weight, g (A) |  | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{CO} 2 / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{CO} 2 / \mathrm{g} / \mathrm{hr}$ | R.Q. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (B) | (C) | (D) | (E) | (F) |
| 1 | 5.5 | 4,500 | 810 | 7,500 | 1,350 | 1.67 |
| 2 | 16 | 12,000 | 756 | 12,000 | 756 | 1.00 |
| 3 | 23.8 | 6, 000 | 252 | 6,000 | 252 | 1.00 |
| 4 | 35.8 | 23,000 | 643 | 21,000 | 586 | 0.91 |
| 5 | 39 | 15,000 | 385 | 18,000 | 462 | 1.20 |
| 6 | 61.5 | 27,000 | 440 | 30,000 | 488 | 1.11 |

Contributor: Filzgerald, L. R.
Reference: Bohr, C., Skand. Arch. Physiol., Berl. 10:413, 1900.

## PartIV: CHICK

Section 1
Warburg manometric procedures on isolated embryos. Manometric determinations on intact embryos followed by extensive calculations based on separate studies of membrane growth and respiration [ 1]. Medium: A = intact egg In air; $B=$ intact egg in air and isolated tissues in Ringer-phosphate, $\mathrm{pH} 7.4 ; \mathrm{C}=$ isolated embryo in Ringerphosphate, pH 7.2 ; $\mathrm{D}=$ isolated embryo in Krebs solution $+0.24 \%$ glucose; $\mathrm{E}=$ isolated embryo in Ringer-phosphate, $\mathrm{pH} 7.4 ; \mathrm{F}=$ isolated embryo in Ringer-phosphate or Ringer-bicarbonate, pll 7.4. Where values are enclosed in parentheses, glucose was added to the medium.

|  | Age | Medium | Wet Weight mg | $\mu \mathrm{l} \mathrm{O} 2 / \mathrm{hr}$ | $\mu \mathrm{HiO} \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ | $\mathrm{QO}_{2}$ | $\mu \mathrm{Cl} \mathrm{CO}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{CO} 2 / \mathrm{g} / \mathrm{hr}$ | R.Q. | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) |
| 1 | 15 hr | C |  |  |  | 14.0 |  |  |  | 2 |
| 2 | 16 hr | C |  | 4.75(7.12) |  |  |  |  |  | 2 |
| 3 | $161 / 4 \mathrm{hr}$ | C |  | $4.73(5.57)$ |  |  |  |  |  | 2 |
| 4 | 24 hr | C |  |  |  | 12.9 |  |  |  | 2 |
| 5 | $251 / 4 \mathrm{hr}$ | C |  | $6.91(8.32)$ |  |  |  |  |  | 2 |
| 6 | 48 hr ] | C |  | $14.5(19.0)$ |  | 10.7 |  |  |  | 2 |

## Part IV: CHICK (Continued)

Section 1 (Concluded)
Warburg manometric procedures on isolated embryos. Manometric determinations on intact embryos followed by extensive calculations based on separate studies of membrane growth and respiration [1]. Medium: A = intact egg in air; $B=$ intact egg in air and isolated tissues in Ringer-phosphate, $\mathrm{pH} 7.4 ; \mathrm{C}=$ isolated embryo in Ringerphosphate, pH 7.2; $\mathrm{D}=$ isolated embryo in Krebs solution $+0.24 \%$ glucose; $\mathrm{E}=$ isolated embryo in Ringer-phosphate, $\mathrm{pH} 7.4 ; \mathrm{F}=$ isolated embryo in Ringer-phosphate or Ringer-bicarbonate, pH 7.4. Where values are enclosed in parentheses, glucose was added to the medium.

|  | Age | Medium | Wet Weight mg | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ | $\mathrm{Q}_{\mathrm{O}_{2}}$ | $\mu \mathrm{l} \mathrm{CO}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{CO}_{2} / \mathrm{g} / \mathrm{hr}$ | R. Q. | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) |
| 7 | $721 / 2 \mathrm{hr}$ | C |  | 24.1(27.4) |  | 10.7 |  |  |  | 2 |
| 8 | 4 da |  |  |  |  | 16.5 |  |  |  | 3 |
| 9 |  | A |  |  |  | 10.0 |  |  |  | 4 |
| 10 |  | D |  |  |  | 13.3 |  |  | 0.99-1.05 | 5 |
| 11 | 5 da | A |  |  |  | 10.51 |  |  |  | 4 |
| 12 |  | E |  |  |  |  |  |  | 1.00 | 6 |
| 13 |  | F |  |  |  | 8.3(10.0) |  |  | 0.89(1.00) | 7 |
| 14 |  |  |  |  |  | 10.9 |  |  |  | 3 |
| 15 | $6 \mathrm{hr}-5 \mathrm{da}$ | B |  |  |  |  |  |  | 0.95-1.00 | 8 |
| 16 | 6 da | B | 562 | 595 | 1226 |  |  |  |  | 1 |
| 17 |  | A | 428 |  |  |  | 528 | 1200 |  | 9.10 |
| 18 |  | A |  |  |  | 10.2 |  |  |  | 4 |
| 19 | 7 da | A | 832 |  |  |  | 1000 | 1250 |  | 9.10 |
| 20 |  | B | 901 | 869 | 1076 |  |  |  |  | 1 |
| 21 |  |  |  |  |  | 9.4 |  |  |  | 3 |
| 22 | 8 da | B | 1488 | 1357 | 1021 |  |  |  |  | 1 |
| 23 |  | A | 1015 |  |  |  | 1180 | 1190 |  | 9.10 |
| 24 |  |  |  |  |  | 7.5 |  |  |  | 3 |
| 25 | 9 da | B | 2068 | 2090 | 1050 |  |  |  |  | 1 |
| 26 |  | B | 1633 |  |  |  | 2025 | 1240 |  | 8 |
| 27 | 10 da | B | 3168 | 2719 | 949 |  |  |  |  | 1 |
| 28 |  | A | 2534 |  |  |  | 2920 | 1160 |  | 9.10 |
| 29 | 11 da | B | 4304 | 4050 | 1015 |  |  |  |  | 1 |
| 30 |  | A | 3577 |  |  |  | 4080 | 1135 |  | 9.10 |
| 31 | 12 da | B | 6100 | 5460 | 992 |  |  |  |  | 1 |
| 32 |  | A | 4612 |  |  |  | 5375 | 1155 |  | 9,10 |
| 33 | 13 da | B | 8555 | 8262 | 1055 |  |  |  |  | 1 |
| 34 |  | A | 8629 |  |  |  | 8900 | 1030 |  | 9,10 |
| 35 | 14 da | B | 11.838 | 10,783 | 1023 |  |  |  |  | 1 |
| 36 |  | A | 11,431 |  |  |  | 10,500 | 920 |  | 9,10 |
| 37 | 15 da | B | 14,320 | 13,293 | 1030 |  |  |  |  | 1 |
| 38 |  | A | 14,862 |  |  |  | 13.400 | 900 |  | 9.10 |
| 39 | 16 da | B | 17.570 | 15,600 | 990 |  |  |  |  | 1 |
| 40 |  | A | 16,387 |  |  |  | 14,000 | 900 |  | 9.10 |
| 41 | 17 da | B | 21,870 | 18,450 | 920 |  |  |  |  | 1 |
| 42 |  | A | 20,312 |  |  |  | 15,300 | 755 |  | 9,10 |
| 43 | 18 da | B | 24,210 | 19.100 | 850 |  |  |  |  | 1 |
| 44 |  | A | 24,044 |  |  |  | 15,100 | 660 |  | 9.10 |
| 45 | 19 da | B | 28,270 | 20,900 | 765 |  |  |  |  | 1 |
| 46 |  | A | 25,218 |  |  |  | 15,300 | 610 |  | 9.10 |

$/ 1 /$ When serum instead of Ringer's solution was used in medium, $\mathrm{Q}_{2}=12.9$

Contributors: (a) Fitzgerald, L. R., (b) Moog, F.

References: [1] Needham, J., Proc. Roy. Soc., Lond., B 110:46, 1932. [2] Philips, F. S., J. Exp. Zool. 86:257, 1941. [3] Kayser, C., Le Breton, E., and Schaffer, G., C. rend. Acad. sc. 181:255, 1925. [4] Romanoff, A. L., J. Cellul. Physiol. 18:199, 1941. [5] Elliott, K. A., and Baker, Z., Biochem. J., Lond. 29:2433, 1935. [6] Dickens, F., and Simer, F., ibid $24: 1301,1930$. [7] Dickens, F., and Greville, G. D., ibid $27: \overline{832}, 1933$. [8] Needham, J., Proc. Roy. Soc., Lond., B 112:98, 1932. [9] Murray, H. A., Jr., J. Gen. Physiol. $\underline{9}: 1,1925-26$. [10] Murray, H. A., Jr., ibid 10:337, 1926-27.

## Section 2

Method based on Warburg manometric technique. Medium was serum; where values are enclosed in parentheses, however, the medium used was Ringer's solution.

|  | $\begin{gathered} \text { Dry Weight } \\ \text { mg } \end{gathered}$ | $\mathrm{Q}_{\mathrm{O}_{2}}^{1}$ | $Q_{M}^{O_{2}^{2}}$ | $Q_{M}^{N_{2}}$ |  | $\begin{gathered} \text { Dry Weight } \\ \text { mg } \\ \hline \end{gathered}$ | $\mathrm{Q}_{\mathrm{O}_{2}}{ }^{1}$ | $\mathrm{Q}_{\mathrm{M}} \mathrm{O}^{2}$ | $Q_{M}^{N_{2}^{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) |  | (A) | (B) | (C) | (D) |
| 1 | 0.085 | 16.4 | 5.9 | 25.8 | 29 | 2.13 |  |  | 13.7 |
| 2 | 0.086 | 18.1 | 9.2 | 29.4 | 30 | 2.15 |  |  | 9.1 |
| 3 | 0.093 | 20.2 | 7.5 | 23.6 | 31 | 2.21 |  |  | 8.8 |
| 4 | 0.10 | 16.4 | 7.9 | 25.5 | 32 | 2.40 | 11.6 | 0.85 | 13.3 |
| 5 | 0.27 | 22.4 | 5.5 | 18.5 | 33 | 2.44 |  |  | 19.3 |
| 6 | 0.54 | 15.2 | 4.5 | 16.0 | 34 | 2.64 |  |  | (15.4) |
| 7 | 0.58 |  |  | 12.9 | 35 | 2.67 | 12.9 | 0 | 10.5 |
| 8 | 0.70 |  |  | (22.8) | 36 | 2.86 |  |  | (17.0) |
| 9 | 0.79 |  |  | (22.8) | 37 | 2.89 |  |  | 9.4 |
| 10 | 0.81 |  |  | (22.9) | 38 | 2.91 |  |  | 14.7 |
| 11 | 0.83 |  |  | 12.9 | 39 | 2.98 |  |  | 11.4 |
| 12 | 0.86 |  |  | 14.8 | 40 | 3.02 |  |  | (17.4) |
| 13 | 0.905 | 14.3 | 0.6 | 11.4 | 41 | 3.084 | 11.65 | 3.2 |  |
| 14 | 0.92 |  |  | (15.4) | 42 | 3.19 |  |  | (17.9) |
| 15 | 0.95 | 15.9 | 6.9 | 21.0 | 43 | 3.24 |  |  | 9.5 |
| 16 | 0.97 |  |  | (25.9) | 44 | 3.27 |  |  | (14.5) |
| 17 | 1.01 | 18.9 | 1.7 | 11.5 | 45 | 3.49 |  |  | 8.8 |
| 18 | 1.02 |  |  | (18.8) | 46 | 3.52 |  |  | (18.8) |
| 19 | 1.16 | 20.2 | 3.8 | 13.1 | 47 | 3.57 |  |  | 12.4 |
| 20 | 1.17 |  |  | 15.1 | 48 | 3.87 | 10.5 | 0.95 | 9.7 |
| 21 | 1.20 | 21.4 | 5.1 | 16.3 | 49 | 3.97 |  |  | (13.8) |
| 22 | 1.23 |  |  | (20.8) | 50 | 4.01 |  |  | (13.3) |
| 23 | 1.29 |  |  | 12.5 | 51 | $4.10^{4}$ | 11.36 | 1.3 |  |
| 24 | 1.32 |  |  | 15.6 | 52 | 4.21 |  |  | (15.2) |
| 25 | 1.67 |  |  | (21.4) | 53 | 4.27 |  |  | (18.5) |
| 26 | 1.86 | 16.4 | 0.9 | 9.7 | 54 | 4.35 |  |  | 9.7 |
| 27 | 1.90 |  |  | (24.0) | 55 | 4.73 | 8.1 | 1.2 | 7.5 |
| 28 | 1.92 |  |  | 15.4 | 56 | 5.03 |  |  | 5.0 |

$/ 1 / \mathrm{Q}_{\mathrm{O}_{2}}=$ cu mm $\mathrm{O}_{2}$ consumed per mg dry weight tissue per hr. $/ 2 / \mathrm{Q}_{\mathrm{M}}^{\mathrm{O}_{2}}=$ cu mm lactic acid formed in $\mathrm{O}_{2}$ per mg dry weight tissue per $\mathrm{hr} . / 3 / Q_{M}^{N_{2}}=c u m m$ lactic acid formed in $N_{2}$ per mg dry weight tissue per hr. / $4 / \mathrm{Data}$ are from Reference [2]. $/ 5 / \mathrm{R} . \mathrm{Q} .=0.99 . / 6 / \mathrm{R} . \mathrm{Q} .=0.98$.
Contributor: Fitzgerald, L. R.
References: [1] Kuomanomido, S., Biochem. Zschr. 193:315, 1928. [2] Dickens, F., and Simer, F.. Biochem. J., Lond. 25:985, 1931.

Part V: BLACK SNAKE (Coluber constrictor)
Method based on Warburg manometric technique at $23.9^{\circ} \mathrm{C}$.

|  | Age, da | $\mu 1 \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ | $\mu \mathrm{l} \overline{\mathrm{O}_{2}} / \mathrm{hr}$ | $\mathrm{\mu} 1 \mathrm{CO}_{2} / \mathrm{hr}$ | R.Q. |  | Age, da | $\mu \mathrm{lO} \mathrm{O}_{2} / \mathrm{g} / \mathrm{hr}$ | $\mu \overline{\mathrm{l}} \mathrm{O}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{CO}_{2} / \mathrm{hr}$ | R.Q. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |  | (A) | (B) | (C) | (D) | (E) |
| 1 | 1 | 3500 | 210 | 159 | 0.76 | 24 | 30 |  | 337 | 173 | 0.51 |
| 2 | 2 |  | 162 |  |  | 25 | 31 | 200 | 356 | 204 | 0.57 |
| 3 | 3 | 1610 | 185 | 161 | 0.87 | 26 | 33 |  | 334 | 177 | 0.53 |
| 4 | 4 |  | 120 |  |  | 27 | 34 | 192 | 350 | 183 | 0.52 |
| 5 | 5 |  | 135 |  |  | 28 | 36 |  | 365 | 176 | 0.48 |
| 6 | 6 |  | 225 | 181 | 0.81 | 29 | 38 |  | 378 | 229 | 0.61 |
| 7 | 7 |  | 194 | 99 | 0.51 | 30 | 39 |  | 426 | 235 | 0.55 |
| 8 | 8 | 635 | 198 |  |  | 31 | 41 |  | 478 | 279 | 0.58 |
| 9 | 9 |  | 236 |  |  | 32 | 43 | 177 | 500 | 290 | 0.58 |
| 10 | 10 |  | 223 |  |  | 33 | 44 |  | 552 | 313 | 0.57 |
| 11 | 12 | 468 | 305 |  |  | 34 | 46 |  | 531 | 271 | 0.52 |
| 12 | 13 |  | 282 |  |  | 35 | 48 |  | 575 | 326 | 0.57 |
| 13 | 15 |  | 162 |  |  | 36 | 50 |  | 722 | 380 | 0.53 |
| 14 | 17 |  | 234 |  |  | 37 | 51 | 175 | 656 | 357 | 0.54 |
| 15 | 18 | 310 | 272 |  |  | 38 | 53 |  | 813 | 428 | 0.54 |
| 16 | 20 |  | 253 |  |  | 39 | 55 |  | 873 | 490 | 0.56 |
| 17 | 22 |  | 256 |  |  | 40 | 56 |  | 970 | 530 | 0.55 |
| 18 | 23 |  | 252 | 126 | 0.50 | 41 | 58 | 175 | 962 | 560 | 0.58 |
| 19 | 24 | 233 | 277 |  |  | 42 | 59 |  | 1021 | 476 | 0.47 |
| 20 | 25 |  | 300 | 154 | 0.51 | 43 | 61 |  | 1021 | 561 | 0.55 |
| 21 | 26 |  | 282 | 123 | 0.44 | 44 | 62 | 175 | 1227 | 550 | 0.45 |
| 22 | 27 | 226 | 334 |  |  | 45 | 64 |  | 1080 | 583 | 0.54 |
| 23 | 28 |  | 318 | 166 | 0.52 | 46 | 67 | 125 | 1026 | 565 | 0.55 |

## Contributor: Clark, 11.

Reference: Clark, H., J. Exp. Biol., Lond. 30:502, 1953.
152. $\mathrm{O}_{2}$ CONSUMPTION: FETAL TISSUES (Continued)

Part VI: FROG (Rana fusca)
Medium: aquarium water.

| Age, hr |  | Stage | $\mu 1 \mathrm{O}_{2} / \mathrm{hr}$ | R. Q. | mg Lactic Acid/100 ova/hr |  | Reference | |
|---|---|---|---|---|---|---|---|---|
|  |  | Aerobic |  |  | Anaerobic |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) |
| 1. |  | Unfertilized ova |  |  | 0 | 0.04 | 1 |
| 2 | 1 |  | 0.093 |  |  |  | 2 |
| 3 |  | Fertilized oval |  |  | 0 | 0.05 | 1 |
| 4 | 2 |  | 0.126 |  |  |  | 2 |
| 5 | 3-4 |  | 0.164 |  |  |  | 2 |
| 6 |  | 2 blastomeres |  | 0.72 |  |  | 1 |
| 7 |  | Morula | 0.098-0.120 | 0.65 |  |  | 1 |
| 8 | 16-20 | Blastula | 0.151 |  |  |  | 2 |
| 9 |  | Blastula | 0.146 | 0.70 |  |  | 1 |
| 10 |  | Gastrula | 0.184-0.213 | 1.03 | 0.045 | 0.079 | 1 |
| 11 |  | Neurula | 0.334 | 0.98 | 0.057 | 0.069 | 1 |
| 12 |  | Tadpole | 1.167 | 0.97 |  |  | 1 |

/1/Cleavage?
Contributor: Fitzgerald, L. R.
References: [1] Brachet. J., Arch. Biol., Par. 45:611. 1934. [2] Brachet, J., ibid 46:1, 1935.
Part VIl: FROG (Rana temporaria)
Minced embryos in Ringer-bicarbonate.

| Tadpole |  | $Q_{M}^{N_{2}}$ |
| :--- | :--- | :--- |
| 1 | $8-10 \mathrm{~mm}$ | (A) |
| 2 | $10-12 \mathrm{~mm}$ |  |
| 3 | $12-14 \mathrm{~mm}$ |  |
| 4 | $16-18 \mathrm{~mm}$ |  |
| 5 | $18-20 \mathrm{~mm}$ |  |
| 6 | $20-22 \mathrm{~mm}$ |  |

Contributor: Fitzgerald, L. R.
Reference: Nowinski, W. W., Biochem. J., Lond. 33:978. 1939.
Part VIII: GRASS OR LEOPARD FROG (Rana pipiens)
Section 1: Fertilized Oval
Medium: spring water or $10 \%$ Ringer's solution.

| After Fertilization, hr |  | $\mu \mathrm{O} \mathrm{O}_{2} / \mathrm{hr}$ |
| :---: | :---: | :---: |
| 1121/2-31/2 (A) |  | (B) |
|  |  | 0.050 |
| 2 | 2 3/4-3 3/4 | 0.054 |
| 3 | 3-4 | 0.054 |
| 4 | 31/4-4 1/4 | 0.055 |
| 5 | 3 1/2-4 1/2 | 0.059 |
| 6 | 4-5 | 0.052 |
| 7 | 5-6 | 0.061 |
| 8 | 6-7 | 0.057 |
| 9 | 61/2-71/2 | 0.058 |

/1/ Extensive data for later stages given in graphic form in the reference.
Contributors: (a) Fitzgerald, L. R., (b) Moog, F.
Reference: Atlas, M., Physiol. Zool. I1:278, 1938.
152. $\mathrm{O}_{2}$ CONSUMPTION: FETAL TISSUES (Continued)

Part VIII: GRASS OR LEOPARD FROG (Rana pipiens) (Concluded)
Section 2: Shumway Development Stages
Medium: aquarium water.

| Stage |  | Description | $\mu \mathrm{O} \mathrm{O}_{2} / \mathrm{hr}$ | R. Q. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | (B) | (C) | (D) |
| 1 | 3 | Cleavage, early | 0.052 |  |
| 2 | 3 | 2 cells | 0.049-0.056 | 0.73-1.05 |
| 3 | $6+$ | 16-32 cells | 0.080 | 0.88 |
| 4 | $7+$ | Cleavage | 0.105 | 0.84-0.88 |
| 5 | 10 | Gastrula, beginning | 0.173 | 0.90-0.93 |
| 6 | $10+$ |  | 0.136 | 0.90 |
| 7 | $11+$ | Middle | 0.147 | 0.87 |
| 8 | 12 | Late | 0.195-0.250 | 0.82-0.87 |
| 9 | 13 | Neural plate | 0.220-0.320 | 0.82-0.87 |
| 10 | 14 | Neural fold | 0.240-0.270 | 0.83-0.84 |
| 11 | 15 | Neurula | 0.280-0.290 | 0.81-0.86 |
| 12 | $16+$ | Gill-plate | 0.330-0.490 | 0.81-0.88 |

Contributor: Fitzgerald, L., R.
Reference: Barth, L. G., J. Exp. Zool. 103:463, 1946.
Section 3: Harrison Development Stages
Method based on Warburg manometric techniques. Medium: aquarium water.


Contributor: Filzgerald, L. K.
Reference: Wills, I. A., J. Exp. Zool. 73:481. 1936.
152. $\mathrm{O}_{2}$ CONSUMPTION: FETAL TISSUES (Continued)

Part IX: PACIFIC COAST NEWT, OR "WATER DOG" (Triturus torosus)
Medium: aquarium water. Stages refer to the Harrison stage of comparable development.

| Age, da | Stage | $\mu \mathrm{l} \mathrm{O} / \mathrm{hr}$ |  | Age, da | Stage | $\mu / \mathrm{O}_{2} / \mathrm{hr}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (A) | (B) | (C) |  | (A) | (B) | (C) |
| 111 | 1-3 | 0.49 | 18 | 20 | 39 (Hatching) | 2.40 |
| 21 | 3-6 | 0.25 | 19 | 21 | 40 | 2.39 |
| 32 | 7-8 | 0.20 | 20 | 24 | 43 | 2.90 |
| 43 | 9 | 0.39 | 21 | 25 | 44 (Feeding beglns) | 3.40 |
| 53 | 10 | 0.31 | 22 | 30 |  | 3.23 |
| 63 | 11 | 0.46 | 23 | 55 |  | 43.79 |
| 73 | 12 | 0.39 | 24 | 65 |  | 21.38 |
| 8.5 | 15 | 0.43 | 25 | 75 |  | 53.27 |
| 95 | 17 | 0.60 | 26 | 90 |  | 56.31 |
| 10.5 | 19 | 0.54 | 27 | 95 | Metamorphosis | 52.30 |
| 11.5 | 20 | 0.67 | 28 | 100 | Metamorphosis | 72.24 |
| 126 | 22 | 0.57 | 29 | 105 | Metamorphosis | 68.52 |
| 137 | 23 | 0.68 | 30 | 110 | Metamorphosis | 91.65 |
| 14.9 | 29 | 0.44 | 31 | 115 |  | 57.62 |
| 1514 | 35 | 1.04 | 32 | 120 |  | 60.90 |
| 1618 | 37 | 1.20 | 33 | 135 |  | 60.30 |
| $17 \quad 19$ | 38 | 1.49 |  |  |  |  |

Contributor: Fitzgerald, L. R.
Reference: Wills, J. A., J. Exp. Zool. 73:481, 1936.
Part X: SPOTTED AND TIGER SALAMANDERS (Amblystoma punctatum, A. tigrinum)
Method based on modified Thunberg differential respirometer. Medium: either tap water or spring water. Stages refer to the Harrison stage of comparable development

| Stage |  | A. punctatum |  |  | A. tigrinum |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Dry Weight. mg | $\mu 1 \mathrm{O}_{2} / \mathrm{hr}$ | $\mathrm{QO}_{2}$ | Dry Weight, mg | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{hr}$ | $\mathrm{QO}_{2}$ |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) |
| 1 | 7,8,9 | 2.67 | 0.180 | 0.0677 |  |  |  |
| 2 | 10 | 3.181 | $0.265^{1}$ | $0.0838^{1}$ | 2.48 | 0.393 | 0.1586 |
| 3 | 11 |  |  |  | 2.93 | 0.491 | 0.1676 |
| 4 | 12 | 2.86 | 0.283 | 0.0990 | 2.93 | 0.516 | 0.1762 |
| 5 | 13 |  |  |  | 2.25 | 0.464 | 0.2062 |
| 6 | 14 | 2.97 | 0.343 | 0.1156 | 2.90 | 0.661 | 0.2280 |
| 7 | 15 | 2.81 | 0.342 | 0.1219 |  |  |  |
| 8 | 16 | 3.08 | 0.392 | 0.1275 | 2.60 | 0.591 | 0.2274 |
| 9 | 17 | 2.63 | 0.362 | 0.1378 |  |  |  |
| 10 | 18 | 3.28 | 0.430 | 0.1313 | 3.28 | 0.692 | 0.2264 |
| 11 | 19 | 3.26 | 0.490 | 0.1505 |  |  |  |
| 12 | 20 | 2.13 | 0.343 | 0.1611 | 1.97 | 0.471 | 0.2395 |
| 13 | 21 | 3.08 | 0.482 | 0.1565 |  |  |  |
| 14 | 22 |  |  |  | 2.23 | 0.627 | 0.2815 |
| 15 | 23 | 3.01 | 0.482 | 0.1602 |  |  |  |
| 16 | 24 | 2.93 | 0.472 | 0.1611 | 2.03 | 0.685 | 0.3377 |
| 17 | 25 | 3.28 | 0.553 | 0.1689 |  |  |  |
| 18 | 26 |  |  |  | 2.72 | 0.907 | 0.3334 |
| 19 | 27 | 2.99 | 0.622 | 0.2080 |  |  |  |
| 20 | 28 | 2.18 | 0.491 | 0.2257 | 2.83 | 0.964 | 0.3406 |
| 21 | 29 |  |  |  |  |  |  |
| 22 | 30 | 3.30 | 0.885 | 0.2681 | 2.56 | 0.961 | 0.3754 |
| 23 | 31 | 3.02 | 0.911 | 0.3023 |  |  |  |
| 24 | 32 | 3.31 | 0.947 | 0.3126 | 2.85 | 1.285 | 0.4510 |
| 25 | 33 |  |  |  |  |  |  |
| 26 | 34 |  |  |  | 2.82 | 1.316 | 0.4668 |
| 27 | 35 | 2.99 | 1.070 | 0.3579 |  |  |  |
| 28 | 36 |  |  |  | 2.62 | 1.366 | 0.5218 |
| 29 | 37 | 3.19 | 1.553 | 0.4868 | 2.19 | 1.313 | 0.5999 |
| 30 | 38 |  |  |  | 2.82 | 2.605 | 0.9240 |
| 31 | 39 | 2.30 | 1.883 | 0.8186 | 2.31 | 2.319 | 1.004 |
| 32 | 40 | 2.47 | 2.458 | 0.9950 | 2.49 | 2.585 | 1.038 |
| 33 | 41 | 2.31 | 3.710 | 1.616 |  |  |  |
| 34 | 42 |  |  |  | 1.78 | 2.389 | 1.335 |
| 35 | 43 | 2.27 | 3.705 | 1.632 | 1.78 | 3.262 | 1.833 |
| 36 | 44 |  |  |  | 1.43 | 4.058 | 2.838 |
| 37 | 45 | 1.80 | 2.742 | 1.524 | 2.74 | 9.113 | 3.326 |
| 38 | 46 |  |  |  | 1.43 | 3.167 | 2.215 |
| 39 | 14-16 mm larva | 2.24 | 3.516 | 1.556 |  |  |  |
| 40 | 14-21 mm larva |  |  |  | 2.20 | 4.974 | 2.231 |

/1/ Average for more than one weight of embryo.
152. $\mathrm{O}_{2}$ CONSUMPTJON: FETAL TISSUES (Continued)

Part X: SPOTTED AND TIGER SALAMANDERS (Amblystoma punctatum, A. tigrinum) (Concluded) Method based on modified Thunberg differential respirometer. Medium: either tap water or spring water. Stages refer to the llarrison stage of comparable development.

| Stage |  | A. punctatum |  |  | A. tigrinum |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Dry Weight, mg | ${ }_{\mu} \mathrm{O}_{2} / \mathrm{hr}$ | $\mathrm{QO}_{2}$ | Dry Weight. mg | $\mu) \mathrm{O}_{2} / \mathrm{hr}$ | $\mathrm{QO}_{2}$ |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) |
| 41 | 17-21 mm larva | 4.38 | 6.597 | 1.542 |  |  |  |
| 42 | 22-27 mm larva | 7.80 | 9.422 | 1.225 |  |  |  |
| 43 | 22-37 mm larva |  |  |  | 15.81 | 28.86 | 1.919 |
| 44 | 28-36 mm larva | 26.01 | 26.33 | 1.067 |  |  |  |
| 45 | 37-48 mm larva | 70.29 | 59.62 | 0.885 |  |  |  |
| 46 | 38-54 mm larva |  |  |  | 53.40 | 67.37 | 1.258 |
| 47 | 55-72 mm larva |  |  |  | 148.3 | 136.4 | 0.936 |
| 48 | 73-93 mm larva |  |  |  | 317.6 | 213.8 | 0.6784 |
| 49 | 82-85 mm larva |  |  |  | 346.6 | 298.3 | 0.862 |

Contributor: Fitzgerald, L. R.
Reference: Hopkins, H. S., and Handford, S. W., J. Exp. Zool. 93:403, 1943.
Part XI: SPOTTED SALAMANDER (Amblystoma maculatum)
Method based on Warburg manometric technique. Medium: aquarium water. Stages refer to the Harrison stage of comparable development.

|  | Age, da | Stage | $\mu] \mathrm{O}_{2} / \mathrm{hr}$ |  | Age, da | Stage | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{hr}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) |  | (A) | (B) | (C) |
| 1 | I | 7-8 | 0.54 | 29 | 29 |  | 8.27 |
| 2 | 1 | 8-9 | 0.34 | 30 | 30 |  | 9.41 |
| 3 | 2 | 15-16 | 0.43 | 31 | 31 |  | 10.48 |
| 4 | 3 | 18-19 | 0.55 | 32 | 32 |  | 11.42 |
| 5 | 3-4 | 29-31 | 0.65 | 33 | 33 |  | 11.15 |
| 6 | 4 | 32 | 0.73 | 34 | 34 |  | 12.52 |
| 7 | 5 | 33-34 | 1.28 | 35 | 35 |  | 13.46 |
| 8 | 6 | 37-38 | 1.70 | 36 | 36 |  | 12.88 |
| 9 | 7 | 39-40 | 2.11 | 37 | 37 |  | 13.40 |
| 10 | 8 | 41 | 2.36 | 38 | 38 |  | 13.20 |
| 11 | 9 | 42 (Hatching) | 2.69 | 39 | 39 |  | 15.36 |
| 12 | 10 | 43 | 3.64 | 40 | 40 |  | 17.19 |
| 13 | 11 | 44 | 4.53 | 41 | 41 |  | 18.22 |
| 14 | 12 | 45 | 5.46 | 42 | 42 |  | 18.98 |
| 15 | 14 | 46 (Feeding begins) | 6.03 | 43 | 43 |  | 19.18 |
| 16 | 15 | 46 | 6.10 | 44 | 44 |  | 18.20 |
| 17 | 17 |  | 5.47 | 45 | 45 |  | 20.82 |
| 18 | 18 |  | 5.80 | 46 | 53 |  | 38.30 |
| 19 | 19 |  | 6.10 | 47 | 58 |  | 41.50 |
| 20 | 20 |  | 6.48 | 48 | 60 |  | 64.00 |
| 21 | 21 |  | 5.65 | 49 | 66 |  | 45.20 |
| 22 | 22 |  | 5.97 | 50 | 68 |  | 28.00 |
| 23 | 23 |  | 5.88 | 51 | 73 |  | 63.10 |
| 24 | 24 |  | 6.21 | 52 | 80 |  | 107.40 |
| 25 | 25 |  | 6.48 | 53 | 85 | Metamorphosis | 118.70 |
| 26 | 26 |  | 6.57 | 54 | 105 |  | 107.30 |
| 27 | 27 |  | 7.08 | 55 | 115 |  | 118.20 |
| 28 | 28 |  | 7.55 |  |  |  |  |

Contributor: Fitzgerald, L. R.
Reference: Wills, I. A., J. Exp. Zool. 73:481, 1936.
Part XIl: MEXICAN SALAMANDER (Amblystoma mexicanum)
Method based on Warburg manometric technique at temperature of $22.6{ }^{\circ} \mathrm{C}$.

|  | Age, hr | Stage | $\mu \mathrm{CO} / \mathrm{hr}$ |  | Age, hr | Stage | $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{hr}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (8) | (C) |  | (A) | (B) | (C) |
| 1 | 8 | Blastula | 0.168 | 9 | 75 |  | 0.550 |
| 2 | 16 | Gastrula, early | 0.193 | 10 | 90 |  | 0.818 |
| 3 | 24 | Gastrula, late | 0.248 | 11 | 100 |  | 0.970 |
| 4 | 32 | Neurula, early | 0.286 | 12 | 115 |  | 1.365 |
| 5 | 40 | Neurula, late | 0.305 | 13 | 140 |  | 2.10 |
| 6 | 48 | Tail-bud, early | 0.325 | 14 | 165 |  | 2.71 |
| 7 | 56 | Tail-bud, late | 0.363 | 15 | 190 |  | 3.30 |
| 8 | 65 |  | 0.425 | 16 | 220 |  | 3.95 |

Contributor: Fitzgerald, L. R.
Reference: Fisher, F. G., and Hartwig, 11., Biol. Zbl. 58:567, 1938.

Part XIH: ATLANTIC SALMON (Salmo salar)
Values are expressed in $\mu \mathrm{l} \mathrm{O}_{2} / \mathrm{g}$ wet $\mathrm{wt} / \mathrm{hr}$.
Medium: $10 \%$ sea-water.

| Age, da <br> $(A)$ |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |
| :---: | :---: | :---: | :---: |
| 1 | 19 |  | $(\mathrm{~B})$ |
| 2 | 21 |  | 136.5 |
| 3 | 24 |  | 137.5 |
| 4 | 26 |  | 131.5 |
| 5 | 30 |  | 151.0 |
| 6 | 32 |  | 146.0 |
| 7 | 35 |  | 156.0 |
| 8 | 37 |  | 149.0 |
| 9 | 39 |  | 145.0 |
| 10 | 45 |  | 152.0 |
| 11 | 50 |  |  |

Contributor: Fitzgerald, L. R.
Reference: Hayes, F. A., Wilmot, 1. R., and Livingstone, D. A., J. Exp. Zool. 116:377, 1951.

Part XIV: COMMON KILLIF1SH (Fundulus heteroclitus)
Medium: S-W = sea water; $\mathbf{A}=$ water-saturated air.

|  | Age | Stage | Medium | $\mu \mathrm{O} \mathrm{O}_{2} / \mathrm{hr}$ | $\mu \mathrm{l} \mathrm{CO}_{2} / \mathrm{hr}$ | R.Q. | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) |
| 1 | $1-1 \frac{1}{2} \mathrm{hr}$ |  | S-W | 0.029-0.036 |  |  | 1 |
| 2 | $1 \frac{1}{2}-2 \mathrm{hr}$ |  | S-W | 0.026-0.033 |  |  | 1 |
| 3 | 2-2 $\frac{1}{2} \mathrm{hr}$ |  | S-W | 0.023-0.037 |  |  | 1 |
| 4 | $2 \frac{1}{2}-3 \mathrm{hr}$ |  | S-W | 0.022-0.035 |  |  | 1 |
| 5 | 2-5 hr | Up to 8 cells | S-W | 0.01 |  |  | 2 |
| 6 | $3-3 \frac{1}{2} \mathrm{hr}$ |  | S-W | 0.028-0.038 |  |  | 1 |
| 7 | $3 \frac{1}{2}-4 \mathrm{hr}$ |  | S-W | 0.025-0.037 |  |  | 1 |
| 8 | $4-4 \frac{1}{2} \mathrm{hr}$ |  | S-W | 0.022-0.044 |  |  | 1 |
| 9 | $4 \frac{1}{2}-5 \mathrm{hr}$ |  | S-W | 0.027-0.054 |  |  | 1 |
| 10 | 5-5 $\frac{1}{2} \mathrm{hr}$ |  | S-W | 0.026-0.040 |  |  | 1 |
| 11 | $4-6 \mathrm{hr}$ | 2-4 cells | S-W | 0.04 |  |  | 2 |
| 12 | 6-8 hr | 32 cells | S-W | 0.03 |  |  | 2 |
| 13 | $9-11 \mathrm{hr}$ | Small disc | S-W | 0.02 |  |  | 2 |
| 14 | $9-11 \mathrm{hr}$ | Many cells | S-W | 0.04 |  |  | 2 |
| 15 | 22-24 hr | Large disc | S-W | 0.05 |  |  | 2 |
| 16 | 1 da |  | A | 0.03 | 0.03 | 0.85 | 3 |
| 17 | 26-29 hr |  | S-W | 0.06 |  |  | 2 |
| 18 | $30-32 \mathrm{hr}$ |  | S-W | 0.07 |  |  | 2 |
| 19 | 34-37 hr | Embryo with eyes | S-W | 0.07 |  |  | 2 |
| 20 | 2 da |  | S-W | 0.07 |  |  | 2 |
| 21 | 2 da |  | A | 0.09 | 0.07 | 0.77 | 3 |
| 22 | $2 \frac{1}{2} \mathrm{da}$ |  | S-W | 0.07 |  |  | 2 |
| 23 | 3 da |  | S-W | 0.05 |  |  | 2 |
| 24 | 3 da |  | A | 0.16 | 0.12 | 0.75 | 3 |
| 25 | $3 \frac{1}{2} \mathrm{da}$ | Circulation established | S-W | 0.12 |  |  | 2 |
| 26 | 4 da |  | A | 0.21 | 0.16 | 0.75 | 3 |
| 27 | 4 da |  | S-W | 0.09 |  |  | 2 |
| 28 | $4 \frac{b}{2} \mathrm{da}$ |  | S-W | 0.09 |  |  | 2 |
| 29 | 5 da |  | A | 0.20 | 0.15 | 0.74 | 3 |
| 30 | $5 \frac{1}{2} \mathrm{da}$ |  | S-W | 0.08 |  |  | 2 |
| 31 | 6 da |  | A | 0.26 | 0.19 | 0.74 | 3 |
| 32 | 6 da |  | S-W | 0.07 |  |  | 2 |
| 33 | 7 da |  | A | 0.35 | 0.25 | 0.70 | 3 |
| 34 | 8 da |  | A | 0.40 | 0.28 | 0.70 | 3 |
| 35 | 9 da |  | A | 0.48 | 0.35 | 0.74 | 3 |
| 36 | 10 da |  | A | 0.43 | 0.32 | 0.76 | 3 |
| 37 | 11 da |  | A | 0.41 | 0.30 | 0.73 | 3 |
| 38 | 12 da | Hatching begins | A | 0.44 | 0.33 | 0.76 | 3 |

[^28] W. R., and Armstrong, P. B., J. Cellul. Physiol. 2:381, 1933.

Values for oxidation quotient ( $\mathrm{Q}_{2}$ ) are expressed in cu mm oxygen per mg final dry weight of tissue per hour, unless otherwise indicated. Media are descrlbed in the appropriate footnotes in terms of quantity of ion per liter of solution.

Part I: GUINEA PIG LIVER AND RABBIT KIDNEY CORTEX
Values in parentheses are ranges, estimate " $c$ " of the $95 \%$ range (cf Introduction).

|  | $\mathrm{K}^{+}$Concentration in Suspending Medium ${ }^{1}$ $\mathrm{mEq} / \mathrm{L}$ | $\mathrm{QO}_{2}{ }^{2}$ | Water Content ${ }^{3}$ $\mathrm{g} / 100 \mathrm{~g}$ wet wt | $\begin{aligned} & \text { Tissue Volume } 4,5 \\ & \frac{\text { wet wt }}{\text { dry wt }} \end{aligned}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| Liver, Guinea Pig |  |  |  |  |  |
| 1 | 0 | 3.8(2.9-4.8) | 79.0(77.6-79.8) | 1.28(1.19-1.36) | 1.2 |
| 2 | 5 | 4.5(3.5-5.7) | 76.0(72.8-78.7) | 1.09(1.00-1.23) | 1.2 |
| 3 | 10 | 5.0(4.0-6.1) | 75.7(73.0-78.6) | 1.08(0.97-1.16) | 1,2 |
| 4 | 20 | 5.2(4.1-6.1) | 75.5(73.2-77.9) | 1.08(0.97-1.17) | 1,2 |
| 5 | 40 | 5.1(4.1-6.2) | 76.9(74.6-80.2) | 1.11(0.99-1.32) | 1,2 |
| 6 | 70 | 5.0(3.8-5.5) | 78.0(75.3-81.4) | 1.19(1.03-1.32) | 1,2 |
| Kidney Cortex, Rabbit |  |  |  |  |  |
| 7 | 0 | 14.7(12.5-18.0) | 76.0(73.0-79.7) | 0.96(0.86-1.13) | 3 |
| 8 | 5 | 15.8(14.5-17.5) | 74.4(73.4-76.7) | 0.90(0.87-0.99) | 3 |
| 9 | 10 | 14.8(13.6-15.7) | 75.0(73.2-78.2) | 0.92(0.86-1.04) | 3 |
| 10 | 20 | 15.3(14.1-16.9) | 77.5(75.2-80.0) | 1.02(0.93-1.15) | 3 |
| 11 | 40 | 17.6(15.4-21.5) | 81.4(79.6-83.3) | 1.24(1.13-1.38) | 3 |
| 12 | 55 | 19.4(18.0-20.6) | 83.0(81.4-83.7) | 1.36(1.24-1.42) | 3 |
| 13 | 70 | 20.8(18.8-22.5) | 85.2(84.2-86.5) | 1.56(1.46-1.71) | 3 |

$/ 1 /$ Medium containing ( $155-\mathrm{X}$ ) $\mathrm{mEq} \mathrm{Na}+, \mathrm{XmEqK} \mathrm{K}^{+}, 4.6 \mathrm{mEq} \mathrm{Ca}^{++}$and $3.0 \mathrm{mEq} \mathrm{Mg}{ }^{++}$, buffered by 20 mM phosphate; $\mathrm{pH}=7.15$; addition of glucose, pyruvate, glutamate and fumarate as substrates ( 5 mM each).
$/ 2 /$ Estimated by Warburg's direct method at $37.5^{\circ} \mathrm{C} . / 3 /$ Calculated from final wet weight and final dry weight of slices (dried in oven at $105^{\circ} \mathrm{C}$ until constant weight reached.) / / / Calculated from change in wet weight per unit of tissue solids (dry weight), the wet weight/dry weight ratio of liver tissue or kidney cortex, removed immediately after death, being the reference base of the data. Per cent water content: fresh guinea pig liver, 73.65(71.1-76.6); rabbit kidney cortex, $76.8(73.6-78.6) . \quad / 5 /$ Relative tissue volume in vivo $=1.0$

Contributor: Aebi, H.
References: [1] Aebi, H., Helvet, physiol. pharm. acta $10: 184,1952$. [2] Aebi, H., unpublished. [3] Aebi, H., Helvet. physiol. pharm. acta 11:96, 1953.

Part II: RABBIT KIDNEY CORTEX, VARIOUS TEMPERATURES

| $K^{+}$Concentration in Suspending Medium ${ }^{1}$ mEq/L |  | Incubation Immediately after Death, $4^{\circ} \mathrm{C}$ | Incubation Immediately after Death, $22^{\circ} \mathrm{C}$ |  | Incubation after "Leaching," $25^{\circ} \mathrm{C}$ |  | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Water Content 2 <br> $\mathrm{g} / 100 \mathrm{~g}$ wet wt | $\mathrm{Q}_{\mathrm{O}_{2}}{ }^{3}$ | Water Content ${ }^{2}$ $\mathrm{g} / 100 \mathrm{~g}$ wet wt | $\mathrm{QO}_{2}{ }^{4}$ | Water Content ${ }^{5}$ $\mathrm{g} / 100 \mathrm{~g}$ wet wt |  |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) |
| 1 | 0 | 79.9 | 4.4 | 74.0 | 2.9 | 79.2 | $B-D, 1 ; E, F, 2$ |
| 2 | 10 | 80.1 | 4.7 | 74.8 | 3.5 | 79.2 | B-D,1; E, F, 2 |
| 3 | 20 | 80.4 | 4.2 | 76.2 | 3.4 | 79.5 | B-D,1;E,F,2 |
| 4 | 40 | 81.6 | 4.8 | 80.3 | 2.9 | 79.0 | B-D, 1; E, F, 2 |
| 5 | 55 | 81.5 | 4.7 | 82.1 |  |  | B-D, 1; E,F,2 |
| 6 | 70 | 81.8 | 4.6 | 83.9 | 2.5 | 81.0 | $B-D, 1 ; E, F, 2$ |

$/ 1 /$ Medium for Columns $B, C$ and $D$ containing ( $155-X$ ) mEq. $\mathrm{Na}^{+}, \mathrm{X} \mathrm{mEqK} \mathrm{K}^{+} 4.6 \mathrm{mEq} \mathrm{Ca}^{++}$and $3.0 \mathrm{mEq} \mathrm{Mg}{ }^{++}$, buffered by 20 mM phosphate; $\mathrm{pH}=7.15$; addition of glucose, pyruvate, glutamate and fumarate as substrates $(5 \mathrm{mM}$ each). Medium for $E$ and $F$ containing ( $150-X$ ) $\mathrm{mEq} \mathrm{Na}+, X \mathrm{mEq} \mathrm{K}^{+}$and $1.4 \mathrm{mEq} \mathrm{Ca}^{++}$, buffered by 3.7 mM phosphate; $\mathrm{pH}=7.4$; addition of 0.01 M Na -acetate as substrate. /2/Calculated from final wet weight and final dry weight of slices (dried in oven at $105^{\circ} \mathrm{C}$ until constant weight reached). /3/ Estimated by Warburg's direct method. /4/ Original data were given on an initial wet weight basis and have been converted to a dry weight basis. /5/Calculated as described in Footnote 2, but using different drying technique (dried in a vacuum oven over phosphorus pentoxide at $80^{\circ} \mathrm{C}$ ).

Contributor: Aebi, H
Keference: [1] Aebi. H.. Helvet. physiol. pharm. acta 11:96, 1953. [2] Mudge, G. H., Am. J. Physiol. 165:113, 1951.
153. EFFECT OF POTASSIUM ION CONCENTRATION ON O 2 CONSUMPTION: ANIMAL TISSUES (Continued)

Values for oxidation quotient $\left(\mathrm{QO}_{2}\right)$ are expressed in cu mm oxygen per mg final dry weight of tissue per hour, unless otherwise indicated. Media are described in the appropriate footnotes in terms of quantity of ion per liter of solution.

Part IIl: RAT DIAPHRAGM, VARIOUS pH LEVELS

|  | pH | $\mathrm{K}^{+}$Concentration in Suspending Medium ${ }^{1}$ $\mathrm{mM} / \mathrm{L}$ | $\mathrm{Q}_{2}$ |
| :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) |
| 1 | 7.3 | 12 | 13.7 |
| 2 |  | 15 | 12.6 |
| 3 |  | 18 | 11.3 |
| 4 |  | 24 | 10.5 |
| 5 |  | 30 | 9.4 |
| 6 | 6.5 | 12 | 9.3 |
| 7 |  | 18 | 8.9 |
| 8 |  | 24 | 9.3 |
| 9 |  | 30 | 7.9 |
| 10 | 6.0 | 12 | 7.0 |
| 11 |  | 18 | 7.2 |
| 12 |  | 24 | 7.0 |
| 13 |  | 30 | 6.7 |
| 14 | 7.0 | 12 | 13.0 |
| 15 |  | $12^{2}$ | 14.6 |
| 16 |  | 123 | 11.8 |

/1/ Medium containing ( $0.120-\mathrm{X}) \mathrm{M} \mathrm{NaCl}, \mathrm{X} \mathrm{M} \mathrm{KCl}, 0.0006 \mathrm{M}$ $\mathrm{CaCl}_{2}, 0.0005 \mathrm{M} \mathrm{MgCl}_{2}, 0.03 \mathrm{M}$ phosphate buffer, and 0.01 M pyruvate, except in Lines 15 and $16 . / 2 /$ Plus 0.01 M pyruvate. /3/ Plus 0.01 M glucose.
Contributor: Fitzgerald, L. R.
Reference: Frunder, H., Zschr. physiol. Chem. 291:217, 1953.
PartIV: RAT BRAIN, VARIOUS SUBSTRATES

| Final Concentration of Added KCl in Suspending Medium ${ }^{1}$ $\mathrm{mEq} / \mathrm{L}$ |  | $\mathrm{Q}_{\mathrm{O}_{2}}{ }^{2}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Glucose Substrate |  | Fructose Substrate |  | Lactate Substrate |  |
|  |  | Before | 30 min after | Before | 30 min after | Before | 30 min after |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) |
| 1 | 2.4 | 10.2 | 10.5 | 10.0 | 10.1 | 15.0 | 14.5 |
| 2 | 52 | 10.4 | 20.6 | 12.2 | 24.7 |  |  |
| 3 | 102 | 10.2 | 19.3 | 10.8 | 21.6 | 15.2 | 22.9 |

$/ 1 /$ Initial jonic composition of medium: $120 \mathrm{mEq} \mathrm{Na}+, 2.4 \mathrm{mEq} \mathrm{K}+, 3.4 \mathrm{mEq} \mathrm{Ca}+$, $1.6 \mathrm{mEq} \mathrm{Mg}{ }^{++}$; buffered by $18 \mathrm{mM} / \mathrm{L}$ phosphate, $\mathrm{pH}=7.4$; concentration of added substrates, $11 \mathrm{mM} / \mathrm{L}$. Additional amounts of potassium (as solid KCl ) were added only after first incubation period ( 30 min ). Values in Columns C . E and G are corresponding mean values for the $30-\mathrm{min}$ period following addition of KCl . $/ 2 /$ Estimated by Warburg's direct method at $37.5^{\circ} \mathrm{C}$.
Contributor: Aebi, H.
Reference: Dickens, F., and Greville, G. D., Biochem. J., Lond. 29:1468, 1935.
Part V: RAT CEREBRAL CORTEX, VARIOUS SUBSTRATES
Medium: Krebs-Ringer solution with $\mathrm{Ca}{ }^{++}$reduced to $4.5 \times 10^{-4} \mathrm{M}, \mathrm{pH}=7.4$.

| Substratel |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Control | +0.1 M KCl |
|  | (A) | (B) | (C) |
| 1 | Glucose | 10.0 | 17.5 |
| 2 | L-Glutamate | 6.0 | 4.7 |
| 3 | Glucose + - -glutamate | 12.0 | 12.2 |
| 4 | Glucose + citrate | 18.5 | 19.4 |
| 5 | a-Ketoglutarate | 4.5 | 4.0 |
| 6 | Glucose + a-ketoglutarate | 14.2 | 15.2 |
| 7 | Succinate | 9.2 | 5.9 |
| 8 | Glucose + succinate | 17.0 | 16.9 |
| 9 | Glucose + succinate +0.25 M malonate | 10.8 | 14.8 |
| 10 | Glucose + L-asparate | 10.3 | 15.7 |
| 11 | Glucose + dL-methionine | 9.3 | 20.3 |
| 12 | Glucose + L-glutamine | 14.5 | 21.1 |

/1/ All substrates present in 0.01 M quantities.
Contributor: Fitzgerald, L. R.
Reference: Lipsett, M. N., and Crescitelli, F., Arch. Biochem. and Biophys. 28:329, 1950.
153. EFFECT OF POTASSIUM ION CONCENTRATION ON O 2 CONSUMPTION: ANIMAL TISSUES (Concluded)

Values for oxidation quotient $\left(\mathrm{Q}_{2}\right)$ are expressed in cu mm oxygen per mg final dry weight of tissue per hour, unless otherwise indicated. Media are described in the appropriate footnotes in terms of quantity of ion per liter of solution.

Part Vl: GUINEA PIG CEREBRAL CORTEX, VARIOUS RELATIVE C.ONCENTRA TIONS OF POTASSIUM AND SODIUM

| $\mathrm{K}^{+}$Concentration in Suspending Medium ${ }^{1}$ $\mathrm{mEq} / \mathrm{L}$ |  | $\mathrm{QO}_{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Isotonic Medium $(\mathrm{Na}+\mathrm{K}=0.162 \mathrm{M})$ | Hypertonic Medium ${ }^{2}$ ( $0.162 \mathrm{M} \mathrm{Na}+\mathrm{XK}$ ) | Hypertonic Medium $(\mathrm{Na}+\mathrm{K}=0.303 \mathrm{M})$ |
|  | (A) | (B) | (C) | (D) |
| 1 | 0 | 9.4 | 9.7 | 2.8 |
| 2 | 0.001 | 10.1 |  |  |
| 3 | 0.005 | 13.9 |  |  |
| 4 | 0.010 | 14.8 | 15.4 |  |
| 5 | 0.020 | 18.4 |  |  |
| 6 | 0.040 | 21.1 | 21.2 | 12.0 |
| 7 | 0.080 |  |  | 15.7 |
| 8 | 0.143 | 6.5 | 15.2 |  |
| 9 | 0.152 |  |  | 17.1 |
| 10 | 0.220 |  |  | 12.3 |
| 11 | 0.285 |  |  | 6.9 |

/1/ Besides the above indicated Na - and K -ion concentration, all media contain 0.01 M phosphate as a buffer, and $0.1 \%$ glucose as substrate; $\mathrm{pH}=7.5 . / 2 / \mathrm{X}=$ concentration oi $\mathrm{K}^{+}$shown in Column A .
Contributor: Aebi, H.
Reference: Canzanelli, A., Rogers, G., and Rapport, D., Am. J. Physiol. 135:309, 1941-42.
Part VII: RAT AND RABBIT, VARIOUS TISSUES
Medium: Ringer's solution.

| Tissue |  | $\mathrm{Q}_{2}$ |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Control | $+2.9 \times 10^{-3} \mathrm{M} \mathrm{KCl}$ |  |
|  | (A) | (B) | (C) | (D) |
| Rat |  |  |  |  |
| 1 | Liver | 9.7 | 5.6 | 1 |
| 2 | Kidney | 18.4 | 17.4 | 1 |
| 3 | Spleen | 12.9 | 12.2 | 1 |
| 4 | Cerebral cortex | 3.6 | 1.9 | 1 |
| 5 | Liver (embryo) | 10.8 | 10.7 | 1 |
| 6 | Kidney (embryo) | 12.6 | 13.4 | 1 |
| Rabbit |  |  |  |  |
| 7 | Brain | 7.1 | 14.1 | 2 |

/1/ Except for rabbit brain where KCl added was 0.1 M . Contributor: Fitzgerald, L. R.
References: [1] Lasnitsky, A., C. rend. Soc. biol. 143:967, 1949. [2] Ashford, C. A., and Dixon, K. C., Biochem. J., Lond. 29:157, 1935.

Part VIll: FROG SCIATIC NERVE

Medium: Ringer's solution or isotonic NaCl (no significant difference).

|  | KCl <br> $\%$ |  |  |  | $\mathrm{QO}_{2}$ Decrease <br> $\%$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | $(\mathrm{~A})$ | $(\mathrm{B})$ |  |  |
| $\mathbf{1}$ | 10 |  | 0 |  |  |
| 2 | 20 |  | 17 |  |  |
| 3 | 30 |  | 26 |  |  |
| 4 | 40 |  | 34 |  |  |
| 5 | 50 |  | 43 |  |  |
| 6 | 70 |  | 44 |  |  |
| 7 | 80 |  | 50 |  |  |
| 8 | 100 |  | 50 |  |  |

Contributor: Fitzgerald, L. R.

Reference: Chang, T. II., Schaffer, M., and Gerard, 12. W., Am. J. Physiol. 111:681, 1935.

## Part IX: CRAB LIMB NERVE

Values are expressed in $\mu l$ per gram wet weight of tissue per hour. Species of crab used were mainly Libinia emarginata and Grapsus grapsus.

|  | $\mathrm{K}^{+}$Concentration in <br> Suspending Medium 1 <br> $\mathrm{mM} / \mathrm{L}$ | $\mathrm{Q}_{\mathrm{O}_{2}}$ |
| ---: | ---: | :--- |

/1/ Artificial sea water.
Contributor: Fitzgerald, L. K.
Reference: Shanes, A. M., and llopkins, H. S., J.
Ncurophysiol. 11:331, 1948.

# 154. SURVIVAL AND REVIVAL UNDER CONDITIONS OF ANOXLA 

OR ARRESTED CIRCULATION: ANIMAL TISSUES
Adult tissue, in situ, at room temperature, normal body temperature, unless otherwise indicated. $\mathrm{N}=$ anoxia produced by cessation of respiration or by administration of nitrogen to animal or to isolated tissue; C $=$ circulation arrested by obstructing or bypassing total afferent blood supply to organ.

| Tissue |  | Animal | Survival Time ${ }^{1}$ |  | Revival Time ${ }^{2}$ |  | References | |
|---|---|---|---|---|---|---|---|---|
|  |  | min | Condition | min | Condition |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) |
| 1 | Brain, cerebral cortex | Cat | 1/6-1/4 | C | $<3$ | C | C, D, 1, 2; E, F, 3 |
| 2 |  | Cat |  |  | >5-10 | C |  |
| 3 |  | Dog |  |  | 1-8 | C | 5,6 |
| 4 |  | Dog 3 |  |  | 12-20 | C | 5.6 |
| 5 |  | Rabbit | 1/3-2 | N |  |  | 7 |
| 6 |  | Rat | 1-11/2 | N |  |  | 8 |
|  | Brain stem |  |  |  |  |  |  |
| 7 | Telencephalon and mesencephalon | Rabbit | 1/3-4 | N |  |  | 7 |
| 8 | Pupillary centers | Dog | 3-4 | $\mathrm{C}^{4}$ |  |  | 9 |
| 9 | Medulla | Rabbit | 1/2-8 | N |  |  | 7 |
| 10 | Cardioregulatory, vasomotor. and adrenosecretory centers | Dog | 4-5 | $C^{4}$ | 15-30 | $C^{4}$ | 9 |
| 11 |  | Dog |  |  | 5-10 | C | 10 |
| 12 | Respiratory center | Dog, rat | 4-5 | $\mathrm{C}^{4}$ | 15-30 | C | 9 |
| 13 |  | Dog, rat | 1/3-1/2 | C |  |  | 6.11 |
| 14 |  | Rat ${ }^{3}$ | 20-40 | $C^{5}$ |  |  | 11 |
| 15 | Spinal cord | Cat | 2/3-1 | C | 35-45 | C | C,D,12;E,F,13 |
| 16 |  | Cat |  |  | 90-120 | C | 14 |
| 17 |  | Rabbit | 2/3-2 | C |  |  | 15 |
| 18 | Autonomic synapses | Cat | 30-40 | N, C ${ }^{6}$ | 120-360+ | $N^{7}$ | 16 |
| 19 | Peripheral nerve | Cat, dog, rabbit | 15-45 | N8 |  |  | 17,18 |
| 20 |  | Frog | 70-360 | N8 |  |  | 18 |
| 21 |  | Lobster | 40-120 | $\mathrm{N}^{8}$ |  |  | 18 |
| 22 | Heart | Dog, rabbit, rat | 5-20 | C |  |  | 19 |
| 23 |  | Dog, rabbit, rat | 4-6 | N | 8-11 | N | 20 |
| 24 |  | Dog, rabbit, rat ${ }^{3}$ | 47-111 | N |  |  | 21 |
| 25 | Lung | Dog |  |  | 30-45 | C9 | 22 |
| 26 | Kidney | Dog |  |  | 30-60 | C9 | 23,24 |
| 27 |  | Dog |  |  | $>120$ | C9 | 25,26 |
| 28 |  | Rabbit |  |  | 60-90 | C9 | 27 |
| 29 |  | Rat |  |  | <120 | C 9 | 26,28 |
| 30 | Liver | Dog |  |  | 20-75 | C9 | 29-32 |
| 31 |  | Dog |  |  | >6010 | C 9 | 31 |
| 32 | Skeletal muscle | Dog, rabbit, rat |  |  | 480 | C | 33,34 |
| 33 | Smooth muscle, jejunum | Rabbit | $1-15$ | $\mathrm{N}^{8}$ | $>180$ | N | 35 |
| 34 | Small intestine | Dog |  |  | 120-240t | $C^{11}$ | 36 |
| 35 | Testis | Rat 12 |  |  | 10-30 | C | 37 |

/1/Period of anoxia or circulatory arrest during which function persists. / / Period of anoxia or circulatory arrest compatible with complete recovery of function, i.e., before irreversible changes occur. /3/Newborn. /4/lsolated, perfused head. /5/Decapitated. /6/lntact and isolated ganglia. /7/25\% recovery at 6 hr . /8/1solated, in vitro. $19 /$ Criterion: death of animal. / $10 /$ Value for liver at $240-27^{\circ} \mathrm{C}$. $/ 11 /$ Criteria: electrical reaction and death of animal. /12/Histological study of spermatogenesis.
Contributors: (a) Sonnenschein, R. R., Lewis, R., and Darling, L.. (b) Van Harreveld, A.. (c) Wesolowski, S. A.
References: [1] Sugar, O., and Gerard, R. W., J. Ncurophysiol. 1:558, 1938. [2] Van Harreveld, A., ibid 5:361, 1947. [3] Gänshirt, H., and Zylka, W., Arch. Psychiat., Berl. 1899:23. 1952. [4] Ten Cate, J., and Horsteñ, G. P., Arch. internat. physiol., Liége 62:6, 1954. [5] Kabat, H., and Dennis, C., Proc. Soc. Exp. Biol. 42:534, 1939. [6] Kabat, H., Am. J. Physiol. $130: 588$, 1940. [7] Albaum, H. G., et al, ibid 174:408, 1953. [8] Soulairac, A., C. rend. Acad. sc. 234:2565, 1952. [9] Heymans, C., et al, Arch. Neur. Psychiat., Chic. 38:304, 1937.
[10] Malmejac, J., and Plane, P., Afrique fr. chir. 12:435, 1954. [11] Selle, W. A., and Witten, T. A., Proc. Soc. Exp. Biol. 47:495, 1941. [12] Van Ilarreveld, A., Am. J. Physiol. 141:97, 1944. [13] Van Harreveld, A., and Marmont, G.. J. Neurophysiol. 2:101, 1939. [14] Van Harreveld, A., and Tyler, D. B., Am. J. Physiol. 142:32, 1944. [15] Blasius, W., Zschr. Biol. 104:121, 1951. [16] Bronk, D. W., et al, J. Cellul. Physiol. 31:193. 1948. [17] Lehmann, J. E., Am. J. Physiol. 119:11, 1937. [18] Wright, E. B., ibid 147:78, 1946.
[19] Wesolowski, S. A., et al, in "Surgical Forum," p 270, Philadelphia: W. B. Saunders Co., 1952. [20] Binet,
L., and Strumza, M., C. rend. Acad. sc. 226:1491, 1948. [21] Selle, W. A., Proc. Soc. Exp. Biol. 48:417, 1941.
[22] Blades, B., Arch. Surg. 69:525, 1954. [23] Guthrie, C. C., Arch. Int. M. 5:232, 1910. [24] McEnery, E. J., et al, J. Laborat. Clin. M. 12: $\overline{349}$, 1926. [25] Friedman, S. M., et al, Circulation Res. 2:231, 1954. [26] Scheibe, J. R., et al, Surgery 25:724, 1949. [27] Bademoch, A. W., and Darmedy, E. M., J. Path. Bact., Lond. 59:79, 1947. [28] Latorre, G., J. Urol., Balt. 72: 639, 1954. [29] Raffucci, F. L., Surgery 33:342, 1953. [30] Drapanas, T., et al, Ann. Surg. 142:831, 1955. [31] Bernhard, W. F., et al, N. England J. M. 253:159, 1955. [32] Hines, J. R., and Roncoroni, M., Surg. Gyn. Obst. 102:689, 1956. [33] Harmon, J. W., Am. J. Path. 23:551, 1947. [34] Harmon, J. W., and Gwinn, R. P., ibid 25:741, 1949. [35] Furchgott, R. F., and Shorr, W., Am. J. Physiol. 162:88, 1950. [36] Enquist, 1. F., and Kremen, A.J. in "Surgical Forum," p87, Philadelphia. W. B. Saunders Co., 1952. [37] Oettle, A. G., and Harrison, R. G., J. Path. Bact., Lond. 64:273, 1952.

Values determined in vivo for unanesthetized animal, unless otherwise indicated. Values in parentheses are ranges and, unless otherwise specified, conform to estimate " c " of the $95 \%$ range (cf Introduction). Note that $100 \times$ Column $\mathrm{E} \div$ Column $\mathrm{C}=$ brain arterio-venous $\mathrm{O}_{2}$ difference, the quantity of $\mathrm{O}_{2}$ removed by the brain from each 100 ml of blood flowing through it.

|  | Species | Condition | Blood Flow $\mathrm{ml} / 100 \mathrm{~g} / \mathrm{min}$ | $\mathrm{O}_{2}$ Consumption $\mathrm{ml} / 100 \mathrm{~g} / \mathrm{min}$ | $\begin{gathered} \text { Vascular } \\ \text { Resistance } \\ \mathrm{mm} \mathrm{Hg} / \mathrm{ml} / 100 \mathrm{~g} / \mathrm{min} \end{gathered}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) |
| 1 | Man ${ }^{1}$ | Alert $^{2}, 3$ | $\begin{array}{r} 54 \\ (40-79) \end{array}$ | $\begin{gathered} 3.3 \\ (2.6-4.2) \end{gathered}$ | $\begin{gathered} 1.6 \\ (0.8-2.4) \end{gathered}$ | 3.4 |
| 2 |  | Inhalation $5-7 \% \mathrm{CO}_{2}{ }^{2}$ | $\begin{gathered} 93 \\ (65-141) \end{gathered}$ | $\begin{gathered} 3.3 \\ (2.4-3.9) \end{gathered}$ | $\begin{gathered} 1.1 \\ (0.7-1.4) \end{gathered}$ | 5 |
| 3 |  | Inhalation $85-100 \% \mathrm{O}_{2}{ }^{2}$ | $\begin{gathered} 45 \\ (34-55) \end{gathered}$ | $\begin{gathered} 3.2 \\ (2.6-4.4) \end{gathered}$ | $\begin{gathered} 2.2 \\ (1.8-2.7) \end{gathered}$ | 5 |
| 4 |  | Inhalation $10 \% \mathrm{O}_{2}{ }^{2}$ | $\begin{gathered} 73 \\ (54-93) \end{gathered}$ | $\begin{gathered} 3.2 \\ (2.6-3.5) \end{gathered}$ | $\begin{gathered} 1.1 \\ (0.8-1.6) \end{gathered}$ | 5 |
| 5 |  | Cerebral arteriosclerosis | $\begin{gathered} 41 \\ (31-56) \end{gathered}$ | $\begin{gathered} 2.8 \\ (1.7-3.6) \end{gathered}$ | $\begin{gathered} 3.0 \\ (1.9-3.5) \end{gathered}$ | 6 |
| 6 |  | Thiopental anesthesia | $\begin{array}{r} 60 \\ (33-82) \\ \hline \end{array}$ | $\begin{gathered} 2.1 \\ (1.2-3.5) \\ \hline \end{gathered}$ | $\begin{gathered} 1.3 \\ (0.6-2.1) \\ \hline \end{gathered}$ | 7 |
| 7 | Cat | Isolated perfused brain ${ }^{4}$ |  | $\frac{5.0}{(3.9-6.1)^{b}}$ |  | 8 |
| 8 | Monkey, rhesus | Barbiturate anesthesia 4,5 | $\begin{gathered} 48 \\ (21-75)^{6}, b \end{gathered}$ | $\begin{gathered} 3.8 \\ (2.4-5.2)^{b} \end{gathered}$ |  | 9 |

/1/ Nitrous oxide method. /2/ Normal young men. /3/ Approximately same values and ranges (except for narrower ranges of blood flow) found in persons with essential hypertension [1], and in schizophrenics [2]. /4/ Active reflexes, spontaneous movements. /5/ Light anesthesia. /6/ Measured by intercalated bubble flow meter.

Contributor: Kety, S. S.

References: [1] Kety, S. S., et al, J. Clin. Invest. 27:511, 1948. [2] Kety, S. S., et al, Am. J. Psychiat. 104:765, 1948. [3] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:476, 1948. [4] Sokaloff, L., and Mangold, R., unpublished. [5] Kety, S. S., and Schmidt, C. F., J. Clin. Invest. 27:484, 1948. [6] Freyhan, F. A., et al, J. Nerv. Ment. Dis. 113:449, 1951. [7] Wechsler, R. L., et al, Anesthesiology 12:308, 1951. [8] Geiger, A., and Magnes, J., Am. J. Physiol. 149:517, 1947. [9] Schmidt, C. F., et al, ibid 143:33, 1945.
156. CEREBRAL RESPIRATION: DOG

Dogs received basic dose of $20 \mathrm{mg} / \mathrm{kg}$ of morphine sulfate. (In using this table, it should be remembered that morphine sulfate has a significant effect on blood respiratory characteristics [Rakieten, N., Himwich, H. E., and Dubois, D., J. Pharm. Exp. Ther. 52:437, 1934]).

## Part I: CEREBRAL VS BLOOD GLUCOSE

Values in parentheses are ranges, estimate " $c$ " of the $95 \%$ range (cf Introduction).

| Condition |  | ArterialBlood Glucosemg/100 cc | Cerebral Tissue |  | |
|---|---|---|---|---|---|
|  |  | Glycogen $\mathrm{mg} / 100 \mathrm{~g}$ | $\begin{gathered} \text { Glucose } \\ \mathrm{mg} / 100 \mathrm{~g} \end{gathered}$ |
|  | (A) |  | (B) | (C) | (D) |
| 1 | Breathing air | 210(180-240) | 106(94-123) | 102(88-115) |
| 2 | Breathing air with $6-9 \% \mathrm{CO}_{2}$ | 221(133-310) | 117(116-118) | 107(87-128) |
| 3 | Breathing $\mathrm{O}_{2}$ with $5.5 \% \mathrm{CO}_{2}$ | 315 | 106 | 149 |
| 4 | Breathing $\mathrm{N}_{2}$ with 4.5-10\% $\mathrm{O}_{2}$ | 256(109-474) | 97(57-140) | $97(64-137)$ |
| 5 | Breathing $\mathrm{N}_{2}$ with $3.5-6 \% \mathrm{O}_{2}$ and 5-6\% $\mathrm{CO}_{2}$ | 236(129-369) | 127(109-144) | 103(74-138) |
| 6 | Erythroidinized; hyperventilation with air | 212(130-280) | 122(119-127) | 72(51-94) |
| 7 | Erythroidinized; hyperventilation with $\mathrm{O}_{2}$ | 152(107-210) | 122 | 56(37-78) |

Contributors: (a) Gurdjian, E. S., (b) Smith, A. H.
Reference: Gurdjian, E. S., Webster, J. E., and Stone, W. E., Proc. Ass. Rev. Nervous and Mental Dis. 26:184, 1946.

Part II: CEREBRAL CONSTITUENTS VS BLOOD GASES
Values in parentheses are ranges, estimate " c " of the $95 \%$ range (cf Introduction).

/1/ Increase or decrease from control level breathing air. $/ 2 /$ Blood pressure decreased to a low level after blood specimens obtained. /3/Determination of adenosine triphosphate (acid-labile and ribose monophosphate) reveals normal values in all classes of experiments except for low oxygen with acapnia, in which values about $25 \%$ lower than normal were obtained.

Contributors: (a) Gurdjian, E. S., (b) Smith, A. H.
Reference: Gurdjian, E. S., Webster, J. E., and Stone, W. E.. Am. J. Physiol. 156:149, 1949.
156. CEREBRAL RESPIRATION: DOG (Concluded)

Dogs received basic dose of $20 \mathrm{mg} / \mathrm{kg}$ of morphine sulfate. (In using this table, it should be remembered that morphine sulfate has a significant effect on blood respiratory characteristics \{Rakieten, N., Himwich, 1i. E., and DuBois, D., J. Pharm. Exp. Ther. 52:437, 1934]).

Part 11I: CEREBRAL METABOLISM IN ANOXIA
Values in parentheses are ranges, estimate " $c$ " of the $95 \%$ range (cf Introduction).

/1/ After anoxia. /2/ Side not indicated.
Contributors: (a) Gurdjian, E. S., (b) Smith, A. H.
Reference: Gurdjian, E. S., Stone, W. E., and Webster, J. E., Arch. Neur. Psychiat. 51:472, 1944.

Rate and degree of respiration of bacteria may be affected by numerous factors, such as strain characteristics, composition of growth medium, age and number of cells in an inoculum, origin of inoculum, age of culture harvested for study, nature of solution used for washing, number of washings, and composition of the respiratory system. Values are $\mu \mathrm{l} / \mathrm{mg}$ dry weight/hour. Data are for bacterial suspensions in the presence of glucose.

|  | Species | $\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \text { Culture Age } \\ \text { hr } \end{gathered}$ | $\begin{gathered} \mathrm{Q}_{\mathrm{C}_{2}} \\ \mu \mathrm{l} / \mathrm{mg} / \mathrm{hr} \end{gathered}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) |
| 1 | Aerobacter aerogenes | 36, 30 | 17.48 | 47, 50 | 1,2 |
| 2 | Azotobacter chroococcum | 22 | 36 | 2,000-10,000 | 3 |
| 3 | Bacillus cereus (short) | 30 | 18 | 42-86 | 4 |
| 4 | B. cereus (filamentaus) | 30 | 18 | 3-49 | 4 |
| 5 | B. subtilis | 37 | 6-8 | 170 | 5 |
| 6 | B. subtilis (spores) | 32 | 98-147 | 10 | 6 |
| 7 | Corynebacterium sp | 30 | 48-96 | 67 | 7 |
| 8 | Escherichia coli | 40, 32 | 20 | 200, 272 | 1, 8 |
| 9 | Lactobacillus brulgaricus | 37, 45 | 8 | 34, 55 | 9 |
| 10 | Leuconostoc citrovorum | 38 | 16 | 8 | 10 |
| 11 | Micrococcus auranticus | 35 | 30-34 | 14 | 11 |
| 12 | M. cinnebareus | 35 | 30-34 | 32 | 11 |
| 13 | M. flavus | 35 | 30-34 | 8 | 11 |
| 14 | M. freundenreichii | 35 | 30-34 | 20 | 11 |
| 15 | M. luteus | 35 | 30-34 | 15 | 11 |
| 16 | Mycobacterium sp (Karlinski) | 38 | 84 | 22 | 12 |
| 17 | M. butyricum | 38 | 84 | 13 | 12 |
| 18 | M. leprous kedrowsky | 38 | 84 | 8 | 12 |
| 19 | M. phlei | 38 | 84 | 28 | 12 |
| 20 | M. ranae | 38 | 84 | 32 | 12 |
| 21 | M. smegmatis | 38 | 84 | 23 | 12 |
| 22 | M. stercoris | 38 | 84 | 15 | 12 |
| 23 | M. tuberculosis avian | 37 | 84 | 1 | 13 |
| 24 | M. tuberculosis hominis | 38 | 252 | 4 | 12 |
| 25 | Pneumocaccus, type 1 | 37 | 18 | 27 | 14 |
| 26 | Pseudomonas fluorescens | 26 | 20 | 58 | 15 |
| 27 | Streptococcus faecalis, B 33 A | 38 | 18 | 106 | 16 |
| 28 | S. faecalis, 10 Cl | 37 | 15 | 57-80 | 17 |
| 29 | S. faecalis, Lancefield D | 37 | 12-15 |  | 18 |
| 30 | S. pyogenes, C 203 M | 37.5 | 4 | 57-163 | 19 |
| 31 | S. pyogenes, C 203 S | 37.5 | 4 | 99-113 | 19 |
| 32 | S. thermophilus, C 3 | 37, 50 | 8 | 4. 5 | 9 |
| 33 | S. thermophilus, MC | 37. 50 | 8 | 9, 10 | 9 |
| 34 | Streptomyces coelicolor |  | 72 | 35 | 20 |

Contributor: Silverman, M.

References: [1] Aj1, S. J., J. Bact., Balt. 59:499, 1950. [2] Ajl, S. J., and Wong, T. O., ibid 61:379, 1951. [3] Meyerhof, O., and Burk, D., Zschr. phys. Chem. A 139:117, 1928. [4] Nickerson, W. J., and Sherman, F. G., J. Bact., Balt. 64:667, 1952. [5] Gary, N. D., and Bard, R. C., ibid 64:501, 1952. [6] Crook, P. G., ibid 63:193, 1952. [7] Levine, S., and Krampitz, L. O., ibid 64:645, 1952. [8] Krebs, H. A., Biochem. J., Lond. 31:2095, 1937. [9] Stein, R. M., and Frazier, W. L., J. Bact., Balt. $42: 501$, 1941. [10] Chang, S. C., Silverman, $\bar{M}$. , and Keresztesy, J. C., ibid $62: 753$, 1951. [11] Nunheimer, T. D., and Fabian, F. W., ibid 44:215, 1942. [12] Edson, N. L., and Hunter, G. J., Biochem. J. 37:563, 1943. [13] Oginsky, E. L., Smith, P. H., and Solotorovsky, M., J. Bact., Balt. 59:29, 1950. [14] Bernheim, F., and Bernheim, M. L., ibid 46:225, 1943. [15] Sebek, O. K., and Randles, C. 1., ibid 63:693, 1952. [16] Seeley, H. W., and Vandemark, P. J., ibid 61:27, 1951. [17] O'Kane, D. J., ibid 60:449, 1950. [18] Gunsalas, 1. C., and Umbreit, W. W., ibid 49:347, 1945 . [19] Sevag, M. G., and Shelburne, M., ibid 43:411, 1942. [20] Cochrane, V. W., and Gibbs, M., ibid 61:305, 1951.
158. RESPIRATION RATES: ALGAE


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Monostroma grevillei \& \& Chem \& 150 \& \& \& \& 21 \\
\hline Nitella flexilis \& 18 \& Chem \& \& \(1.6^{3}\) \& \& \& 4 \\
\hline Prasiola crispa \& 18.5 \& Chem \& 1-126 \& \& \& Moisture \& 25 \\
\hline \multirow[t]{2}{*}{Pseudendoclonium brasiliense} \& 20 \& Mano \& 110 \& \& \& \multirow[t]{2}{*}{Various substrates} \& 10 \\
\hline \& 20 \& Mano \& 100-210 \& \& \& \& 9 \\
\hline \multirow[t]{4}{*}{Scenedesmus sp, D-1 Scenedesmus sp, D-3} \& 20 \& Mano \& 700 \& \& \multirow[t]{8}{*}{0.92-1.80} \& \multirow[t]{2}{*}{Carbohydrate substrates} \& 14 \\
\hline \& 23 \& Mano \& \(222^{2}\) \& \& \& \& 16 \\
\hline \& 25 \& Mano \& 130-180 \& \& \& pH \& 13 \\
\hline \& \& Mano \& 180-410 \& \& \& Metabolic poisons \& 13 \\
\hline S. brasiliensis \& 20 \& Mano \& 140 \& \& \& \& 9,10 \\
\hline \multirow[t]{4}{*}{S. obliquus} \& \multirow[t]{2}{*}{20} \& Mano \& \& \& \& Various substrates \& 14 \\
\hline \& \& Mano \& 180-750 \& \& \& \multirow[t]{3}{*}{Various substrates pH} \& 9 \\
\hline \& 25 \& Mano \& 50 \& \& \& \& 13 \\
\hline \& 20 \& Mano \& \& \& 1.15 \& \& 14 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Spirogyra majuscula \\
S. rivularis \\
S. varians
\end{tabular}} \& \multirow[t]{2}{*}{10.4} \& Chem \& 0.53 \& \& \& pH \& 26 \\
\hline \& \& Chem \& 3.83 \& \& \& pH \& 26 \\
\hline \& 10.4 \& Chem \& \(0.58{ }^{3}\) \& \& \& pH \& 26 \\
\hline \multirow[t]{2}{*}{Stichococcus bacillaris} \& 20 \& Mano \& 140 \& \& \& \multirow[t]{2}{*}{Various substrates} \& 9,10 \\
\hline \& 20 \& Mano \& 140-620 \& \& \& \& 9 \\
\hline Trebouxia sp \& 18.5 \& Chem \& 1.8-30.0 \& \& \& Moisture \& 25 \\
\hline Ulothrix flacca \& \& Chem \& 160 \& \& \& \& 21 \\
\hline \multirow[t]{7}{*}{Ulva lactuca
U. linza} \& \multirow[t]{7}{*}{\[
\begin{aligned}
\& 20 \\
\& 20 \\
\& 25 \\
\& 12 \\
\& 18 \\
\& 17
\end{aligned}
\]} \& Chem \& 91 \& \multirow[t]{7}{*}{\(13-16\)
50} \& \multirow[t]{7}{*}{\(2.35-6.1\)

0.95

0.67} \& \multirow[t]{7}{*}{| Oxygen |
| :--- |
| Various substrates |} \& 23 <br>

\hline \& \& Chem \& 150 \& \& \& \& 21 <br>
\hline \& \& Chem \& \& \& \& \& 24 <br>
\hline \& \& Mano \& 81 \& \& \& \& 8 <br>
\hline \& \& Chem \& 56 \& \& \& \& 27 <br>
\hline \& \& Chem \& \& \& \& \& 22 <br>
\hline \& \& Chem \& 90 \& \& \& \& 27 <br>
\hline U. linza \& \& Chem \& 160 \& \& \& \& 21 <br>
\hline Valonia utricularis \& 20 \& Chem \& \& 8.4 \& 1.5-5.7 \& Oxygen \& 24 <br>
\hline \multicolumn{7}{|l|}{Brown} \& <br>
\hline \multirow[t]{2}{*}{Ascophyllum nodosum} \& \multirow[t]{2}{*}{20} \& Chem \& 14 \& \& \& \& 21 <br>
\hline \& \& Mano \& 1.93 \& \& 0.80 \& \& 28 <br>

\hline \multirow[t]{3}{*}{| Chorda filum |
| :--- |
| C. tomentosa |} \& \multirow[t]{3}{*}{9} \& Chem \& 150 \& \& \& \& 21 <br>

\hline \& \& Chem \& 74 \& \& \& \& 22 <br>
\hline \& \& Chem \& 63 \& \& \& \& 21 <br>
\hline Chordaria flagelliformis \& \& Chem \& 130 \& \& \& \& 21 <br>
\hline Cladostephus spongiosus \& 20 \& Chem \& 39 \& \& \& \& 23 <br>
\hline Cutleria multifida \& 20 \& Chem \& \& 7.2-17.0 \& 0.53-2.10 \& Oxygen \& 24 <br>

\hline \multirow[t]{3}{*}{| Cystoseira abrotanifolia |
| :--- |
| C. amentacea |
| C. barbata |} \& 20 \& Chem \& \& 4.5-10.0 \& 1.2-3.7 \& \multirow[t]{3}{*}{Oxygen} \& 24 <br>

\hline \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 20 \\
& 20 \\
& \hline
\end{aligned}
$$} \& Chem \& \& 17 \& 3.9 \& \& 24 <br>

\hline \& \& Chem \& \& 13-17 \& 2.1-4.0 \& \& 24 <br>
\hline \multirow[t]{5}{*}{Desmarestia aculeata
D. viridis} \& \multirow[t]{2}{*}{14} \& Chem \& 243 \& \& \& \& 22 <br>
\hline \& \& Chem \& 120 \& \& \& \& 21 <br>
\hline \& 20 \& Chem \& 27 \& \& \& \& 23 <br>
\hline \& \& Chem \& 170 \& \& \& \& 21 <br>
\hline \& 14 \& Chem \& $14^{2}$ \& \& \& \& 22 <br>
\hline Dictyota dichotoma \& 20 \& Chem \& \& 9.4-9.2 \& 0.98-1.04 \& Oxygen \& 24 <br>
\hline \multirow[t]{3}{*}{Ectocarpus siliculosus} \& \multirow[t]{3}{*}{12} \& Chem \& 413 \& \& \& \& 22 <br>
\hline \& \& Chem \& 140 \& \& \& \& 21 <br>
\hline \& \& Chem \& 60 \& \& \& \& 21 <br>
\hline \multirow[t]{2}{*}{Fucus sp} \& 17 \& Mano \& \& 1.15 \& 0.26 \& \& 29 <br>
\hline \& 9 \& Mano \& \& $1.2{ }^{5}$ \& 0.43 \& \& 29 <br>
\hline
\end{tabular}

weight.) $/ 3 / \mu \mathrm{l} / 100 \mathrm{mg}$ wet weight/hour. $/ 4 / \mu \mathrm{l} / 10^{9}$ cells/hour. $/ 5 / \mu \mathrm{l} / \mathrm{sqcm} / \mathrm{hour}$

158. RESPIRATION RATES: ALGAE (Concluded)
Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ dry weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.



140 D. sanguinea

/1/ Mano = manometric, Chem = chemical. $12 / \mu 1 / 100 \mu \mathrm{l}$ cell volume/hour. $/ 3 / \mu 1 / 100 \mathrm{mg}$ wet weight/hour. $/ 5 / \mu \mathrm{l} / \mathrm{sq} \mathrm{cm} / \mathrm{hour}$. Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Blinks, L. R., (c) Myers, J., (d) Vallance, K. B. References: [1] Webster, G. C., and Frenkel, A, W., Plant Physiol. 28:63, 1953. [2] Kratz, W. A., and Myers, J., ibid 30:275, 1955. [3] Bonnier, G., 5] Davis, E. A., Science 112:113, 1950. [6] Eny, D. M., Plant Physiol. 26:268, 1951. [7] Sorokin, C., and Myers, J., J. Gen. Physiol. 40:579, 1957. 1I] French, C. S., Kohn, H. 1., and Tang. P. S., J. Gen. Physiol. 18:193, 1934. [12] Gaffron, H., ibid 28:259, 1945. [13] Cramer M. botan. $40: 654$, 1928. 16] Allen, M. B., Gest, H., and Kamen, M. D., Arch. Biochem., N. Y. 14:335, 1947. [17] Tang, P., S., J. Cellul, Physiol, Biol. Chem. $128: 447,1939$. and French, C. S., Chin. J. Physiol. 7:353, 1933. [19] Warburg, O., Burk, D., Schocken, V., Korzenovsky, M., and Hendricks, S. B., Arch. Biochem., N. Y. 23:330, 1949. [20] Pratt, R., Am. J. Bot. 30:404, 1943. [21] Harder, R., Jahrb. wiss. Botan, 56:254, 1915. [22] Hoffmann, C., ibid 71:214, 1929.

29] Kode, H. R., Jahrb, wlss. Botan. 65:352, 1925. [27] Kniep, H., Internat. Rev. Hydrob., Lpz. 7:1, 1914. [28] Kylin, H., Arkiv. für Bot. 11:1, 1911.
159. RESPIRATION RATES: LICHENS

Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ dry weight/hour, unless otherwise specified,

| 43 44 45 |  | $\begin{aligned} & 30 \\ & 20 \\ & 0 \\ & \hline \end{aligned}$ | Chem Chem Chem |  | $\left\lvert\, \begin{aligned} & 66 \\ & 31 \\ & 5\end{aligned}\right.$ |  | 2 | 111 <br> 112 <br> 113 | Solorina crocea | 30 10 0 | Mano Mano Mano | 43 24 10 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 46 | Lecanora haematomma |  | Mano |  |  | 0.80 | 3 | 114 | Sticta laciniata | 30 | Mano | 28 |  |  |
| 47 | L. subfusca |  | Mano |  |  | 0.80 | 3 | 115 |  | 10 | Mano | 11 |  |  |
| 48 | Lecidea superans |  | Mano |  |  | 0.85 | 3 | 116 |  | 0 | Mano | 7 |  |  |
| 49 | Lobaria linita | 30 | Mano | 72 |  |  | 1 | 117 | S. weigelii | 30 | Mano | 40 |  |  |
| 50 |  | 10 | Mano | 22 |  |  | 1 | 118 |  | 10 | Mano | 14 |  |  |
| 51 |  | 0 | Mano | 10 |  |  | 1 | 119 |  | 0 | Mano | 6.7 |  |  |
| 52 | L. pulmonaria | 27 | Chem |  | $1-26^{2}$ |  | 4 | 120 | Teloschistes flavicans | 30 | Mano | 24 |  |  |
| 53 | L. scrobiculata | 30 | Mano | 50 |  |  | 1 | 121 |  | 10 | Mano | 11 |  |  |
| 54 |  | 10 | Mano | 29 |  |  | 1 | 122 |  | 0 | Mano | 5 |  |  |
| 55 |  | 0 | Mano | 12 |  |  | 1 | 123 |  |  | Chem, |  | 0.6-52.02 |  |
| 56 | Omphalodiscus | 30 | Mano | 27 |  |  | 1 |  |  |  | Cond |  |  |  |
| 57 | decussatus | 10 | Mano | 6.2 |  |  | 1 | 124 | Thamnolia vermicularis | 30 | Mano | 28 |  |  |
| 58 |  | 0 | Mano | 3.1 |  |  | 1 | 125 |  | 10 | Mano | 14 |  |  |
| 59 | Opegrapha notha |  | Mano |  |  | 0.74 | 3 | 126 |  | 0 | Mano | 4.2 |  |  |
| 60 | Parmelia acetabulum |  | Mano |  | 2.3 | 0.79 | 3 | 127 | Umbilicaria | 30 | Mano | 30 |  |  |
| 61 | P. caperata |  | Mano |  | 25 | 0.75 | 3 | 128 | cinereorufescens | 10 | Mano | 9.8 |  |  |
| 62 | P. centrifuga | 30 | Mano | 20 |  |  | 1 | 129 |  | 0 | Mano | 4.1 |  |  |
| 63 |  | 10 | Mano | 8.5 |  |  | 1 | 130 | U. proboscidea | 30 | Mano | 18 |  |  |
| 64 |  | 0 | Mano | 2.4 |  |  | 1 | 131 |  | 10 | Mano | 6.5 |  |  |
| 65 | P. furfuracea |  | Cond |  | 10 |  | 5 | 132 |  | 0 | Mano | 3.5 |  |  |
| 66 | P. nigrociliata | 30 | Mano | 25 |  |  | 1 | 133 | U. pustulata |  | Mano |  | 77-540 ${ }^{2}$ |  |
| 67 |  | 10 | Mano | 13 |  |  | 1 | 134 |  | 28 | Chem |  | 11-222 |  |
| 68 |  | 0 | Mano | 4 |  |  | 1 | 135 | Usnea dasypoga |  | Cond |  | 60-90 ${ }^{2}$ |  |
| /1/ Mano = manometric; Chem = chemical; Cond = conductometric. $/ 2 / \mathrm{Effect}$ of moisture. $/ 3 / \mu \mathrm{l} / \mathrm{sq} \mathrm{cm} / \mathrm{hour} . / 4 / \mu \mathrm{l} / \mathrm{l} 00 \mathrm{mg}$ we of temperature. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Contributors: Mandels, G. R., and Darby, R. T. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| References: [1] Scholander, P. F., Flagg, W., Walters, V., and Irving, L., Am. J. Bot. 39:707, 1952. [2] Stålfelt, M. G., Plan [3] Jumelle, H., Rev.gên, botan. 4:49, 103, 159, 220,259, 305, 1892. [4] Stocker, O., Flora 121:334, 1927. [5] Neubauer, A. F., B 25:273, 1938. [6] Fraymouth, J., Ann. Botany, Lond. 42:75, 1928. [7] Boysen-Jensen, P., and Mūller, D., Jahrb. wiss. Botan. $[8]$ Smyth, E. S., Ann. Botany, Lond. 48:781, 1934. [9] Cuthbert, J. B., Trans. Roy. Soc. S. Afr. 22:35, 1934. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Values for rates of gaseous exchange are given in $\mu \mathrm{l} / \mathrm{mg}$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H: Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored = values for aerobic $\mathrm{CO}_{2}$ production.

| Species |  | Material | Temp ${ }^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { Meth- } \\ & \text { od }^{1} \end{aligned}$ | Sub- <br> strate ${ }^{2}$ | Specifications | Respiration Rate $\mu \mathrm{l} / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  |  |  | $\mathrm{Q}_{\mathrm{CO}}^{-}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) | (K) |
| Myxomycetes |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Physarum polycephalum | Plasmodium | 22 | Mano | End | 10;50;300 mg/vessel. | $\begin{gathered} 0.25^{3}-1.4^{3}- \\ 0.4^{3} \end{gathered}$ |  |  | Method | 1 |
| 2 |  | Plasmodium | 22 | Mano |  | $50 \mathrm{mg} / \mathrm{vessel}$. |  | $1.0^{3}-0.24^{3}$ | 0.75-0.85 |  | 1 |
| 3 |  | Plasmodium |  | Mano |  |  | $15^{3}$ |  | 0.8 |  | 2 |
| 4 |  | Plasmodium | 25 | Mano | End | $\mathrm{PO}_{4}$ buffer, pH 6.0, 0 da. | $1.08^{3}$ | $\underline{0}^{3}$ | 0.83 | Substrate | 3 |
|  | Phycomycetes |  |  |  |  |  |  |  |  |  |  |
| 5 | Allomyces arbuscula | Mycelia ${ }^{4}$ | 20 | Mano | Org | +0.1M glutamate. | 0.84 |  |  | Substrate | 4 |
| 6 |  | Mycelia ${ }^{4}$ | 28 | Mano | End | Starved. | 1.5-17.9 |  |  | Starvation | 5 |
| 7 | A. cystogenus | Mycelia ${ }^{4}$ | 20 | Mano | Org | +0.1 M glutamate. | 0.88 |  |  | Substrate | 4 |
| 8 | A. javanicus | Mycelia ${ }^{4}$ | 20 | Mano | Org | +0.1 M glutamate. | 0.69 |  |  | Substrate | 4 |
| 9 | A. moniliformis | Mycelia ${ }^{4}$ | 20 | Mano | Org | +0.1 M glutamate. | 1.03 |  |  | Substrate | 4 |
| 10 | Leptomitus lacteus | Pellets | 20 | Mano | End | Starved 0;4;8 hr. | 20-15-10 |  |  | Hr starved | 6 |
| 11 |  | Pellets | 20 | Mano | Org | +D, L-Alanine, 2-5 hr. | 35-40 |  |  | Substrate: age | 6 |
| 12 |  | Pellets | 20 | Mano | Org | +l-Leucine, 1-4 hr. | 30-40 |  |  | Substrate; age | 6 |
| 13 |  | Pellets | 20 | Mano | Org | +Glycine, 2-6 hr. | 18-16 |  |  | Substrate; age | 6 |
| 14 |  | Pellets | 20 | Mano | Org | Endogenous. |  |  | 0.98 | Substrate | 6 |
| 15 |  | Pellets | 20 | Mano | Org | +D, L-Alanine. |  |  | 0.99 | Substrate | 6 |
| 16 |  | Pellets | 20 | Mano | Org | +Glycine. |  |  | 1.12 | Substrate | 6 |
| 17 |  | Pellets | 20 | Mano | Org | +1-Leucine. |  |  | 0.64 | Substrate | 6 |
| 18 |  | Pellets | 20 | Mano | Org | +Acetate. |  |  | 0.98 | Substrate | 6 |
| 19 |  | Pellets | 20 | Mano | Org | +Butyrate. |  |  | 0.83 | Substrate | 6 |
| 20 | Mucor guilliermondi | Mycelia | 25 | Mano | End | Mycelial phase. | 5.7-10.0 | 7.1 |  | Substrate | 7 |
| 21 |  | Mycelia | 25 | Mano | CHO | +Glucose, mycelial phase. | 5.6-21.4 | 18.3-82.1 |  | Substrate | 7 |
| 22 |  | Mycelia | 25 | Mano | End | Mycelial phase. |  | 3.2 |  | Substrate | 7 |
| 23 |  | Mycelia | 25 | Mano | CHO | +Glucose, mycellal phase. |  | 10.7-42.3 |  | Substrate | 7 |
| 24 |  | Cell suspension | 25 | Mano | End | Yeast phase. | 7.1-9.0 |  |  | Substrate | 7 |
| 25 |  | Cell suspension | 25 | Mano | CHO | +Glucose, yeast phase. | 7.8-39.0 | 30.9-142.0 |  | Substrate | 7 |
| 26 |  | Cell suspension | 25 | Mano | CHO | +Glucose, yeast phase. |  | $\overline{21.9-118.0}$ |  | Substrate | 7 |
| 27 |  | Mycelia; cell suspension | 25 | Mano | CHO | +Glucose, mixed phase. | 12.1-29.0 | 52.3-78.7 |  | Substrate | 7 |
| 28 |  | Mycelia; cell suspension | 25 | Mano | CHO | +Glucose, mixed phase. |  | 38.6-65.3 |  | Substrate | 7 |
| 29 | M. stolonifer | Mycelia | 20 | Chem | CHO |  |  |  | 1.53 | Temperature | 8 |
| 30 |  | Mycelia | 35 | Chem | CHO |  |  |  | 1.72 | Temperature | 8 |
| 31 | Mycelium radicis atrovirens | Pellets ${ }^{4,5}$ | 25 |  | End | Unstarved; starved. | 21-1.9 |  |  | Substrate | 9 |
| 32 |  | Pellets ${ }^{4,5}$ | 25 |  | CHO | +Glucose. | 8.7-10.9 |  |  | Substrate | 9 |
| 33 |  | Pellets ${ }^{4}$, 5 | 25 |  | CHO | +Succinate. | 6.4-13.3 |  |  | Substrate | 9 |


160. RESPIRATION RATES: FUNGl (Continued)


| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Meth- | $\begin{aligned} & \text { Sub- } \\ & \text { strate } \end{aligned}$ | Specifications | Respiration Rate $\mu \mathrm{l} / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | $\begin{gathered} \text { Refer- } \\ \text { ence } \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $Q_{\mathrm{O}_{2}}$ |  |  |  |  | $\mathrm{QCO}_{2}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| Ascomycetes (continued) |  |  |  |  |  |  |  |  |  |  |  |
| 63 64 65 | Erysiphe graminis tritici (concluded) <br> E. lamprocarpa | Growing culture <br> Growing culture <br> Mycelia | 22 | Mano <br> Mano <br> Chem | Nat Nat Nat | Mildewed wheat leaf; leaf $+1 \times 10^{-3} \mathrm{MNa}_{3} \mathrm{~N}$. Normal wheat leaf; leaf + fungus. <br> Host (Prasium majus); host + fungus. | 6.0 ${ }^{6}-4.56$ | $1.8^{6}-2.7^{6}$ | 0.82-0.78 | Parasitism <br> Parasitism | 20 20 19 |
| 66 | Melanospora destruens | Mycelia | 25 | Mano | CHO | +1-11 Y Vit B1/100 ml. | 3.0-6.4 ${ }^{3}$ |  | 1.0 | Accessory growth factors | 12 |
| 67 |  | Mycelia |  | Mano | CHO | +Glucose. | 6 |  |  | Substrate | 21 |
| 68 |  | Mycelia |  | Mano | CHO | +Fructose. | 6 |  |  | Substrate | 21 |
| 69 |  | Mycelia |  | Mano | CHO | +Sucrose. | 10 |  |  | Substrate | 21 |
| 70 |  | Mycelia |  | Mano | CHO | +Maltose. | 1.1 |  |  | Substrate | 21 |
| 71 |  | Mycelia |  | Mano | CHO | +Lactose. | 15 |  |  | Substrate | 21 |
| 72 |  | Mycelia |  | Mano | CHO | +Raffinose. | 11 |  |  | Substrate | 21 |
| 73 |  | Mycelia |  | Mano | CHO | +Starch. | 13 |  |  | Substrate | 21 |
| 74 |  | Mycelia |  | Mano | CHO | +Glycogen. | 7 |  |  | Substrate | 21 |
| 75 | Neurospora crassa | Mycelia |  | Mano | CHO | Endogenous. | 16-55 |  |  | Inhibitors | 22 |
| 76 |  | Mycelia |  | Mano | CHO | +0.1\% sulfanilamide. | 12-21 |  |  | Inhibitors | 22 |
| 77 |  | Mycelia | 30 | Mano | Org | Endogenous. | 11-38 | 0-5 |  | Substrate | 23 |
| 78 |  | Mycelia | 30 | Mano | Org | + Pyruvate. | 26-44 | - |  | Substrate | 23 |
| 79 |  | Mycelia | 30 | Mano | Org | 4 mutant strains. | $11-44$ |  |  | Strains | 23 |
| 80 |  | Mycelia |  | Mano | CHO | Starved, p-aminoben-zoic-less mutant. | $11.7-31.2$ |  |  | Mutant | 24 |
| 81 |  | Mycelia |  | Mano | CHO | Starved, pantothenicless mutant. | 15.1-26.8 |  |  | Mutant | 24 |
| 821 |  | Mycelia ${ }^{5}$ |  | Mano | CHO | -i+p-Aminobenzoic acid. | 24.0-43.1 |  |  | Accessory growth factors; mutants or strains | 24 |
| 83 |  | Mycelia ${ }^{5}$ |  | Mano | CHO | -;+Pantothenic acid. | 21.8-27.0 |  |  | Accessory growth factors; mutants or strains | 24 |
| 84 | N. sitophila | Mycelia |  | Mano | CHO | Starved, pyridoxineless mutant. | 18.7-35.6 |  |  | Mutant | 24 |
| 85 | N. tetrasperma | Mycelia ${ }^{5}$ |  | Mano | CHO | -;+Pyridoxine. | 19.2-26.4 |  |  | Accessory growth factors; mutants or strains | 24 |
| $86$ |  |  |  |  |  | Dormant. | $0.25-0.59$ | $<0.03$ |  | Age | $25$ |
| 87 |  | Ascospores | $25$ | Mano | End | Activated by heat. | $4.5-10.9$ | $5.0-10.9$ |  | Time after activation | $25$ |
| 88 |  | Ascospores | 25 | Mano | End | Germinating. | 10-20 |  |  | Time after activation | 25 |


| 89 |  | Ascospores | 26 | Mano | End | $\left\{\begin{array}{c} -+10^{-5} \mathrm{M}, 10^{-4} \mathrm{M} ; \\ 10^{-3} \mathrm{M} ; 10^{-2} \mathrm{M} ; \\ 5 \times 10^{-2} \mathrm{M} \text { furfurol } \\ \text { (determinations after } \\ 290-350 \mathrm{~min} \text { ). } \end{array}\right.$ | $\left\lvert\, \begin{aligned} & 0.5-1.3-3.9- \\ & 7.8-7.1-1.3 \end{aligned}\right.$ |  |  |  | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90 | Neurospora sp | Mycelia ${ }^{5}$ |  | Mano | CHO |  | 15.1-56.0 |  |  |  | 24 |
| 91 |  | Mycelia ${ }^{5}$ |  | Mano | CHO | Starved, thiamine-less mutant. | 16.0-35.6 |  |  | Mutant | 24 |
| 92 |  | Mycelia ${ }^{5}$ |  | Mano | CHO | Starved, nicotinic-less mutant. | 25.0-41.0 |  |  | Mutant | 24 |
| 93 | Saccharomyces cerevisiae R | Cell suspension |  | Mano | CHO | No stored reserves. | 83-109 | $\begin{array}{r} 370-432- \\ 278-299 \\ \hline \end{array}$ |  | Organic nutrition | 27 |
| 94 |  | Cell suspension |  | Mano | CHO | Fat reserves. | 76 | $24 \overline{9-32}$ |  | Organic nutrition | 27 |
| 95 |  | Cell suspension |  | Mano | CHO | Glycogen reserves. | 0 | 163-116 |  | Organic nutrition | 27 |
| 96 | S. cerevisiae U | Cell suspension |  | Mano | CHO | No stored reserves. | 10-137 | $\begin{aligned} & 160 \overline{-348}- \\ & 276-284 \end{aligned}$ |  | Organic nutrition | 27 |
| 97 |  | Cell suspension |  | Mano | CHO | Fat reserves. | 125 | 151-261 |  | Organic nutrition | 27 |
| 98 |  | Cell suspension |  | Mano | CHO | Glycogen reserves. | 47 | 82-83 |  | Organic nutrition | 27 |
| 99 | S. cerevisiae $C x$ <br> S. globosus | Cell suspension |  | Mano | CHO | No stored reserves. | 60-74 | $\begin{array}{r} 377-421- \\ 241-308 \\ \hline \end{array}$ |  | Organic nutrition | 27 |
| 100 | (GII hybrid) | Cell suspension |  | Mano | CHO | Fat reserves. | 127 | 500-377 |  | Organic nutrition | 27 |
| 101 |  | Cell suspension |  | Mano | CHO | Glycogen reserves. | 52 | 156-117 |  | Organic nutrition | 27 |
| 102 | S. cerevisiae, bakers | Cell suspension | 28 | Mano | CHO |  | 90 | 10-250 |  |  | 28 |
| 103 |  | Cell suspension ${ }^{4}$ | 22-25 | Mano | CHO | Endogenous; tglucose. | 4. $8^{3}-3.9^{3}$ |  |  | Substrate | 29 |
| 104 |  | Cell suspension ${ }^{4}$ | 22-25 | Mano | CHO | +Glucose. |  | $37.83-46.2^{3}$ |  | Substrate | 29 |
| 105 |  | Cell suspension | 30 | Cond | Com | 0.5;1.5;8 hr. | $55^{3}-63^{3}-42^{3}$ |  |  | Age | 30 |
| 106 |  | Cell suspension | 25 | Mano | Org | Warburg apparatus. | $12.3{ }^{3}$ |  |  | Method | 31 |
| 107 |  | Cell suspension | 25 | Pola | Org | Dropping mercury electrode. | $12.9{ }^{3}$ |  |  | Method | 31 |
| 108 |  | Cell suspension |  | Mano | CHO |  | 113 | 88-280 |  |  | 32 |
| 109 |  | Cell suspension ${ }^{4}$ | 30 | Mano | CHO | +Glucose. | 293 | $793^{3}$ |  | Inhibitors | 33 |
| 110 |  | Cell suspension ${ }^{4}$ | 30 | Mano | CHO | $\begin{aligned} & + \text { Glucose, }+5 \times 10^{-3} \mathrm{M} \\ & \text { methanol. } \end{aligned}$ | $26^{3}$ | $79$ |  | Inhibitors | 33 |
| 111 |  | Cell suspension ${ }^{4}$ | 30 | Mano | CHO | + Glucose, $+5 \times 10^{-3} \mathrm{M}$ formaldehyde. | $10^{3}$ | $34^{3}$ |  | Inhibitors | 33 |
| 112 |  | Cell suspension ${ }^{4}$ | 30 | Mano | CHO | $\begin{aligned} & + \text { Glucose, }+5 \times 10^{-3} \mathrm{M} \\ & \text { formic acid. } \end{aligned}$ | $28^{3}$ | $87^{3}$ |  | Inhibitors | 33 |
| 113 |  | Cell suspension ${ }^{4,5}$ | 28 | Mano | Org | +Pyruvate, pH 2.8 -9.4. | 23-0 |  | 0.91-0.98 | pH | 34 |
| 114 |  | Cell suspension 4 | 37 | Mano | End | Endogenous: $+5 \times 10^{-4} \mathrm{M}_{1}$ ricinoleic acid. | 31-85 |  |  |  | 35 |
| 115 |  | Cell suspension 4 | 37 | Mano | Org | Endogenous; $+5.8 \times 10^{-4} \mathrm{M}$ decoic acid. |  |  | 0.94-0.80 |  | 35 |
| 116 |  | Cell suspension ${ }^{4}$ | 37 | Mano | Org | Endogenous; $+4.3 \times 10^{-3} \mathrm{M}$ hexoic acid. |  |  | 0.94-0.73 |  | 35 |
| 117 |  | Cell suspension 4,5 | 26 | Mano | CHO | Control, ultraviolet treated. |  |  | 0.88-0.80 | Radiation | 36 |
| $118$ |  | Cell suspension ${ }^{4}$ | $30$ | Mano | Com | Control. | $5.5$ | 55.3 |  |  | 37 |
| 119 |  | Cell suspension ${ }^{4}$ | 30 | Mano | Com | +10 Y-pantothenate. | $8.4$ | 84.0 |  | Accessory growth factors | 37 |

$/ 1 /$ Mano $=$ manometric; Chem = chemical; Volu = volumetric; Cond = conductometric; Pola = polarographlc. $/ 2 /$ End $=$ endogenous; CHO = carbohydrates; $\mathrm{Com}=$ complex substrates; $\mathrm{Nat}=$ natural; Org = organic compounds. $/ 3 / \mu \mathrm{l} / \mathrm{mg} \mathrm{wet} \mathrm{wt} / \mathrm{hr}$. $/ 4 / \mathrm{Washed} / 5 / .\mathrm{Starved} . / 6 / \mu \mathrm{l} / \mathrm{sq} \mathrm{cm}$ area/hr.
Values for rates of gaseous exchange are given in $\mu 1 / \mathrm{mg}$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclaure. Column H : Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored $=$ values for aerobic $\mathrm{CO}_{2}$ production.

| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | Sub- <br> strate ${ }^{2}$ | Specifications | Respiration Rate $\mu 1 / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{aligned} & \text { R.Q. } \\ & \mathrm{CO}_{2} / \mathrm{O}_{2} \end{aligned}$ | $\begin{aligned} & \text { Experimental } \\ & \text { Variable } \end{aligned}$ | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  |  |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| Ascomycetes (continued) |  |  |  |  |  |  |  |  |  |  |  |
| 120 | Saccharomyces cerevisiae, bakers | Cell suspension ${ }^{4}$ | 30 | Mano | Com | +0.1 $\gamma$-thiamine. | 5.3 | 60.0 |  | Accessory growth | 37 |
| 121 | (concluded) | Cell suspension ${ }^{4}$ | 30 | Mano | Com | +0.1 y -pantothenate + $0.1 \gamma$-thiamine. | 6.3 | 76.2 |  | Accessory growth factors | 37 |
| 122 |  | Cell suspension ${ }^{4}$ | 30 | Mano | Com | +10 mg liver extract. | 5.5 | 93.0 |  | Accessory growth factors | 37 |
| 123 |  | Cell suspension | 30 | Mano | CHO | -Biotin. | 2.8-9.3 |  |  | Accessory growth factors | 38 |
| 124 |  | Cell suspension | 30 | Mano | CHO | Biotin rich. | 70-75 |  |  | Accessory growth factors | 38 |
| 125 |  | Cell suspension | 27 | Mano |  |  | 54 |  |  |  | 39 |
| 126 |  | Cell suspension | 27 | Mano |  |  | 27 | 48-209 |  |  | 39 |
| 127 |  | Cell suspension | 30 | Mano | СНО |  |  | 39-249 |  |  | 40 |
| 128 |  | Cell suspension ${ }^{4,5}$ | 20 | Mano | End | 0-4 hr in buffer. | $3.2^{3}-0.9^{3}$ |  |  | Age | 41 |
| 129 |  | Cell suspension ${ }^{4,5}$ | 20 | Mano | End | $0-3 \mathrm{hr}$ in buffer. |  |  | 0.6-1.0 | Age | 41 |
| 130 |  | $\begin{aligned} & \text { Cell suspen- } \\ & \sin ^{4}, 5 \end{aligned}$ | 20 | Mano | CHO | $\begin{aligned} & +10^{-3} ; 5 \times 10^{-2} ; 10^{-1} \mathrm{M} \\ & \text { glucose } \end{aligned}$ | $\begin{gathered} 55^{3}-16.0^{3}- \\ 13.5^{3} \end{gathered}$ |  |  | Organic nutrition | 41 |
| 131 |  | $\begin{aligned} & \text { Cell suspen- } \\ & \text { sion }^{4,5} \end{aligned}$ | 20 | Mano | СНО | $\begin{aligned} & +10^{-3} ; 10^{-2} ; 10^{-1} \mathrm{M} \\ & \text { glucose. } \end{aligned}$ |  | $\begin{gathered} 5.5^{3}-23.0^{3}- \\ 27.0^{3} \end{gathered}$ |  | Organic nutrition | 41 |
| 132 |  | Cell suspension ${ }^{4}$ | 20 | Mano | Org | $\begin{aligned} & +5 \times 10^{-4} \mathrm{M} \text { ethanol } \\ & \text { at } 0 ; 2 ; 3 \mathrm{hr} . \end{aligned}$ | $\begin{gathered} 8.0^{3}-2.0^{3}- \\ 1.2^{3} \end{gathered}$ |  |  | Organic nutrition | 41 |
| 133 |  | Cell suspension ${ }^{4}$ | 20 | Mano | Org | $+10^{-4} \mathrm{M}$ ethanol at $0 ; 2 ; 3 \mathrm{hr}$. | $\begin{gathered} 8.0^{3}-2.5^{3}- \\ 2.0^{3} \end{gathered}$ |  |  | Organic nutrition | 41 |
| 134 |  | Cell suspension ${ }^{4}$ | 20 | Mano | Org | $\begin{aligned} & +5 \times 10^{-3} \mathrm{M} \text { ethanol at } \\ & 0: 2: 3 \mathrm{hr} . \end{aligned}$ | $\begin{gathered} 8.0^{3}-11.0^{3}- \\ 2.5^{3} \end{gathered}$ |  |  | Organic nutrition | 41 |
| 135 |  | Cell suspension ${ }^{4}$ | 20 | Mano | Org | $+10^{-2} \mathrm{M}$ ethanol at $0 ; 3 ; 5 \mathrm{hr}$. | $\begin{gathered} 8.0^{3}-13.0^{3} \\ 2.0^{3} \end{gathered}$ |  |  | Organic nutrition | 41 |
| 136 |  | Cell suspension ${ }^{4}$ | 30 | Mano | CHO | $\pm$ Glutathione; $\pm$ cysteine . | 1.1 | 23 |  | Accessory growth factors | 42 |
| 137 |  | Cell suspension ${ }^{4}$ | 30 | Mano | CHO | $\pm$ Glutathione; $\pm$ cysteine | $3-6.4$ |  |  | Accessory growth factors | 42 |
| 138 | S. cerevisiae, bottom | Cell suspension | 28 | Mano | CHO |  |  | 150-170 |  |  | 28 |
| 139 |  | Cell suspension | 25 | Mano | С CHO | Endogenous; +glucose. | 11.8-33.7 |  |  | Substrate | 43 |
| 140 |  | Cell suspension | 25 | Mano | End | $\begin{gathered} +2 \times 10^{-5} ; 2 \times 10^{-4} \\ 2 \times 10^{-3} \mathrm{M} \mathrm{KCN} . \end{gathered}$ | 11.8-7.5-1.1 |  |  | 1 nhibitors | 43 |
| 141 |  | Cell suspension | 25 | Mano | CHO | $\begin{aligned} & \text { +Glucose; }-2 \times 10^{-5} \\ & \quad 2 \times 10^{-4} ; 2 \times 10^{-3} \mathrm{M} \mathrm{KCN} . \end{aligned}$ | 27.3-18.1-2.2 |  |  | Inhibitors | 43 |
| 142 | S. cerevisiae 812 | Cell suspension | 30 | Mano | CHO | Endogenous; +glucose. | 28.1-61.0 | 0.4 |  | Substrate | 44 |



| 143 | S. cerevisiae, | Cell suspension ${ }^{4}$ | 22-25 | Mano | CHO | Endogenous; +glucose. | 4.23-19.53 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 144 | brewers | Cell suspension ${ }^{4}$ | Room | Volu | End | $-;+5 \times 10^{-2} \mathrm{M}$ fluoride. |  | $1.8^{3}-0^{3}$ |
| 145 |  | Cell suspension ${ }^{4}$ | Room | Volu | с CH | $-;+5 \times 10^{-2} \mathrm{M}$ fluoride. |  | $21.6^{3}-1.4^{3}$ |
| 146 |  | Cell suspension ${ }^{4}$ | Room | Volu | CHO | -; $+5 \times 10^{-2} \mathrm{M}$ fluoride. + glucose. |  | $20.4{ }^{3}-0^{3}$ |
| 147 |  | Cell suspension ${ }^{4}$ | Room | Volu | CHO | $\begin{aligned} & \text { +Mannose; }-,+5 \times 10^{-2} \mathrm{M} \\ & \text { fluoride. } \end{aligned}$ |  | $18.0^{3}-0^{3}$ |
| 148 | S. cerevisiae, top | Cell suspension | 27 | Mano |  | $\pm$ Glutathione; $\pm$ cysteine | 28 | 207-216 |
| 149 |  | Cell suspension | 30 | Volu | CHO | $\begin{aligned} & +0 ; 5 \times 10^{-2} \mathrm{~N} \text { phenol; } \\ & \quad+\text { glucose. } \end{aligned}$ |  | $\begin{gathered} 47^{3}-43^{3}- \\ 15^{3} \end{gathered}$ |
| 150 |  | Cell suspension | 30 | Volu | Com | $+0 ; 5 \times 10^{-2} \mathrm{~N}$ phenol: + peptone. |  | $\begin{gathered} 73^{3}-683 \\ 14^{3} \end{gathered}$ |
| 151 | S. cerevisiae, wine | Cell suspension | 27 | Mano |  |  |  | 177 |
| 152 | S. cerevisiae | Cell suspension 4 | 20 | Mano | Org | $+5 \times 10^{-2} \mathrm{M}$ ethanol at $0 ; 3 ; 6 \mathrm{hr}$. | $\begin{gathered} 8.0^{3}-9.0^{3}- \\ 10.0^{3} \end{gathered}$ |  |
| 153 |  | Cell suspension ${ }^{4}$ | 20 | Mano | Org | $\begin{aligned} & +5 \times 10^{-1} \mathrm{M} \text { ethanol at } \\ & 0 ; 3 ; 6 \mathrm{hr} . \end{aligned}$ | $\begin{aligned} & 8.0^{3}-8.5^{3}- \\ & 9.0^{3} \end{aligned}$ |  |
| 154 | S. italicus | Cell suspension ${ }^{4}$ | 30 | Mano | End |  |  | 0 |
| 155 | S. ludwigii | Cell suspension | 30 | Mano | CHO | Endogenous; + glucose. | 38-144 | 0.9 |
| 156 |  | Cell suspension | 25 | Volu | CHO | +Glucose. |  | 140 |
| 157 |  | Cell suspension | 25 | Volu | Org | +Dioxyacetone. | 56-64 |  |
| 158 | S. wanching | Cell suspension | 25 | Mano | End |  | 147 | $0^{7}$ |
| 159 |  | Cell suspension | 25 | Mano | CHO | +Fructose. | 367 | $17^{7}$ |
| 160 |  | Cell suspension | 25 | Mano | CHO | +Galactose. | 247 | $2^{7}$ |
| 161 |  | Cell suspension | 25 | Mano | CHO | +Glucose; mannose. | $40^{7}-397$ | $4^{40} 0^{7}-40^{7}$ |
| 162 |  | Cell suspension | 25 | Mano | CHO | +Maltose. | 517 | $\underline{45}$ |
| 163 |  | Cell suspension | 25 | Mano | CHO | +Lactose. | 367 | 37 |
| 164 |  | Cell suspension | 25 | Mano | CHO | +Sucrose. | $42^{7}$ | $45^{7}$ |
| 165 |  | Cell suspension | 25 | Mano | СНО | +Xylose. | 187 | $8^{7}$ |
| 166 |  | Cell suspension | 25 | Mano | CHO | +Arabinose. | 257 |  |
| 167 |  | Cell suspension | 25 | Mano | Org | + Succinate; oxalate; citrate. | $14^{7}-14^{7}-14^{7}$ | $\underline{0}^{7}-\underline{0}^{7}-\underline{0}^{7}$ |
| 168 |  | Cell suspension | 25 | Mano | Org | +Glycerol; formate; propionate; butyrate; valerate. | $\left\lvert\, \begin{gathered} 187-14^{7}-16^{7} \\ 12^{7}-197 \end{gathered}\right.$ | $\begin{gathered} 0^{7}-Q^{7}-0^{7}- \\ \underline{o}^{7}-\underline{o}^{7} \end{gathered}$ |
| 169 |  | Cell suspension | 25 | Mano | Org | +Acetate; lactate. | 337.287 | $0^{7}-0^{7}$ |
| 170 |  | Cell suspension | 25 | Mano | Org | +Pyruvate. | 427 |  |
| 171 |  | Cell suspension | 20 | Mano | CHO | +Acetate, pH 5.4 ;6.8. | 467-337 |  |
| 172 |  | Cell suspension | 20 | Mano | CHO | +Lactate, $\mathrm{pH} 5.1 ; 6.8$. | 237-287 |  |
| 173 |  | Cell suspension | 20 | Mano | CHO | +Pyruvate, pli 4.1; 6.8. | 407-427 |  |
| 174 |  | Cell suspension | 20 | Mano | CHO | +Glucose-phosphate. $\mathrm{pH} 4.5 ; 6.8$. | $42^{7}-40^{7}$ |  |
| 175 | Schizosaccharomyces octosporus | Cell suspension | 30 | Mano | CHO | Endogenous; tglucose. |  | 0.1 |
| 176 | S. pombe | Cell suspension | 30 | Volu | CHO | +Glucose. | $0.235^{3}$ |  |
| 177 |  | Cell suspension | 30 | Mano | CHO | Endogenous, +glucose. | 17.9-36.4 | 0.4 |
| 178 | Sclerotinia sp | Pellets | 23-25 | Chem | CHO |  |  |  |
| 179 | Sordaria fimicola | Mycelia | 26 | Mano | End |  | 1.28 |  |
| 180 | Sordaria sp | Pellets | 23-25 | Chem | CHO |  |  |  |

[^29]160. RESPIRATION RATES: FUNGI (Continued)
Values for rates of gaseous exchange are given in $\mu 1 / \mathrm{mg}$ dry weight/hour, unless otherwise specıfied. Species names in parentheses are former nomenclature, Column H : Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored = values for aerobic $\mathrm{CO}_{2}$ production.

| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | Substrate ${ }^{2}$ | Specifications |  | ion Rate <br> /hr | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  |  |  | $\mathrm{Q}_{\mathrm{CO}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) | (K) |
| Ascomycetes (concluded) |  |  |  |  |  |  |  |  |  |  |  |
| 181 | Taphrina deformans | Mycelia |  | Chem | Nat | Host (Amygdalus communis); host + fungus. |  |  | 1.04;0.84 | Parasitism | 19 |
| 182 | Thermoascus | Mycelia | 27 | Chem | Com |  |  |  | 0.91-0.94 | Temperature | 52 |
| 183 | aurantiacus | Mycelia | 45 | Chem | Com |  |  |  | 1.04-1.07 | Temperature | 52 |
| 184 |  | Mycelia | 45 | Chem | End |  |  |  | 0.95-0.98 | Temperature | 52 |
| 185 |  | Mycelia | 45 | Chem | End | 3;20 hrafter $12 \mathrm{hrin} \mathrm{N}_{2}$. |  |  | 5.88-1.00 | Temperature | 52 |
| 186 | Zygosaccharomyces | Cell suspension ${ }^{4}$ | 28 | Mano | End | 24;48;72 hr. | 16-7-7 |  |  | Substrate; age | 53 |
| 187 | acidifaciens | Cell suspension ${ }^{4}$ | 28 | Mano | CHO | +Glucose at $24 ; 48 ; 72 \mathrm{hr}$. | 60-35-35 |  |  | Substrate; age | 53 |
| 188 |  | Cell suspension ${ }^{4}$ | 28 | Mano | End | 72-144 hr; cells grown anaerobically. | 13-2 |  |  | Substrate; growth or age | 53 |
| 189 |  | Cell suspension ${ }^{4}$ | 28 | Mano | CHO | +Glucose for 72-144 hr; cells grown anaerobically. | 17-11 |  |  | Substrate; growth or age | 53 |
| 190 |  | Cell suspension ${ }^{4}$ | 28 | Mano | CHO | +0.01;0.04;0.2\% glucose. | 32-38-67 |  |  | Substrate; age | 54 |
| 191 |  | Cell suspension ${ }^{4}$ | 28 | Mano | CHO | +Glucose for 1-2 hr. |  | 59-53 |  | Substrate; age | 54 |
| 192 |  | Cell suspension ${ }^{4}$ | 28 | Mano | End | +Glucose for 1-4 hr. |  |  | 2.13-1.55 | Substrate; age | 54 |
| 193 |  | Cell suspension ${ }^{4}$ | 28 | Mano | End | 14 hr . |  |  | 1.14 | Substrate; age | 54 |
| Basidiomycetes |  |  |  |  |  |  |  |  |  |  |  |
| 194 | Agaricus bisporus | Sporophores |  | Chem |  |  |  |  | 0.54-0.59 |  | 13 |
| 195 | (A. campestris; | Sporophores | 28 | Mano | End |  |  |  | 1.07 |  | 55 |
| 196 | Psalliota | Growing culture |  | Mano |  |  | 1.9 |  | 0.87 |  | 56 |
| 197 | campestris) | Growing culture | 25 | Volu |  |  | 1.9-2.9 | 2.3-4.0 | 0.70-0.90 |  | 57 |
| 198 | Auricularia mesenterica (Thelephora tremelloides) | Mycelia |  | Chem |  |  |  |  | 0.5-0.6 |  | 13 |
| 199 | Boletus luridus | Sporophores | 17 | Chem | End |  |  | 1.5 |  |  | 58 |
| 200 | Bovista túnicata | Sporophores | 18 | Chem | End |  |  | $\begin{array}{r} 1.783-1.073 \\ 8.7^{3}-5.6^{3} \\ \hline \end{array}$ |  |  | 59 |
| 201 | Bterkandera fumosa (Polyporus imberbis) | Sporophores | 28 | Mano | End |  |  |  | 0.89 |  | 55 |
| 202 | Coprinus comatus | Sporophores | 17 | Chem | End |  |  | 2.7 |  |  | 58 |
| 203 | C. micaceus | Sporophores | 17 | Chem | End |  |  | 4.5 |  |  | 58 |
| 204 | Coriolus versicolor (Polyporus versicolor; Polystictus | Mycelia |  | Chem | Com | $17.5{ }^{\circ} \overline{\mathrm{C}} ; 25.5{ }^{\circ} \mathrm{C} ; 33.5{ }^{\circ} \mathrm{C}$. |  | $\begin{gathered} 8.4^{7}-12.2^{7} \\ 14.67 \end{gathered}$ |  | Temperature | 60 |
| 205 | versicolor) | Mycelia |  | Chem |  |  |  |  | 0.56-0.75 |  | 13 |
| 206 |  | Mycelia | 17.5 | Chem | Com | +2;21;100\% O2. |  | $\begin{gathered} 3.67-8.5^{7}- \\ 10.4^{7} \end{gathered}$ |  | $\mathrm{O}_{2}$ pressure | 61 |


| 207 208 209 |  | Mycelia <br> Sporophores <br> Sporophores | $\begin{aligned} & 29.5 \\ & 17 \\ & 28 \end{aligned}$ | Chem <br> Chem <br> Mano | Com <br> End <br> End | +2;21;100\% O2. |  | $\left\lvert\, \begin{aligned} & 7.4^{7}-14.2^{7}- \\ & 17.2^{7} \\ & 0.3 \end{aligned}\right.$ | 0.91 | $\mathrm{O}_{2}$ pressure | 61 58 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 210 | Cystopus candidus | Mycelia |  | Chem | Nat | ```Host (Isatis djurdjurae); host + fungus.``` |  |  | 0.93-0.95 | Parasitism | 19 |
| 211 | Daedalea quercina | Mycelia |  | Chem |  |  |  |  | 0.7-0.8 |  | 13 |
| 212 | Exidia glandulosa | Mycelia |  | Chem |  |  |  |  | 0.7 |  | 13 |
| 2131 | Flammulina velutipes (Agaricus velutipes; Collybia velutipes) | Sporophores Sporophores | 28 | Chem <br> Mano | End |  |  |  | $\begin{aligned} & 0.6 \\ & 0.88 \end{aligned}$ |  | $\begin{aligned} & 13 \\ & 55 \end{aligned}$ |
| 215 | Gymnopilus sapineus (Flammula sapinea) | Sporophores | 20 | Chem | End |  | 0.663 |  |  |  | 59 |
| 216 | Lactarius serifluus | Sporophores | 17 | Chem | End |  |  | 2.7 |  |  | 58 |
| 217 | Marasmius conigenus | Sporophores | 17 | Chem | End |  |  | 3.4 |  |  | 58 |
| 218 | Melampsora pulcherrinum | Mycelia |  | Chem | Nat | Host (Mercurialis ambigua); host + fungus. |  |  | 0.97-0.96 | Parasitism | 19 |
| 219 | Merulius lachrymans | Sporophores | 17 | Chem | End |  |  |  |  |  | 58 |
| 220 | Naematoloma fasciculare (Agaricus fascicularis) | Sporophores | 17 | Chem | End |  |  | $0.73{ }^{3}-0.41{ }^{3}$ |  |  | 59 |
| 221 | Phragmidium rosae sempervirentis | Mycelia |  | Chem | Nat | Host (Rosa sempervirens); host + fungus. |  |  | 0.92-0.93 | Parasitism | 19 |
| 222 | Polyporus squamosus | Growing culture Sporophores | 17 | Mano Chem | End |  | 3.0 | 1.0 | 0.85 |  | 56 58 |
| 224 | Puccinia graminis tritici | Uredospore | 30 30 | Mano | End | $\mathrm{PO}_{4}$ buffer, pH 6.5 , ungerminated. | 1.63 1.43 | $1.13^{3}$ | $0.65$ | Activation | 63 63 |
| 225 |  | Uredospore Mycelia | 30 | Mano Chem | End Nat | Germinated. <br> Host (Kundmania sicula); | 1.43 | $1.0^{3}$ | $\begin{aligned} & 0.70 \\ & 0.95-0.87 \end{aligned}$ | Parasitism | 63 19 |
| 226 | P. kundmaniae | Mycelia |  | Chem | Nat | Host (Kundmania sicula); host + fungus. |  |  | $0.95-0.87$ | Parasitism | 19 |
| 227 | P. malvacearum | Mycelia |  | Chem | Nat | Host (Malva nicaeensis); host + fungus. |  |  | 0.79-0.95 | Parasitism | 19 |
| 228 | P. pruni | Mycelia |  | Chem | Nat | Host (Anemone coronaria); host + fungus. |  |  | 1.06-0.82 | Parasitism | 19 |
| 229 | P. smyrnii | Mycelia |  | Chem | Nat | Host (Smyrnium elustrum): host + fungus. |  |  | 0.71-0.75 | Parasitism | 19 |
| 230 | Stereum hirsutum | Sporophores | 28 | Mano | End |  |  |  | 0.89 |  | 55 |
| 231 | Urocystis anemones | Mycelia |  | Chem | Nat | Host (Ranunculus macrophyllus); host + fungus. |  |  | 0.80-0.84 | Parasitism | 19 |
| 232 | Ustilago avenae | Pellets | 23-25 | Chem | CHO |  |  |  | 1.01 |  | 17 |
| 233 | U. maydis | Pellets | 23-25 | Chem | CHO |  |  |  | 1.17 |  | 17 |
| 234 | U. sphaerogena | Sporidia ${ }^{4}$ |  | Mano | CHO |  |  | $\underline{0}$ |  |  | 64 |
| 235 |  | Sporidia ${ }^{4}$ |  | Mano | End |  | $\begin{aligned} & 75 \\ & 375 \end{aligned}$ |  |  | Substrate <br> Substrate | 64 64 |
| 236 |  | Sporidia ${ }^{4}$ |  |  |  | +Sugars. | $375$ |  |  | Substrate | 64 |
|  | Fungi Imperfecti |  |  |  |  |  |  |  |  |  |  |
| 237 238 239 | Acrostalagmus cinnabarinus | Mycelia <br> Mycelia | $\left[\begin{array}{l} 35 \\ 15 \end{array}\right.$ | Chem <br> Chem | Org, CHO <br> Org, CHO |  |  |  | $\begin{aligned} & 0.96 \\ & 1.02 \end{aligned}$ | Temperature Temperature | 8 8 17 |
| 239 | Alternaria sp | Pellets | 23-25 | 5 Chem | CHO |  |  |  | 1.26-1.31 | Mutants or strains | 17 |

Values for rates of gaseous exchange are given in $\mu l / m g$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomencla-





160. RESPIRATION RATES: FUNGl (Continued)
 ture. Column H: Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored $=$ values for aerobic $\mathrm{CO} \mathrm{O}_{2}$ production.

|  | Species | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { Meth- } \\ & \text { od }^{1} \end{aligned}$ | Sub- <br> strate ${ }^{2}$ | Specifications | Respiration Rate $\mu \mathrm{l} / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\overline{\mathrm{Q}_{2}}$ | $\mathrm{Q}_{\mathrm{CO}}$ |  |  |  |
|  | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| Fungi Imperfecti (continued) |  |  |  |  |  |  |  |  |  |  |  |
| 325 | Aspergillus niger (concluded) | Mycelia | 18 | Chem | CHO | +Sucrose. |  |  | 0.91 | Substrate; temperature | 8 |
| 326 |  | Mycelia | 35 | Chem | CHO | +Sucrose |  |  | 1.22 | Substrate; temperature | 8 |
| 327 |  | Mycelia | 22 | Chem | Org | +Tartrate. |  |  | 1.40-2.11 | Substrate; temperature | 8 |
| 328 |  | Mycelia | 36 | Chem | Org | +Tartrate. |  |  | 1.35-2.03 | Substrate; temperature | 8 |
| 329 |  | Mycelia | 22 | Chem | Org | +Glycerol. |  |  | 0.50-0.54 | Substrate; temperature | 8 |
| 330 |  | Mycelia | 36 | Chem | Org | +Glycerol. |  |  | 0.82-0.86 | Substrate; temperature | 8 |
| 331 |  | Mycelia | 3-5 | Chem | Org | +Mannitol. |  |  | 0.73 | Substrate; temperature | 8 |
| 332 |  | 'Mycelia | 35 | Chem | Org | +Mannitol. |  |  | 1.20 | Substrate; temperature | 8 |
| 333 |  | Mycelia | 30 | Mano | CHO | 4 da, tglucose;glucose iodoacetate; glucose fluoride: glucose azide;glucose cyanide. | $\begin{gathered} 12.7-1.6- \\ 3.6-0.5- \\ 5.8-1.3- \\ 2.8-1.5 \end{gathered}$ |  |  | Substrate; age | 71 |
| 334 |  | Mycelia |  | Chem | CHO | $13 ; 16 ; 20 \mathrm{mg} \text { dry wt } / \mathrm{ml} .$ | 29-22-18 |  |  | Method | 72 |
| 335 |  | Mycelia | 35 | Chem | $\mathrm{CHO}$ | Acid; neutral;alkaline. |  |  | $\begin{gathered} 1.00-0.90- \\ 0.99 \end{gathered}$ | $\mathrm{pH}$ | 73 |
| 336 |  | Mycelia |  | Chem | CHO | +0.5\% total salts. |  |  | 0.73-0.87 | Inorganic nutrition | $74$ |
| 337 |  | Mycelia | 30 | Mano | CHO |  | 12.7 |  |  |  | $71$ |
| 338 |  | Mycelia | 20 | Chem | End | 2;5;9 da. | 5.2-1.6-0.6 |  |  | Age | 75 |
| 339 |  | Mycelia | 20 | Chem | CHO | 2;5;9 da. | 12.2-2.9-1.1 |  |  | Age | 75 |
| 340 |  | Mycelia | 20 | Chem | CHO | +Sucrose, 7;26 da. |  |  | 1.05-0.91 | Age | 76 |
| 341 |  | Mycelia | 20 | Chem | Org | +Tartrate, 10;23 da. |  |  | 2.54-1.00 | Age | 76 |
| 342 |  | Mycelia | 20 | Chem | Org | +Malate, 9;31 da. |  |  | 1.76-0.84 | Age | 76 |
| 343 |  | Mycelia | 20 | Chem | Org | + Citrate, 34;54 da. |  |  | 1.68-0.91 | Temperature; age | 76 |
| 344 |  | Mycelia | 33 | Chem | Org | +Citrate, 8:21 da. |  |  | 1.54-0.78 | Temperature; age | 76 |
| 345 |  | Mycelia | 14-33 | Chem | Com | +Tannin, 2;17 da. |  |  | 1.13-0.87 | Temperature; age | 76 |
| 346 |  | Mycelia | 15 | Chem | Com |  |  | 7-2 |  |  | 77 |
| 347 |  | Pellets | 23-25 | Chem | CHO | 4 strains. |  |  | 1.24-1.93 | Strains | $65$ |
| 348 |  | Mycelia ${ }^{4}$ | 23-25 | Chem | Org | +Citrate, malate, glycolate, oxalate. |  | 07 |  | Substrate | 78 |
| 349 |  | Mycelia ${ }^{4}$ | 23 | Chem | End | $0-500 \mathrm{hr}$. |  | $100^{7}-10^{7}$ |  | Age | 78 |
| 350 |  | Mycelia ${ }^{4}$ | 23 | Chem | Org, CHO | Endogenous; +glucose; +citrate. |  |  | $\begin{gathered} 1.0->1.0= \\ 1.75 \end{gathered}$ | Substrate | 78 |

```
\circ
```

| Glucose，ethanolamine buffer，0－4；4－6； $6-8 \mathrm{hr}$ ． | 0．3－1．0－3．0 |  | 0.99 | Age |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \text { strains. } \\ & 4-6 \text { da. } \end{aligned}$ | 15－14 |  | $\begin{aligned} & 1.45 \\ & 1.45-1.60 \end{aligned}$ | Strains <br> Age |
| 3－5 da． | 16－15 | $\mid<1$ |  | Age |
|  |  |  | 1.20 |  |
| $\begin{aligned} & 0 ; 33 ; 67 \% \mathrm{O}_{2} . \\ & 17 ; 50 ; 83 \% \mathrm{O}_{2} . \end{aligned}$ | $\begin{aligned} & 0-15.3-31.7 \\ & 8.6-5.9-0.7 \end{aligned}$ |  |  | $\mathrm{O}_{2}$ pressure $\mathrm{O}_{2}$ pressure |
|  |  | 9．3－10．8 |  |  |
| $\begin{aligned} & \mathrm{O}_{2} / \mathrm{CO}_{2}=50 / 0 ; 50 / 20 \\ & 50 / 50 \end{aligned}$ | 32－40－40 |  |  | Inhibitors |
| $\begin{aligned} & \mathrm{N}_{2} ; \mathrm{CO}(\text { dark ) } ; \mathrm{CO}(\text { light ); } \\ & \text { (gas } / \mathrm{O}_{2}: 95 / 5 \text { ). } \end{aligned}$ | 49－26－30 | $\begin{gathered} 5.6-9.7- \\ 10.4 \end{gathered}$ |  | 1 Inhibitors |
| $0 ; 10^{-3 ; 10^{-2} \mathrm{M} \mathrm{KCN}}$ surface culture. | 41－36－12 |  |  | Inhibitors |
| $0 ; 10^{-3} ; 2 \times 10^{-3} \mathrm{M} \mathrm{KCN}$ submerged culture． | 73－16－11 |  |  | Inhibitors |
| 2；3；6 da． | 26－30－20 |  |  | Age |
| End；$+\mathrm{M} / 20$ oxalate． | 4．6－3．9 | 4．2－13．4 |  | Substrate |
|  |  |  | 2.05 |  |
| $\begin{aligned} & +2 \times 10^{-3} ; 2 \times 10^{-2} ; \\ & 2 \times 10^{-1} \mathrm{M} \text { sucrose. } . \end{aligned}$ | 5．5－13－24 |  |  | Substrate |
|  |  |  | 0.96 | Substrate |
| ＋Sucrose． |  |  | 1.13 | Substrate |
| ＋Gluconate． |  |  | 1.11 | Substrate |
| ＋Mannitol． |  |  | 0.96 | Substrate |
| ＋Ethanol． |  |  | 0.67 | Substrate |
| ＋Glycerol． |  |  | 0.86 | Substrate |
| Mineral med．，germi－ nating，0；2；3 hr． | $\begin{aligned} & 1.26-2.40- \\ & 2.17 \end{aligned}$ |  |  | Age |
| $\begin{aligned} & 2 \text { strains. } \\ & 4-6 \text { da. } \end{aligned}$ | 11－11 |  | 1．42－1．65 | Strains <br> Age |
|  |  | 1 |  |  |
|  |  |  | $\left\lvert\, \begin{aligned} & 1.50 \\ & 1.03 \end{aligned}\right.$ |  |
|  |  |  | $1.03$ |  |
|  |  |  | 1.57 |  |
| 2 strains． |  |  | 0．91－1．09 | Strains |
| 13－5 da． | 13－7 |  |  | Age |
|  |  |  | 1.09 |  |
| 5 strains． |  |  | 1．12－1．34 | Strains |
| 2 strains． |  |  | 1．41－1．42 | Strains |
| 2 strains． |  |  | 1．48－1．75 | Strains |


| O. | I |  <br>  | $\begin{aligned} & \text { O} \\ & \text { OU } \end{aligned}$ | 出 | 苞 | $\begin{aligned} & \text { 운 운 号足艺 } \\ & \hline \text { U } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\circ}{L} \\ & \sum_{\Sigma}^{\infty} \end{aligned}$ | $\begin{aligned} & \text { g } \\ & \text { d } \end{aligned}$ |  | $\begin{aligned} & \text { O} \\ & \text { 틀 } \end{aligned}$ |  | $\begin{aligned} & \stackrel{\circ}{E} \\ & \underset{\Sigma \pi}{\pi} \end{aligned}$ |  |  |  |  |
| 앙 | N |  |  |  |  | $\stackrel{\sim}{\sim} \stackrel{N}{n}_{n}^{n} \underset{\sim}{n} \tilde{n}_{0}$ |  |  |  |


| $\begin{aligned} & \text { g } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & \stackrel{\pi}{む} \\ & \stackrel{y}{0} \\ & \underset{z}{\infty} \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| m | N | nisinin | Ni: in :Men | $\stackrel{\stackrel{\rightharpoonup}{\circ}}{ }$ | $\stackrel{\sim}{n}$ | ep |  |  |  | $\infty_{0}^{\infty}$ | －${ }_{\sim}^{\circ}$ |  |

160. RESPIRATION KATES: FUNGl (Continued)
Values for rates of gaseous exchange are given in $\mu 1 / \mathrm{mg}$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H : Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored $=$ values for aerobic $\mathrm{CO}_{2}$ production.

| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | Substrate ${ }^{2}$ | Specifications | Respiration Rate $\mu 1 / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \mathrm{R} . \mathrm{Q} . \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | ExperimentalVariable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{QO}_{2}$ |  |  |  |  | $\mathrm{QCO}_{2}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| Fungi Imperfecti (continued) |  |  |  |  |  |  |  |  |  |  |  |
| 391 | Aspergillus terricola var. americana | Pellets | 23-25 | Chem | CHO | 2 strains. |  |  | 1.74-3.04 | Strains | 65 |
| 392 | A. versicolor | Pellets | 23-25 | Chem | CHO | 8 strains. |  |  | 1.14-1.42 | Strains | 65 |
| 393 | A. violaceo-fuscus | Pellets | 23-25 | Chem | CHO |  |  |  | 1.64 |  | 65 |
| 394 | A. wentıi | Pellets | 23-25 | Chem | CHO | 3 strains. |  |  | 1.03-1.19 | Strains | 65 |
| 395 |  | Mycelia |  | Volu | CHO | 3-5 da. | 15-17 |  |  | Age | 66 |
| 396 |  | Mycelia | 15-25 | Volu | CHO |  |  | $<1$ |  | Growth or age | 67 |
| 397 |  | Mycelia | 15-25 | Volu | Com |  |  | 0 |  |  | 67 |
| 398 | Aspergillus sp | Pellets | 23-25 | Chem | CHO | 8 strains. |  |  | 1.13-1.42 | Strains | 65 |
| 399 | Blastomyces brasiliensis | Cell suspension ${ }^{4,5}$ | 20 | ${ }^{\text {Mano }}$ | CHO | Mycelial phase. | 2.4 |  |  |  | 84 |
| 400 |  | Cell suspension 4,5 | 20 | Mano | CHO | Yeast phase. | 14.2 |  |  |  | 84 |
| 401 | B. dermatitidis | Cell suspension ${ }^{4,5}$ |  | Mano | End | $3^{\circ} \mathrm{C} ; 41^{\circ} \mathrm{C} ; 45^{\circ} \mathrm{C}$. | $\begin{gathered} 1.3-13.3- \\ 10.3 \end{gathered}$ |  |  | Temperature | 84 |
| 402 |  | Cell suspension ${ }^{4,5}$ | 37 | Mano | Org | +Acetate; endogenous. | 39-7.5 |  |  | Substrate | 84 |
| 403 |  | Cell suspension ${ }^{4}$ | 37 | Mano | End | Endogenous, $\mathrm{pH} 2 ; 6 ; 8$. | $\begin{gathered} 0.5^{8}-12.0^{8}- \\ 11.0^{8} \end{gathered}$ |  |  | pH | 85 |
| 404 |  | Cell suspension ${ }^{4}$ |  | Mano | CHO | +Glucose, pH 2;6;8. | $1^{8}-14^{8-148}$ |  |  |  | 85 |
| 405 |  | Mycelia, cell suspension ${ }^{4}$ | 37 | Mano | CHO | Endogenous; +glucose. | $16^{8}-23^{8}$ |  | 0.80-0.96 | Substrate | 86 |
| 406 | Botrytis allii <br> B. cinerea | Mycelia ${ }^{4}$ | 25 | Mano |  |  | 11-17.6 |  |  |  | 87 |
| 407 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | 1;1.5 da. | 7.7-8.5 |  |  | Age | 88 |
| 408 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | 2;3;4;5;6 da. | $\begin{gathered} 3.0-2.9-2.0- \\ 1.5-1.5 \end{gathered}$ |  | $\begin{aligned} & 1.5-1.5- \\ & 1.5-1.5- \\ & 1.5 \end{aligned}$ | Age | 88 |
| 409 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | Endogenous; +pyruvate: acetate; citrate. | $\begin{gathered} 2-4-4.5-8.8- \\ 2.7-5.4- \\ 5.4-10.8 \end{gathered}$ |  |  | Substrate | 88 |
| 410 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | +Ketoglutarate; succinate; malate; oxalate. | $\begin{aligned} & 3.1-6.2-3.9- \\ & 7.8-2.2-4.4- \\ & 1.9-3.9 \end{aligned}$ |  |  | Substrate | 88 |
| 411 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | +Glycolate; glucose: fructose. | $\begin{array}{r} 2.4-4.8-3.4- \\ 6.8-3.2-6.4 \end{array}$ |  |  | Substrate | 88 |
| 412 |  | Mycelia ${ }^{5}$ | 26 | Mano | СНО | +Glucose-1-phosphate; glucose-6-phosphate; fructose-1,6, diphosphate. | $\begin{gathered} 1.9-3.9-2.1- \\ 4.1-2.1-4.2 \end{gathered}$ |  |  | Substrate | 88 |
| 413 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | +Gluconate;5-ketogluconate;phosphogluconate | $\begin{aligned} & 4.2-8.4-1.9- \\ & \text { e. } \quad 3.9-3.8-7.6 \end{aligned}$ |  |  | Substrate | 88 |


| 414 |  | Mycelia ${ }^{5}$ | 26 | Mano | CHO | +Ribose;xylose;arabi-nose;ribose-5-phosphate. | $\begin{aligned} & 2.1-4.3-3.8- \\ & 7.6-2.8-5.5- \\ & 3.2-6.4 \end{aligned}$ |  |  | Substrate | 88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 415 | Brettanomyces anomalus | Cell suspension ${ }^{4}$ | 30 | Mano | $\overline{\mathrm{CHO}}$ |  |  | $\underline{0}$ |  |  | 89 |
| 416 | B. claussenii | Cell suspension |  | Mano | CHO | $64-168 \mathrm{hr}$, grown aerobically. | 38-28 |  |  | Growth | 90 |
| 417 |  | Cell suspension |  | Mano | CHO | 144 hr , grown anaerobically. | 10 |  |  |  | 90 |
| 418 | Candida albicans | Cell suspension ${ }^{5}$ | 30 | Mano |  |  | 5 |  |  | Substrate | 91 |
| 419 |  | Cell suspension ${ }^{5}$ | 30 | Mano | CHO | +Glucose. | 40 |  |  | Substrate | 91 |
| 420 |  | Cell suspension ${ }^{5}$ |  | Mano | End |  |  |  | 1.0 | Starvation | 91 |
| 421 | Cephalothecium roseum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.19 |  | 17 |
| 422 | Cladosporium spp | Pellets | 23-25 | Chem | CHO | 5 strains. |  |  | 1.10-1.28 | Strains | 17 |
| 423 | Clasterosporium spp | Pellets | 23-25 | Chem | CHO | 2 strains. |  |  | 1.30-1.74 | Strains | 17 |
| 424 | Eidamia catenulata | Pellets | 23-25 | Chem | CHO |  |  |  | 1.69 |  | 17 |
| 425 | E. viridescens | Pellets | 23-25 | Chem | CHO |  |  |  | 1.59 |  | 17 |
| 426 | Epicoccum spp | Pellets | 23-25 | Chem | CHO | 2 species. |  |  | 1.16-1.64 |  | 17 |
| 427 | Epidermophyton | Mycelia |  | Mano | End |  |  |  |  |  | 92 |
| 428 | floccosum | Mycelia |  | Mano | End | pH 3.0;5.0;6.0. | 3.0;0.8;1.6 |  |  | pH | 93 |
| 429 | Fumago vagans | Pellets | 23-25 | Chem | CHO |  |  |  | 1.11 |  | 17 |
| 430 | Fusarium avenaceum | Pellets | 23-25 | Chem | CHO |  |  |  | 5.46 |  | 94 |
| 431 | F. coeruleum | Pellets | 23-25 | Chem | CHO |  |  |  | 3.69 |  | 94 |
| 432 | F. dianthi | Pellets | 23-25 | Chem | CHO |  |  |  | 1.85 |  | 94 |
| 433 | F.falcatum | Pellets | 23-25 | Chem | CHO |  |  |  | 4.67 |  | 94 |
| 434 | F. graminearum | Pellets | 30 | Mano | CHO | 45-90 hr. | 10-30 |  |  | Age | 95 |
| 435 |  | Pellets | 30 | Mano | CHO | +Glucose; endogenous (whole cells). | 15.7-13.6 |  | 1.24-0.84 | Substrate; method | 95 |
| 436 |  | Pellets | 30 | Mano | CHO | +Glucose; endogenous (minced cells). | 28.0-25.9 |  | 1.11-0.72 | Substrate; method | 95 |
| 437 | F. uncinatum | Pellets | 23-25 | Chem | CHO |  |  |  | 14.46 |  | 94 |
| 438 | F. javanicum | Pellets | 23-25 | Chem | CHO |  |  |  | 3.88 |  | 94 |
| 439 | F. lini | Pellets | 23-25 | Chem | CHO |  |  |  | 1.70 |  | 94 |
| 440 | F. martii | Pellets | 23-25 | Chem | CHO |  |  |  | 2.00 |  | 94 |
| 441 | F. metachroum | Pellets | 23-25 | Chem | CHO |  |  |  | 3.32 |  | 94 |
| 442 | F. orthoceras | Pellets | 23-25 | Chem | CHO |  |  |  | 3.30 |  | 94 |
| 443 | F. oxysporum | Pellets | 23-25 | Chem | CHO |  |  |  | 2.78 |  | 94 |
| 444 | F. rhizophilum | Pellets | 23-25 | Chem | CllO |  |  |  | 3.61 |  | 94 |
| 445 | F. salicis | Pellets | 23-25 | Chem | CHO |  |  |  | 6.45 |  | 94 |
| 446 | F. sambucinum | Pellets | 23-25 | Chem | CHO |  |  |  | 4.74 |  | 94 |
| 447 | F. scirpi | Pellets | 23-25 | Chem | CHO |  |  |  | 3.17 |  | 94 |
| 448 | F. solani var. minus | Pellets | 23-25 | Chem | CHO |  |  |  | 1.45 |  | 94 |
| 449 | F. sporotrichoides | Pellets | 23-25 | Chem | CHO |  |  |  | 1.90 |  | 94 |
| 450 | F. trichothecioides | Pellets | 23-25 | Chem | CHO |  |  |  | 5.24 |  | 94 |
| 451 |  | $\text { Mycelia } 9$ | 30 | Mano | End | 1-4 hr (l da-old mycelia). | 40-13 | 31-11 | 0.78-0.84 | Substrate; age | 96 |
| 452 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Glucose, 1-4 hr (1 da-old mycelia). | 34-39 | 64-56 | 1.85-1.55 | Substrate; age | 96 |
| 453 |  | Mycelia? | 30 | Mano | End | 1-4 hr (3 da-oldmycelia). | 14-13 | 14-12 | 1.01-0.92 | Substrate; age | 96 |
| 454 |  | Mycelia9 | 30 | Mano | C.HO | +Glucose, $1-4 \mathrm{hr}$ (3 da-old mycelia). | 14-13 | 19-26 | 1.36-1.97 | Substrate; age | 96 |

Values for rates of gaseous exchange are given in $\mu 1 / \mathrm{mg}$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomencla-

| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | $\begin{aligned} & \text { Sub- } \\ & \text { strate } \end{aligned}$ | Specifications | Respiration Rate $\mu 1 / \mathrm{mg} / \mathrm{hr}$ |  | $\stackrel{\mathrm{R} . \mathrm{Q} .}{\mathrm{CO}_{2} / \mathrm{O}_{2}}$ | ExperimentalVariable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  |  |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) | (K) |
| Fungi Imperfecti (continued) |  |  |  |  |  |  |  |  |  |  |  |
| 455 | Fusarium | Mycelia 9 | 30 | Mano | End | Grown on glucose. |  |  | 0.88-0.95 | Substrate | 96 |
| 456 | trichothecioides | Mycelia ${ }^{\text {a }}$ | 30 | Mano | CHO | Grown on glucose. |  |  | 1.75-1.84 | Substrate | 96 |
| 457 | (concluded) | Mycelia ${ }^{\text {a }}$ | 30 | Mano | СНО | Endogenous; +galactose. |  |  | 1.58-2.33 | Substrate | 96 |
| 458 |  | Mycelia ${ }^{9}$ | 30 | Mano | СНо | Endogenous; + glucose and galactose. |  |  | 1.20-2.30 | Substrate | 96 |
| 459 |  | Mycelia ${ }^{\text {a }}$ | 30 | Mano | CHO | Endogenous; +xylose. |  |  | 1.00-0.98 | Substrate | 96 |
| 460 |  | Mycelia ${ }^{\text {a }}$ | 30 | Mano | СНО | Endogenous; tarabinose. |  |  | 0.87-0.89 | Substrate | 96 |
| 461 |  | Mycelia ${ }^{\text {a }}$ | 30 | Mano | СНО | Endogenous; +glycerol. |  |  | 0.92-0.64 | Substrate | 96 |
| 462 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | Endogenous; +lactate. |  |  | 0.91-0.68 | Substrate | 96 |
| 463 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Mannose, grown on glucose. |  |  | 1.67-1.71 | Substrate | 96 |
| 464 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Galactose, grown on glucose. |  |  | 0.90-0.95 | Substrate | 96 |
| 465 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Glucose and mannose. grown on glucose. |  |  | 1.70 | Substrate | 96 |
| 466 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Glucose and galactose. grown on glucose. |  |  | 1.75-1.80 | Substrate | 96 |
| 467 |  | Mycelia ${ }^{\text {a }}$ | 30 | Mano | CHO | +Fructose, grown on glucose. |  |  | 1.33-1.37 | Substrate | 96 |
| 468 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | + Xylose, grown on glucose. |  |  | 0.87-0.95 | Substrate | 96 |
| 469 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Arabinose, grown on glucose. |  |  | 0.89-0.93 | Substrate | 96 |
| 470 |  | Mycelia ${ }^{9}$ | 30 | Mano | СНО | +Sucrose, grown on glucose. |  |  | 1.09-1.14 | Substrate | 96 |
| 471 |  | Mycelia ${ }^{9}$ | 130 | Mano | CHO | +Maltose, grown on glucose. |  |  | 0.89-0.93 | Substrate | 96 |
| 472 |  | Mycelia ${ }^{9}$ | 30 | Mano | СНО | +Lactose, grown on glucose. |  |  | 0.83-0.89 | Substrate | 96 |
| 473 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Mannitol, grown on glucose. |  |  | 0.89-0.90 | Substrate | 96 |
| 474 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Glycerol, grown on glucose. |  |  | 0.59-0.61 | Substrate | 96 |
| 475 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +a-Glycerol phosphate, grown on glucose. |  |  | 0.51-0.61 | Substrate | 96 |
| 476 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Hexose diphosphate, grown on glucose. |  |  | 0.95 | Substrate | 96 |
| 477 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Pyruvate, grown on glucose. |  |  | 1.35-1.44 | Substrate | 96 |
| 478 |  | Mycelia ${ }^{9}$ | 30 | Mano | CHO | +Pyruvate and glucose, grown on glucose. |  |  | 2.08-2.17 | Substrate | 96 |





| 응ㅇㅇㅇ으음ㅁ | $\underline{\square}$ | $\stackrel{\rightharpoonup}{-}$ | $\stackrel{\square}{-}$ | $\stackrel{\square}{\square}$ | $\stackrel{\square}{-}$ | 흥 | $\stackrel{\square}{-}$ | $\bigcirc$ | － | $\stackrel{\square}{\square}$ | － | $\stackrel{\square}{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \stackrel{y}{c} \\ & \stackrel{y}{n} \\ & \text { n } \\ & \underset{\sim}{n} \\ & \sim \end{aligned}$ |  |  |  |  |  |  |  |  |  | \＃ |

160. RESPIRATION RATES: FUNGI (Continued)
Values for rates of gaseous exchange are given in $\mu \mathrm{l} / \mathrm{mg}$ dry weight/hour, unless otherwise specified. Species names in parentheses are former nomenclature. Column H : Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored = values for aerobic CO 2 production.

| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { Meth- } \\ \text { od }^{1} \end{gathered}$ | $\begin{aligned} & \text { Sub- } \\ & \text { strate }^{2} \end{aligned}$ | Specifications | Respiration Rates $\mu \mathrm{l} / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{2}$ |  |  |  |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (J) | (K) |
| Fungi Imperfecti (continued) |  |  |  |  |  |  |  |  |  |  |  |
| 580 | Myrothecium | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Cellobiose grown, + melibiose. | 19 |  |  | Substrate | 101 |
| 581 | (concluded) | Pellets ${ }^{4} 5$ | 30 | Mano | End | Lactose grown. | 21-23 |  |  | Substrate | 101 |
| 582 |  | Pellets ${ }^{\text {, }} 5$ | 30 | Mano | CHO | Lactose grown, + maltose; galactose; cellobiose; melibiose. | 35-36-30-30 |  |  | Substrate | 101 |
| 583 |  | Pellets ${ }^{4}$, 5 | 30 | Mano | CHO | Lactose grown, <br> + lactose; sucrose; <br> glucose; fructose. | 26-28-25-27 |  |  | Substrate | 101 |
| 584 |  | Pellets ${ }^{4} 5$ | 30 | Mano | End | Melibiose grown, starved. | 6 |  |  | Substrate | 101 |
| 585 |  | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Melibiose grown, + cellobiose. | 51 |  |  | Substrate | 101 |
| 586 |  | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Melibiose grown, + maltose, glucose; galactose. | 31-28-26 |  |  | Substrate | 101 |
| 587 |  | Pellets ${ }^{4} 5$ | 30 | Mano | CHO | Melibiose grown, <br> + lactose; melibiose. | $9$ |  |  | Substrate | 101 |
| 588 |  | Pellets ${ }^{4,5}$ | 30 | Mano | End | Glucose grown. | $8$ |  |  | Substrate | 101 |
| 589 |  | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Glucose grown. + sucrose; cellobiose; glucose; galactose. | 21-18-20-22 |  |  | Substrate | 101 |
| 590 |  | Pellets ${ }^{4} 5$ | 30 | Mano | CHO | Glucose grown, <br> + lactose; melibiose. | 9 |  |  | Substrate | 101 |
| 591 |  | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Galactose grown. starved. | $4$ |  |  | Substrate | 101 |
| 592 |  | Pellets ${ }^{4} 5$ | 30 | Mano | $\mathrm{Cl1O}$ | Galactose grown. <br> + sucrose; maltose; <br> cellobiose; glucose; <br> galactose; fructose. | $\begin{gathered} 19-15-17-17 \\ 16-14 \end{gathered}$ |  |  | Substrate | 101 |
| 593 |  | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Galactose grown, <br> + lactose; melibiose. | 7-9 |  |  | Substrate | 101 |
| 594 |  | Pellets ${ }^{4,5}$ | 30 | Mano | End | Fructose grown. | 12-17 |  |  | Substrate | 101 |
| 595 |  | Pellets ${ }^{\text {, } 5}$ | 30 | Mano | CHO | Fructose grown, + sucrose; maltose, cellobiose. | 59-55-57 |  |  | Substrate | 101 |
| 596 |  | Pellets ${ }^{4,5}$ | 30 | Mano | CHO | Fructose grown, <br> + glucose; galactose; fructose. | 43-46-46 |  |  | Substrate | 101 |
| 597 |  | $\text { Pellets }{ }^{4,5}$ | 30 | Mano | CHO | Fructose grown, <br> + lactose; melibiose. | 15-20 |  |  | Substrate | 101 |


160. RESPIRATION RATES: FUNGl (Continued)
 ture. Column H: Numbers underscored $=$ values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored $=$ values for aerobic $C O_{2}$ production

| Species |  | Material | $\begin{gathered} \text { Temp, } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { Meth- } \\ & \text { od }^{1} \end{aligned}$ | Substrate ${ }^{2}$ | Specifications | Respiration Rate $\mu \mathrm{l} / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | $\begin{aligned} & \text { Refer- } \\ & \text { ence } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  |  |  | Q $\mathrm{Q}_{\mathrm{CO}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| Fungi Imperfecti (continued) |  |  |  |  |  |  |  |  |  |  |  |
| - $39{ }^{\text { }}$ | Penicillium glaucum (concluded) | Mycelia | 25 | Chem | Org | +Tartrate. |  | 26-7 |  |  | 77 |
| 640 | P. godlewskii | Pellets | 23-25 | Chem | CHO |  |  |  | 1.14 |  | 94 |
| 641 | $P$. herquei | Pellets | 23-25 | Chem | CHO |  |  |  | 1.17 |  | 94 |
| 042 | P. italicum | Pellets | 23-25 | Chem | CHO | 2 strains. |  |  | 1.25-1.32 | Strains | 94 |
| 643 | P. kiliense | Pellets | 23-25 | Chem | CHO |  |  |  | 1.05 |  | 94 |
| 6.44 | P. lanoso-coeruleum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.21 |  | 94 |
| 645 | P. lanoso-viride | Pellets | 23-25 | Chem | CHO |  |  |  | 1.69 |  | 94 |
| 646 | P. lanosum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.14 |  | 94 |
| 647 | P. lilacinum | Pellets | 23-25 | Chem | CHO | 2 strains. |  |  | 1.40-1.57 | Strains | 94 |
| 648 | P. Iuteum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.04 |  | 94 |
| 649 | P. meleagrinum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.24 |  | 94 |
| 650 | P. notatum | Pellets | \|23-25| | Chem | CHO |  |  |  | 1.04 |  | 94 |
| 651 |  | Mycelia | 24 | Chem | Com | 4;8;11 da. |  | 46-198-152 |  | Age | 108 |
| 652 |  | Pellets | 23-24\| | Mano | , Com | \|3-5 da. | $1.088^{8}-1.32^{8}$ |  |  | Age | 104 |
| 653 |  | Mycelia ${ }^{5}$ | 20-24 | Mano | End | 0-1 da. | $6.5-1.7$ |  |  | Age | 109 |
| 654 |  | Mycelia ${ }^{5}$ | 20-24 | Mano | CHO | 2;4;7 da. | $6 ; 16 ; 2$ |  |  | Age | 109 |
| 655 | P. ochraccum | Pellets | 23-24 | Chem | CHO |  |  |  | 1.65 |  | 94 |
| 656 | P. pfefferianum | Pellets | 23-25 | Chem | CHO | 7 strains. |  |  | 1.05-1.21 | Strains | 94 |
| 057 | P. pinophilum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.10 |  | 94 |
| 658 | P. psittacinum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.40 |  | 94 |
| 659 | P. puberulum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.57 |  | 94 |
| 660 | P. purpurogenum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.77 |  | 94 |
| 661 | P. rugulosum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.11 |  | 94 |
| 662 | P. schneggii | Pellets | 23-25 | Chem | CHO |  |  |  | 1.45 |  | 94 |
| 663 | P. spiculisporum | Pellets | 23-25 | Chem | CHO |  |  |  | 4.03 |  | 94 |
| 664 | P. steckii | Pellets | 23-25 | Chem | CHO |  |  |  | 1.15 |  | 94 |
| 665 | P. tardum | Pellets | 23-25 | Chem | CHO | 2 strains. |  |  | 1.05-1.56 | Strains | 94 |
| 666 | P. terrestre | Pellets | 23-25 | Chem | CHO | 8 strains. |  |  | 1.19-2.26 | Strains | 94 |
| 667 | P. verrucosum | Pellets | 23-25 | Chem | CHO |  |  |  | 2.00 |  | 94 |
| 668 | P. virıdicatum | Pellets | 23-25 | Chem | CHO |  |  |  | 1.06-1.26 |  | 94 |
| 669 | Rhacodium cellare | Pellets | 23-25 | Chem | CHO |  |  |  | 1.03 |  | 17 |
| 670 | Scopulariopsis brevicaulis | Pellets | 23-25 | Chem | CHO | ${ }^{+} 3$ strains. |  |  | 1.20-1.33 | Strains | 94 |
| 671 672 | Sporotrichum bombycinum <br> S. carneolum | Pellets | $23-25$ $23-25$ | Chem Chem | CHO CHO |  |  |  | 1.28 1.16 |  | 17 17 |
| 672 | S. carneolum Stysanus sp | $\frac{\text { Pellets }}{\text { Pellets }}$ | 23-25 | Chem | CHO |  |  |  | 1.16 1.21 |  | 17 |
| 673 674 | Stysanus sp Torula sp | Pellets suspension ${ }^{4}$ | 23-25 | Chem | CHO | $\pm$ Glutathione $\pm \pm$ cystei | 28 | 9 | 1.21 | Accessory growth factors | 42 |


160. RESPIRATION RATES: FUNGI (Concluded)
 ture. Column H: Numbers underscored = values for anaerobic $\mathrm{CO}_{2}$ production; numbers not underscored = values for aerobic $C O_{2}$ production.

| Species | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { Meth- } \\ \text { od } 1 \end{gathered}$ | Sub- <br> strate ${ }^{2}$ | Specifications | Respiration Rate $\mu \mathrm{l} / \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{Q}_{2}$ | $\mathrm{QCO}_{2}$ |  |  |  |
| (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| Fungi Imperfecti (concluded) |  |  |  |  |  |  |  |  |  |  |
| 700 Torulopsis utilis (concluded) | Cell suspension | 30 | Mano | End | + Methylamine HCl , N starved. | $7.8^{3}$ | $17.1^{3}$ | 0.91 | Inorganic nutrition; substrate | 110 |
| 701 | Cell suspension | 30 | Mano | End | $\begin{aligned} & \text { +Propylamine } \mathrm{HCl}, \\ & \mathrm{~N} \text { starved. } \end{aligned}$ | $10.0^{3}$ | $7.7^{3}$ | 0.77 | Inorganic nutrition; substrate | 110 |
| 702 | Cell suspension | 30 | Mano | CHO | No $N$ added, $N$ sufficient; N starved. |  |  | 1.13-1.06 | lnorganic nutrition; substrate | 110 |
| 703 | Cell suspension | 30 | Mano | CHO | $+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, N sufficient; N starved. |  |  | 1.08-1.06 | lnorganic nutrition; substrate | 110 |
| 704 | Cell suspension | 30 | Mano | CHO | +Ethylamine HCl , N sufficient; N starved. |  |  | 0.86-0.82 | lnorganic nutrition; substrate | 110 |
| 705 | Cell suspension | 30 | Mano | CHO | +Asparagine, $N$ sufficient; N starved. |  |  | 1.24-1.18 | Inorganic nutrition; substrate | 110 |
| 706 | Cell suspension | 30 | Mano | CHO | +Urea, N sufficient; N starved. |  |  | $1.16-1.21$ | lnorganic nutrition; substrate | 110 |
| 707 | Cell suspension | 30 | Mano | CHO | $+a-A l a n i n e, N$ sufficient; $N$ starved. |  |  | 1.08-1.08 | lnorganic nutrition; substrate | 110 |
| 708 | Cell suspension | 30 | Mano | CHO | +Guanidine $\mathrm{SO}_{4}$; N sufcient; N starved. |  |  | 1.21-1.14 | Inorganic nutrition; substrate | 110 |
| 709 Trichoderma lignorum | Pellets | 23-25 | Chem | CHO |  |  |  | $1.20$ |  | 17 |
| 710 Trichoderma sp | Pellets | 23-25 | Chem | CHO |  |  |  | 1.40 |  | 17 |
| 711 Trichophyton | Mycelia |  | Mano | End |  |  |  | 1.7 |  | 92 |
| 712 gypseum | Mycelia |  | Mano | End | pH 4.6;7.0;8.0. | $\begin{gathered} 1.06-1.73- \\ 2.69 \end{gathered}$ |  |  | pH | 93 |
| 713 T. rubrum | Mycelia |  | Mano | End | ${ }_{1} \mathrm{pH} 4.6 ; 8.0$. | 0.80-0.72 |  |  | pH | 93 |

 Com = complex substrates; Nat = natural; Org = organic compounds. $/ 3 / \mu \mathrm{l} / \mathrm{mg}$ wet wt/hr.
Contributors: (a) Darby, R. T., and Mandels, G. R., (b) Sussman, A. S., (c) Cantino, E. C., (d) Allen, P. J., (e) Berry, L. J., (f) Robertson, R. N., (g) Turner, J. S., (h) Yeoman, M. M.

 neerl. 31:583, 1934. [11] De Boer, S. R., ibid 25:117, 1928. [12] Hawker, L. E., Ann. Botany, Lond. 8:79, 1944. [13] Bonnier, G., and Mangin, L.,

161. RESPIRATION RATES: LIVERWORTS AND MOSSES
Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ dry weight/hour, unless otherwise specified. Material consists of entire plant, unless otherwise specified.

| Species |  | Temp ${ }^{\circ} \mathrm{C}$ | Method ${ }^{1}$ | Respi <br> $\mathrm{\mu l} /$ | Rate <br> /hr | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference | |
|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) |
| Liverworts |  |  |  |  |  |  |  |  |
| 1 | Chiloscyphus fragilis | 25 | Mano | 60-100 |  |  | Substrates; inhibitors | 1 |
| 2 | Frullania tamarisci |  |  |  | 32-47 |  | Light | 2 |
| 3 | Marchantia polymorpha | 20 | Chem |  | 0.62 |  |  | 3 |
| 4 | Riccia fluitans | 25 | Mano | 250-300 |  |  | Substrates; inhibitors | 1 |
|  | Mosses |  |  |  |  |  |  |  |
| 5 | Fissidens taxifolius |  |  |  | 30 |  |  | 2 |
| 6 | Fontinalis antipyretica |  |  |  | 105 |  |  | 2 |
| 7 |  | 25 | Mano | 70-140 |  |  | Substrates; inhibitors | 1 |
| 8 | Hylocomium parietinum | 30 | Chem |  | 92 |  |  | 4 |
| 9 |  | 20 | Chem |  | 46 |  |  | 4 |
| 10 |  | 0 |  |  | 15 |  |  | 4 |
| 11 | H. proliferum | 30 | Chem |  | 92 |  |  | 4 |
| 12 |  | 20 | Chem |  | 46 |  |  | 4 |
| 13 |  | 0 | Chem |  | 15 |  |  | 4 |
| 14 | H. squarrosum | 30 | Chem |  | 100 |  |  | 4 |
| 15 |  | 20 | Chem |  | 61 |  |  | 4 |
| 16 |  | 5 | Chem |  | 15 |  |  | 4 |
| 17 | Hypnum cupressiforme | 18.5 | Chem | 2-30 | $\begin{aligned} & 74 \\ & 0.83^{3} \\ & 0.8-30.0 \end{aligned}$ |  | Moisture | 5 |
| 18 |  |  |  |  |  |  |  | 2 |
| 19 | H. fluitans | 18 | Chem |  |  |  |  | 6 |
| 20 | H. triquetrum | 20 |  |  |  |  | Moisture | 7 |
| 21 |  |  | Mano | 0.5-40.0 |  |  | Moisture | 8 |
| 22 | Mnium undulatum |  |  |  | 7.5-97.0 |  | Moisture | 2 |
| 23 | Orthotrichum affine | 55 | Mano |  | 12 | 0.70 |  | 9 |
| 24 | Polytrichum juniperinum ${ }^{4}$ | 18 |  |  | 1.2-0.73 | 1.00-0.65 | Growth, development, maturation | 10 |
| 25 | Sphagnum cuspidatum S. girgensohnii |  |  |  | 73-137 | 1.00-0.94 |  | 2 |
| 26 |  | 30 | Chem |  | 130 |  |  | 4 |
| 27 |  | 20 | Chem |  | 71 |  |  | 4 |
| 28 |  | 5 | Chem |  | 20 |  |  | 4 |

$/ 1 /$ Mano $=$ manometric, Chem $=$ chemical. $/ 2 / \mu 1 / \mathrm{sq} \mathrm{cm} /$ hour. $/ 3 / \mu 1 / 100 \mathrm{mg}$ wet weight/hour. /4/ Shoots or tops.
Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Klein, R. M., (c) Henderson, J. H., and Henderson, L. L., (d) Lyon, C. J.
References: [1] Usami. S., Acta Phytochim., Japan $9: 287$, 1937. [2] Jönsson, B., C. rend. Acad. sc. 119:440, 1894. [3] Boysen-Jensen, P., and
 [6] Kolkwitz, R., Wiss. Meeresuntersuch., Abt. Helgoland, N. S. 4:31, 1900. [7] Mayer, A., and Plantefol, L., C. rend. Acad. sc. $178: 1385$,
[8] Mayer, A., and Plantefol, L., Ann. physiol., Par. 1:239. 1925. [9] Jumelle, H., Rev. gén. botan, 4:49,103,159.220, 259, 305, 1892. | 10] ibid 3:255, 1891.
162. RESPIRATION RATES: HORSETAILS AND FERNS

| Species |  | Material | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{2}$ | Respiration Rate $\mu \mathrm{l} / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Reference | |
|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{2}$ |  |  | $\mathrm{Q}_{\mathrm{CO} 2}$ |  |  |
| (A) |  |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) |
| Horsetails |  |  |  |  |  |  |  |  |
| 1 | Equisetum maximum | Shoot or top | 20 | Mano |  | 6 | 0.78 | 1 |
| 2 |  | Fruiting shoot or top | 20 | Mano |  | 100 | 0.83 | 1 |
| 3 |  | Stem | RT | Mano |  | 9.6 | 0.80 | 2 |
| 4 |  | Branchlet | RT | Mano |  | 19 | 0.69 | 2 |
|  | Ferns |  |  |  |  |  |  |  |
| 5 | Asplenium adiantum nigrum | Frond with sori | 20 | Mano |  | 17 | 1.01 | 1 |
| 6 |  | Frond | 20 | Mano |  | 13 | 0.86 | 1 |
| 7 |  | Blade | RT | Mano |  | 13.4 | 0.80 | 2 |
| 8 |  | Petiole | RT | Mano |  | 8.3 | 0.80 | 2 |
| 9 | Dryopteris austriaca | Frond | 48 | Chem |  | 122 |  | 3 |
| 10 |  | Frond | 30 | Chem |  | 36 |  | 3 |
| 11 |  | Frond | 10 | Chem |  | 25 |  | 3 |
| 12 | Eupteris aquilina | Frond | 48 | Chem |  | 168 |  | 3 |
| 13 |  | Frond | 30 | Chem |  | 46 |  | 3 |
| 14 |  | Frond | 10 | Chem |  | 15 |  | 3 |
| 15 |  | Frond | 15.5 | Chem |  | 265-66 ${ }^{3}$ |  | 3 |
| 16 | Polypodium vulgare | Frond with sori | 20 | Mano |  | 19 | 1.06 | 1 |
| 17 |  | Frond | 20 | Mano |  | $10$ | 0.92 | 1 |
| 18 |  | Frond | 16 | Chem |  | 250-86 ${ }^{3}$ |  | 3 |
| 19 | Pteris aquilina | Frond with sori | 22 | Mano |  | 35 | 1.01 | 1 |
| 20 |  | Frond | 22 | Mano |  | 19 | 0.84 | 1 |
| 21 | Scolopendrium scolopendrium | Frond | 25 | Mano | 23-130-40 ${ }^{3}$ |  |  | 4 |
| 22 |  | Frond | 30 | Mano | 31 |  |  | 4 |
| 23 |  | Frond | 22 | Mano | 17.5 |  |  | 4 |
| 24 |  | Frond | 13 | Mano | 9.9 |  |  | 4 |
| 25 |  | Frond | 3 | Mano | 2.2 |  |  | 4 |

$/ 1 / \mathrm{RT}=$ room temperature. $/ 2 / \mathrm{Mano}=$ manometric, Chem = chen.ical. /3/ Effect of growth, development, maturation.
Contributors: (a) Mandels, G. R., and Darby, R. T.. (b) Klein, R. M., (c) llenderson, J. H., and Henderson, L. L., (d) Lyon, C. J.
References: [1] Maige, G., Ann. sc. nat. Botan. et bıol. végétale. Series 9, 14:1, 62, 1911. [2] Nicolas, G., ibid $10: 1,1909$. [3] Johansson, N., Svensk Botan. Tidskr. 20:107, 1926. [4] Belehradek, J., and Belehradkova, M.. New Phytologist 28:313, 1929.
163. RESPIRATION RATES: HIGHER PLANTS, SEEDS
 on certain cereal "seeds" during development and maturation, see HiGHER PLANTS: FRUITS, beginning on Page 377 .

| Species |  | Condition or Fart | $\begin{gathered} \text { Tenıp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | Respiration Rate $\mu \mathrm{l} / 100 \mathrm{nig} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
| (A) |  |  | (B) | (C) | (D) | (E) | (F) | (G) | (1) | (1) |
| 1 | Acacia mielanoxylon (blackwood acacia) | Resting |  | Mano |  | 0.012 |  |  | I |
| 2 | Acer saccharum (sugar maple) | Resting |  |  |  | 14 |  |  | 2 |
| 3 | Aleurites sp (tung) | Enıbyo. endosperm |  |  |  |  | 1.0-1.7 | Growth, development, maturation | 3 |
|  | Anaranthus retroflexus (amaranth) | Moist | 25 | Mano | 6.7 |  | 0.86 |  | 4 |
| 5 | Amygdalus communis (almond) | Germinating |  | Mano |  |  | 0.7-0.86 | Growth, development, maturation | 5 |
| 67891011 | Avena sativa (oat) <br> A. sativa (oat, Fulghum) | Seedling <br> Resting <br> Embryo. segment | $\begin{aligned} & 37.8 \\ & 26 \end{aligned}$ | Chem <br> Mano | 400-140 ${ }^{2}$ | 0.002-0.17 ${ }^{2}$ | 0.89-1.49 | Oxygen <br> Mioisture Oxygen | $\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$ |
|  | d. satwa (oat. Gopher) | Resting | 38 |  |  | 0.02-0.78 |  | Moisture | 9 |
|  | A. sativa (oat, Sieges Hafer) | Coleoptile |  | Mano |  |  | 0.82-1.29 | pH ; carbohydrates; hormones | 10 |
| 11 |  | Coleoptile, segment | 30 | Mano | 47-39 |  |  | Substrate | 11 |
| 12 | A. sativa (oat, States Pride) | Coleoptile | 25 | Mano | $360^{2}$ |  |  | Organic acids; netabolic poisons; hormones | 12 |
| 13 | Brassica alba (wild niustard) B. napus (rape) | Resting Seedling | $\begin{aligned} & 26 \\ & 19 \\ & \hline \end{aligned}$ | Chem <br> Chem |  | $\frac{33-15}{25}$ | 0.87-0.45 | Carbon dioxide | $\begin{aligned} & 13 \\ & 6 \end{aligned}$ |
| 15 | Cannabis sativa (hemp) | Resting | 18 | Mano | 11 |  | 0.82 |  | 14 |
| 16 |  | Germinating | 18 | Mano | 105 |  | 0.66 |  | 14 |
| 17 | Chenopodium album (goosefoot) | Moist | 25 | Mano | 9.6 |  | 0.93 |  | 4 |
| 18 | Citrullus vulgaris (watermelon) | Resting | 28 | Mano |  |  | 0.90 |  | 15 |
| 19 | Cocos nucifera (coconut) | Embryo | 30 | Mano | 400-50 ${ }^{2}$ |  |  | Development | 16 |
| 20 |  | Hypocotyl | 30 | Mano | $64^{2}$ |  |  |  | 16 |
| 21 |  | Endosperm | 30 | Mano | $0^{2}$ |  |  |  | 16 |
| 22 | Crataegus sp (hawthorn) | Moist | 25 | Mano | 4.4 |  | 0.77 |  | 4 |
| 23 | Cucurbita melanospermum (gourd) | Seedling |  |  |  |  | 0.73-2.2 | Oxygen | 6 |
| 24 | C. pepo (pumpkin) | Germinating |  |  |  | 45 |  |  | 17 |
| 25 | C. pepo (Sutton's long white vegetable marrow) | Germinating | 25 |  |  |  | 0.95-0.63 |  | 18 |
| 26 | C. pepo (Sutton's long white vegetable marrow) | Germinating | 25 | Chem |  | 10-117 | 0.94-0.62 |  | 19 |
| 27 | Cytisus laburnum (broom) | Resting | 28 | Mano |  |  | 1.16 |  | 15 |
| 28 |  | Resting |  | Mano |  | $0.002^{2}$ |  |  | 1 |
| 29 | Ervuri lens | Seedling |  |  |  |  | 0.85-2.00 | Oxygen | 20 |
| 30 | Fagopyrum esculentum (buckwheat) <br> F. esculentum (buckwheat. <br> Sutton's. Simpson's) | Gerninating | 25 |  |  | 41-306 | 0.8-1.0 |  | 21 |
| 31 |  | Germinating | 25 | Chem |  |  | 0.47-0.99 |  | 18 |
| 32 | Glycine max (soybean) | Gernıinating |  | Mano |  |  | 0.65 |  | 22 |
| 33 | ```Gossypiun، hirsutum (cotton. Delfos-3506) G. hirsutum (cotton, Cokers-200)``` | Resting | 26 | Mano |  | 0.03-6.0 | 0.96-1.12 | Moisture: storage or starvation | 23 |
| 34 |  | Resting | 26 | Mano |  | 0.1-1.5 | 0.92-1.05 | Moisture; storage or starvation | 23 |


| 35 | G. hirsutum (cotton, Oklahoma Triumph) | Resting | 26 | Mano |  | 0.03-1.2 | 0.91-0.97 | Moisture; storage or starvation | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | Helianthus annuus (sunflower) | Germinating |  | Mano |  |  | 0.88 |  | 22 |
| 37 |  | Resting | 28 | Mano |  |  | 1.05 |  | 15 |
| 38 |  | Germinating | 18 | Chem |  |  |  |  | 6 |
| 39 | H. annuus (sunflower, Russian) | Germinating | 20 | Chem |  | $\underline{153-86^{2}}$ |  | Inorganic nutrition. salts | 24 |
| 40 | H. annuus (sunflower, Sutton's Giant Yellow) | Gernuinating | 25 | Chem |  |  | $\begin{gathered} 0.67-0.89 \\ -0.55 \end{gathered}$ |  | 18 |
| 41 | H. annuus (sunflower, Simpson's Giant Yellow, Sutton's Giant Yellow) | Germinating | 25 | Chem |  | 41-407 | 0.85-0.50 |  | 19 |
| 42 | Hordeum distichum (barley) | Resting |  |  | 0.005 |  |  |  | 25 |
| 43 | H. distichum var. mutans (barley, Spratt, Archer) | Embryo | 22 | Chem |  | 90-900-3502 |  | Growth, development, maturation | 26 |
| 44 | H. vulgare (barley) | Resting | 37.8 | Chem |  | 0.002-0.36 ${ }^{2}$ |  | Moisture | 7 |
| 45 | H. vulgare (barley, Chilean) | Resting |  | Mano |  | 8.7 |  |  | 27 |
| 46 |  | Embryo |  | Mano |  | 62.6 |  |  | 27 |
| 47 |  | Endosperna |  | Mano |  | 3.6 |  |  | 27 |
| 48 | Juglans regia (Persian walnut) | Resting | 28 | Mano |  |  | 0.52 |  | 15 |
| 49 | Juniperus virginiana (red cedar) | Resting | 25 | Mano |  | 0.05 | 0.76 |  | 28 |
| 50 |  | Gerninating | 25 | Mano |  | 6.6-25 | 0.84-0.97 |  | 28 |
| 51 | Kajanus indicus (pigeon pea) | Resting | 21 | Chent |  | 47-5.6 |  | Growth, development, maturation | 29 |
| 52 | Lathyrus odoratus (sweet pea, Maxima Alba) | Moist | 20 | Mano | $6.4^{2-}$ |  |  |  | 30 |
| 53 |  | Seedling | 20 | Mano | 430-100 ${ }^{2}$ |  |  | Growth, development, maturation | 30 |
| 54 | L. odoratus (sweet pea, What Joy) | Germinating | 25 | Chem |  | 11-110 ${ }^{2}$ | 1.0 |  | 31 |
| 55 |  | Gerninating | 25 |  |  | 46-102 | 0.9-0.98 |  | 21 |
| 56 | L. odoratus (sweet pea, Sutton's, What Joy) | Germinating | 25 | Chem |  |  | 1.0-0.85 |  | 18 |
| 57 | Linum usitatissimum (flax) | Gerninating | 30 | Mano |  |  | 0.63 |  | 32 |
| 58 |  | Resting | 17 | Mano | 24 |  | 0.91 |  | 14 |
| 59 |  | Germinating | 16 | Mano | 214 |  | 0.55 |  | 14 |
| 60 |  | Resting | 37.6 | Chent |  | 0.03-1.5 ${ }^{2}$ |  | Moisture | 7 |
| 61 |  | Gerninating | 10 | Mano |  |  | 0.90-0.35 | Growth, development, maturation | 5 |
| 62 | L.upinus albus (white lupine) | Gerruinating |  |  |  | 50 |  |  | 17 |
| 63 |  | Seedling | 19 | Chem |  | 21 |  |  | 6 |
| 64 |  | Seedling |  | Mano |  |  | 0.80-1.12 | Oxygen | 6 |
| 65 | L. Luteus (Sutton's Dwarf Yellow) | Gerniinating | 25 | Chen, |  |  | 1.04-0.76 |  | 18 |
| 66 | Medicago sativa (alfalfa) | Resting | 18 | Mano | 36 |  | 1.08 |  | 14 |
| 67 |  | Germinating | 16 | Mano | 106 |  | 0.86 |  | 14 |
| 68 | Mirabilis jalapa (four-o'clock) | Seedling | 14 | Chem |  | 13 |  |  | 33 |
| 69 | M. jalapa chlorina (four-o'clock) | Seedling | 14 | Chem |  | 12 |  |  | 33 |
| 70 | Oryza sativa (rice) | Seedling |  |  |  |  | 0.06-2.3 | Oxygen | 6 |
| 71 |  | Resting | 37.6 | Chen. |  | 0.004-0.35 ${ }^{2}$ |  | Moisture | 7 |
| 72 | O. sativa (rice, Bely) | Kesting |  | Mano | $0.04{ }^{2}$ |  | 1.17 |  | 35 |
| 73 |  | Moist |  | Mano | 3.72 |  | 1.74 |  | 35 |
| 74 |  | Germinating |  | Mano | $4.4{ }^{2}$ |  | 1.61 |  | 35 |
| 75 |  | Seedting |  | Mano | $1.19^{2}$ |  | 1.00 |  | 35 |
| 76 | O. sativa (rice, Blue Rose) | Resting | 36 | Chem |  | $0.005 \cdot 0.17^{2}$ |  | Moisture | 34 |
| 77 | O. sativa (rice, Oobe) | Resting |  | Mano | $0.03^{2}$ |  | 1.15 |  | 35 |
| 76 |  | Moist |  | Mano | $2.8^{2}$ |  | 1.96 |  | 35 |

Values for rates of gaseous exchange are $\mu \mathrm{l} / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.


164. RESPIRATION RATES: HIGHER PLANTS, ROOTS
Values for rates of gaseous exchange are $\mu \mathrm{I} / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.

| Species | $\begin{aligned} & \text { Condition } \\ & \text { or } \\ & \text { Part } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Temp } \\ { }^{\circ} \mathrm{C} \end{array}$ | Method ${ }^{2}$ | Respiration Rate <br> $\mu \mathrm{l} / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \mathrm{R} . \mathrm{Q} . \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | $\begin{gathered} \text { Experimental } \\ \text { Variable } \end{gathered}$ | Refcrence |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
| (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) |
| 1 Achyranthes argentea | Intact | RT | Mano |  | 4.7 | 1.04 |  | 1 |
| 2 Allium cepa (onion) | Segment | 25 | Mano | $\begin{array}{r} 1390- \\ 1140^{3} \end{array}$ |  | 0.99-1.07 |  | 2 |
| 3 Aster tripolium (aster) | Intact | 20 | Chem |  | $69^{3}$ |  |  | 3 |
| 4 Beta vulgaris (beet) | Segment | 23 | Mano | 5-13 |  |  | Wounding |  |
| 5 | Intact | 22 |  |  | 2.9-1.2 |  | Storage or starvation | 5 |
| 6 B. vulgaris (red beet) | Intact | 25 | Chem |  | 0.9-0.6 | 0.8 | Oxygen; storage or starvation | 6 |
| 7 B. ${ }^{\text {a }}$ | Segment | 25 | Mano | $\begin{gathered} 70-180- \\ 110^{3} \end{gathered}$ |  | 1.01-0.85 | Storage or starvation | 7 |
| 8 B. vulgaris (sugar beet) |  | 25 |  |  | 3.2-5.3-2.1 | 1.02-1.08 | Storage or starvation | 8 |
| 9 B. vulgaris (mangold) | Segment | 25 |  | 43-260 ${ }^{3}$ |  |  | Storage or starvation | 7 |
| Borago officinalis (borage) | Intact | RT | Mano |  | 4.5 | 0.77 |  | 1 |
| Brassica napus (swede) | Segment | 24 | Mano | 1803 |  | 0.88 |  | 9 |
| 12 B. rapa (turnip) | Intact | 22 | Chem |  | 3.6 |  |  | 10 |
|  | Intact | 22 |  |  | 3.0-1.4 |  | Storage or starvation | 5 |
| Bryonia dioica (bryony) | Intact | RT | Mano |  | 1.5 | 0.90 |  | 1 |
| 5 Caltha palustris (cowslip) | Intact | 19 |  | 793 |  |  |  | 11 |
| 16 Cerinthe aspera | Intact | RT | Mano |  | 5.6 |  |  | 1 |
| 7 Chrysanthemum sinense (chrysanthemum) | Intact | 28 | Mano |  |  | 0.93 |  | 12 |
| 8 Convolvulus arvensis (bindweed) | Intact |  | Mano | 27-64 |  |  | Herbicides | 13 |


| 19 | Coronilla varia (crown vetch) | Nodule | 28 | Mano | 200-800 ${ }_{3}$ |  | 0.9-1.3 |  | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Crotalaria spectabilis (rattle box) | Nodule | 28 | Mano | $230-800^{3}$ |  | 0.95-1.04 |  | 14 |
| 21 | Dahlia sp (dahlia) | Intact | 22 |  |  | 0.9-0.4 |  | Storage or starvation | 5 |
| 22 | D. carota (carrot, Red Core Chantemay) | Intact | 28 | Chem | $\begin{aligned} & 10-14 \\ & 16 \\ & 26-4 \end{aligned}$ | 3.5 | $\begin{aligned} & 5.8-1.0 \\ & 1.10-1.18 \end{aligned}$ | Storage or starvation <br> Oxygen; storage or starvation <br> Storage or starvation <br> pH; poisons <br> Oxygen <br> Storage or starvation <br> Storage or starvation <br> Storage or starvation | 10 |
| 23 |  | Intact | 3.5 | Chem |  | $\begin{aligned} & 0.7 \\ & 2.3-0.8 \end{aligned}$ |  |  | 10 |
| 24 |  | Segment | 25 | Mano |  |  |  |  | 7 |
| 25 |  | Intact | 25 | Chem |  |  |  |  | 6 |
| 26 |  | Segment |  | Mano |  |  |  |  | 15 |
| 27 |  | Segment |  | Mano |  |  |  |  | 15 |
| 28 |  | Intact | 20 | Chem |  | 2.9-4.3 |  |  | 16 |
| 29 |  | Intact | 24 | Chem |  | 3.3-1.5 |  |  | 17 |
| 30 |  | Intact | 10 | Chem |  | 1.5-0.5 | 1.08-1.01 |  | 17 |
| 31 |  | Intact | 0.5 | Chem |  | 0.44-0.22 | 0.92-1.16 |  | 17 |
| 32 | Erodium moschatum (filaree) | Intact | RT | Mano |  | 11.8 | 0.83 |  | 1 |
| 33 | Fumaria capreolata | Intact | RT | Mano |  | 9.7 | 0.90 |  | 1 |
| 34 | Geranium robertianum (geranium) | Intact | RT | Mano |  | 10.3 | 0.86 |  | 1 |
| 35 | Gossypium herbaceum (cotton, Roseum) | Intact | 38 | Chem |  | 380-73 ${ }^{3}$ |  | Growth, development, maturation | 18 |
| 36 | Hordeum vulgare (barley, Plumage Archer) | Intact | 20 | Cond |  | 484-740 ${ }^{3}$ |  | Oxygen | 19 |
| 37 | H. vulgare (barley, Sacramento) | Excised | 23.5 | Chem |  | 37 |  |  | 20 |
| 38 |  | Segment | 24 | Mano |  |  | 0.94-1.0-0.9 | Growth, development, maturation | 21 |
| 39 | Impatiens sp (balsam) | Intact | 38 | Chem |  | 625-104 ${ }^{3}$ |  | Growth, development, maturation | 18 |
| 40 | Ipomoea batatas (sweet potato) | Intact |  |  |  | 3.0-3.6 |  | Storage or starvation | 22 |
| 41 |  | Intact | 22 |  |  | 2.0-0.9 |  | Storage or starvation | 5 |
| 42 |  | Segment | 25 | Mano | 96 |  | 1.0 |  | 23 |
| 43 | I. batatas (sweet potato, Porto Rico) | Intact | 15 | Chem |  | 1.9 |  |  | 24 |
| 44 |  | Intact | 25 | Chem |  | 4.0 |  |  | 24 |
| 45 |  | Intact | 35 | Chem |  | 6.2 |  |  | 24 |
| 46 | 1. batatas (sweet potato, Triumph) | Intact | 15 | Chem |  | 1.4 |  |  | 24 |
| 47 |  | Intact | 25 | Chem |  | 3.2 |  |  | 24 |
| 48 |  | Intact | 35 | Chem |  | 5.6 |  |  | 24 |
| 49 | 1. grandiflora (morning glory) | Excised | 20 | Mano | 2203 |  |  |  | 25 |
| 50 | Lamium album (dead nettle) | Intact | 18-19 |  | $262^{3}$ |  |  |  | 11 |
| 51 | Lathyrus odoratus (sweet pea) | Excised | 20 | Mano | $160^{3}$ |  |  |  | 25 |
| 52 | Lespedeza stipulacea (Korean clover) | Nodule | 28 | Mano | 130-550 ${ }^{3}$ |  | 0.94-1.4 |  | 14 |
| 53 | Lycopersicum esculentum (tomato) | Excised | 28 | Mano | $30 \cdot 11203$ |  |  | Accessory growth factors | 27 |
| 54 | L. esculentum (tomato, Bonny Best) | Excised | 25 | Mano | 600-800 ${ }^{3}$ |  | 1.0 |  | 26 |
| 55 | Malva parviflora (mallow) | Intact | RT | Mano |  | 8.4 | 0.83 |  | 1 |
| 56 | M. silvestris (high mallow) | Intact | RT | Mano |  | 10.2 | 0.90 |  | 1 |
| 57 | Melilotus alba (sweet clover) | Nodule | 28 | Mano | $380-660^{3}$ |  | 0.95-1.09 |  | 14 |
| 58 | Mentha aquatica (mint) | Intact | 18-19 |  | $154{ }^{3}$ |  |  |  | 11 |
| 59 | Mercurialis annua (mercury) | Intact | RT | Mano |  | 4.7 | 0.82 |  | 1 |
| 60 | Oryza sativa (rice) | Intact | 15-18 |  | 180-230 ${ }^{3}$ |  |  | Growth, development, maturation | 11 |
| 61 | Oxalis corniculata (creeping laurel) | Intact | RT | Mano |  | 14.7 | 1.0 |  | 1 |
| 62 | Pastinaca sativa (parsnip) | Intact | 22 | Chem |  | 2.7 |  |  | 10 |
| 63 |  | Intact | 1.5 | Chem |  | 1.1 |  |  | 10 |
| 64 |  | Intact | 22 |  |  | 4.5-2.1 |  | Storage or starvation | 5 |
| 65 |  | Intact |  | Mano |  | 31 |  |  | 28 |

Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value

| Species | $\begin{aligned} & \text { Condition } \\ & \text { or } \\ & \text { Part } \end{aligned}$ | Templ${ }^{\circ} \mathrm{C}$ | Method ${ }^{2}$ | Respi <br> Hl/1 | tion Rate $\mathrm{mg} / \mathrm{hr}$ | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | Refer ence | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
| (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) |
| 06 Pistia sp (water lettuce) | Intact |  | Chem |  | $85^{3}$ | 1.05 | (1) | 29 |
| 67 Pyrus malus (apple) | Intact | 14 | Chem |  | $26^{3}$ | 0.73 |  | 30 |
| 68 Raphanus raphanistrum (wild radish) | Intact | RT | Mano |  | 11.9 | $0.87$ |  | 30 |
| 69 R. sativus (radish) | Intact | 28 | Mano |  |  | $0.99$ |  | $12$ |
| 70 R. sativus aegyptiacus (radish) | Intact | 25 | Chem |  | 3.1-21 |  | Wounding | 31 |
| 71 Soja max (soybean) | Nodule | 28 | Mano | $60-430^{3}$ |  | 1.0-2.0 |  | 14 |
| 72 Stachys hirta (woundwort) | Intact | RT | Mano |  | 11.8 | 0.81 |  | 14 |
| 73 Traraxacum officinale (dandelion) | Intact |  | Chem |  | 0.04-0.1 ${ }^{3}$ | 0.94-1.24 | Herbicides | 32 |
| 7445 | Intact | RT | Mano |  | 4.1 | 0.85 |  | 1 |
| 75 Triticum vulgare (wheat) <br> 76  | Intact | 15-18 |  | 234-346 ${ }^{3}$ |  |  | Growth, development, maturation | 11 |
| 76 Urtica membranacea (nettle) | Intact | 20 | Chem | 10-253 |  |  | Inorganic nutrition, salts | 33 |
| 77 Urtica membranacea (nettle) | Intact | RT | Mano |  | 4.7 | 0.87 |  | 1 |
| 78. 79 | Excised | 26 | Mano |  |  | 1.46 |  | 34 |
| 79 V. sativa (common vetch) <br> 80 V. villosa (hairy vetch) <br>  V. | Nodule | 28 | Mano | 170-780 ${ }^{3}$ |  | 0.98-1.3 |  | 14 |
| 81 Vigna sinensis (cowpea) | Nodule | 28 | Mano | $\frac{230-900}{71-580}{ }^{3}$ |  | 1.0-1.4 |  | 14 |
| / RT = room temperature. /2/ Mano = manometric, $C$ |  |  |  |  |  |  |  |  |
| Contributors: (a) Mandels, G. R., and Darby, R, T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, |  |  |  |  |  |  |  |  |
| References: [1] Nicolas, G., Ann. sc. nat. Botan. et biol. végétale., Series |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| N. S. 11:1, 1947. [8] Stout, M., Botan. Gaz. 110:438, 1949. [9] Boswell, J. G., Ann. Botany, Lond. N. S. 14:521, 1940. [10] A |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Gregory, F. G., Ann. Botany, Lond., N. S. 12:335, 1948. [20] Hoagland, D. R., and Breyer, T. C., Plant Physiol. 11:471, 1936. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Johnstone, G. R., Botan. Gaz. 80:145, 1925. [25] Genevois, L., Biochem. Zschr, 191:147, 1927. [26] Henderson, J. H., and Sta 31:528, 1944. [27] Rabideau, $\overline{\text { S., and Whaley, W. G., Plant Physiol. 25:334. 1950. [28] Stich, C., Flora 74:1, 1891. [29] Ranja }}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| L. W., ibid 22:377, 1947. [33] Lundegàrd | H., Nature, L | 65: | 1950 |  | W | Ramshorn | K., Planta $2 \overline{8 ; 471,1938 .}$ |  |

Experimental $\quad$ Refer-
165. RESPIRATION RATES: HIGHER PLANTS, STEMS (Concluded)

| $\begin{aligned} & 83 \\ & 84 \\ & 85 \\ & 86 \\ & 87 \end{aligned}$ | L. esculentum (tomato, Bonny Best) <br> L. esculentum (tomato, Kondine Red) | Phloem <br> Segment <br> Segment <br> Phloem <br> Shoot | $\begin{aligned} & 30 \\ & 28 \\ & 27 \\ & 27 \\ & 25 \end{aligned}$ | Mano <br> Mano <br> Mano <br> Mano <br> Chem | $\left\{\begin{array}{l} 156^{4} \\ 420-350^{3} \\ 119^{5} \\ 98^{5} \end{array}\right.$ | 24-19 | 0.91-0.95 | Carbohydrates Inorganic nutrition, salts <br> Healthy vs diseased | 27 <br> 25 <br> 26 <br> 26 <br> 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88 | Malva parviflora (mallow) | Intact | RT | Mano |  | 9.7 | 0.85 |  | 1 |
| 89 | Mamillaria elephantidens (cactus) | Shoot | 12 | Mano | 0.6 |  |  |  | 6 |
| 90 | Mercurialis annua (mercury) | Intact | RT | Mano |  | 5.6 | 0.82 |  | 1 |
| 91 | Mesembryanthemum deltoides (midday-flower) | Shoot | 31 | Mano |  | 5.4 | 0.87 |  | 6 |
| 92 |  | Shoot | 23 | Mano |  | 7.2 | 0.93 |  | 6 |
| 93 |  | Shoot | 8 | Mano |  | 2.9 | 0.88 |  | 6 |
| 94 |  | Shoot | $\begin{array}{r} 23 \& \\ 31 \end{array}$ | Mano |  | 5.4-4.8 | 0.87-0.85 | Light or photoperiod | 6 |
| 95 | M. nodiflorum | Intact | RT | Mano |  | 3.9 | 1.0 |  | 1 |
| 96 | Mirabilis jalapa (four-o'clock) | Shoot | $\begin{array}{r} 15 \& \\ 18 \end{array}$ | Mano |  | 17.5-12.0 | 0.98-1.00 | Light or photoperiod | 6 |
| 97 98 | Myriophyllum hippuroides (parrot's feather) <br> M. verticillatum (parrot's feather) | Shoot <br> Shoot | 20 | Chem | $\begin{aligned} & 89^{3} \\ & 132^{3} \end{aligned}$ |  |  |  | 9 9 |
|  | Nicotiana glauca x N. langsdorfii |  |  |  | $380^{3}$ |  |  |  |  |
| 99 100 | (tobacco) <br> N. tabacum (tobacco, Burley) | Bud | 30 25 | Mano | 4. $4-8.3^{4}$ |  | 1.0 | Healthy vs diseased | 28 29 |
| 101 | Nuphar advena (spatter-dock) | lihizome | 25 | Chem |  | 3.0 |  |  | 4 |
| 102 | Opuntia cylindrica (prickly pear) | Shoot |  | Mano |  |  | 0.58-0.06 | Light or photoperiod | 6 |
| 103 |  | Shoot | 13 | Mano | 0.7 |  |  |  | 6 |
| 104 | O. dejecta (prickly pear) | Shoot | 15 | Mano | 2.3-1.7 |  |  | Growth, development, maturation | 6 |
| 105 | O. intermedia (prickly pear) | Shoot | 16 | Mano | 1.1 |  |  |  | 6 |
| 106 | O. maxima (prickly pear) | Shoot | 15 | Mano | 1.5 |  | 0.90-0.03 | Light or photoperiod | 6 |
| 107 | O. monacantha (prickly pear) | Shoot |  | Mano |  |  | 0.93-0.24 | Light or photoperiod | 6 |
| 108 |  | Shoot | 26 | Mano | 9.6-4.1 |  |  | Growth, development, maturation | 6 |
| 109 | O. tomentosa (prickly pear) | Shoot | 25 | Mano |  | 3.6-0.5 | 0.73-0.41 | Growth, development, maturation | 6 |
| 110 |  | Shoot | 24 | Mano |  | 1.1-0.2 | 0.49-0.05 | Light or photoperiod | 6 |
| 111 | Oxalis cernua (Bermuda buttercup) | Rhizome | RT | Mano |  | 5 | 1.18 |  | 1 |
| 112 | O. corniculata (creeping laurel) | Intact | RT | Mano |  | 15.4 | 0.97 |  | 1 |
| 113 | O. stricta (wood sorrel) | Shoot | KT | Mano |  | 13.8 | 0.99 |  | 1 |
| 114 | Pereskia aculeata (lemon vine) | Shoot | 24 | Mano |  | 15.5-10.4 | 0.91-0.8.t |  | 6 |
| 115 | Fhaseolus vulgaris (bean. Burpee's Stringless Green Pod) | Shoot, etiolated | 15 | Chem |  | $2_{270} 3$ |  |  | 30 |
| 116 |  | Shoot. etiolated | 25 | Chem |  | $580^{3}$ |  |  | 30 |
| 117 |  | Shoot. etiolated | 35 | Chem |  | $430^{3}$ |  |  | 30 |
| 118 | P. vulgaris (bush bean, Stringless Green Pod) | Shoot |  | Chem | $10^{4}$ |  |  |  | 31 |
| 119 | P. vulgaris (bean, Calıfornia Red Kidney) | Intact | 30 | Mano | 28-710 ${ }^{3}$ |  | 0.9-1.1 | Herbicides; metabolic poisons | 32 |
| 120 | Y. vulgaris (bean, Black Valentine) | Shoot | 24 | Chem |  | 150-1903 |  | Herbicides | 33 |
| 121 | Fhyllocactus grandiflorus (cactus) | Shoot | 20-24 | Mano |  | 6.2-5.0 | 0.96-0.78 | Growth, development, maturation | 6 |
| 122 |  | Shoot |  | Mano |  | 1.0-0.3 | 0.78-0.09 | Light or photoperiod | 6 |

Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.

| Species |  | $\begin{gathered} \text { Condition } \\ \text { or } \\ \text { Part } \end{gathered}$ | $\underset{{ }^{\text {Temp }}{ }^{\text {Te }}}{ }$ | Method ${ }^{2}$ | Respiration Rate $\mu \mathrm{l} / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | ExperimentalVariable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
| (A) |  |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) |
| 123 | Picea excelsa (Norway spruce) | Shoot | 15 | Mano | 4.4 |  |  |  | 6 |
| 124 |  | Shoot | 19 | Mano | 25.0-6.3 |  |  | Growth, development, maturation | 6 |
| 125 | Pisum sativum (garden pea, Alaska) | Segment | 25 | Mano | $532-3343$ |  | 1.07-0.98 | Storage or starvation | 35 |
| 126 |  | Segment | 25 | Mano | 532-677 ${ }^{3}$ |  | 1.07-0.98 | Hormones | 35 |
| 127 |  | Segment, etiolated | 25 | Mano | 552-660 |  |  | llormones | 36 |
| 128 | Polygonum persicaria (lady's-thumb) | Intact | RT | Mano |  | 6.9 | 0.82 |  | 1 |
| 129 | Potamogeton perfoliatus (pondweed) | Shoot | 20 | Chem | $67{ }^{3}$ |  |  |  | 9 |
| 130 | Potentilla reptans (cinquefoil) | Intact | RT | Mano |  | 11.0 | 0.83 |  | 1 |
| 131 | Proserpinaca palustris (mermaidweed) | Shoot | 20 | Chem | $62^{3}$ |  |  |  | 9 |
| 132 | Prunus laurocerasus (cherry laurel) | Shoot | 22.5 | Chem |  | 14.4-2.6 |  | Storage or starvation | 37 |
| 133 | Psoralea bituminosa (scurf-pea) | Intact | 24 | Mano |  | 57-11 | 1.06-0.80 | Growth, development, maturation | 38 |
| 134 |  | Intact | RT | Mano |  | 9.6 |  |  | 1 |
| 135 | Ptelea trifoliata (hop-tree) | Intact | R'T | Mano |  | 7.7 | 0.88 |  | 1 |
| 136 |  | Intact | 15 | Mano |  | 26.9 | 0.92-0.88 | Growth, development, maturation | 38 |
| 137 | Pyrus malus (apple, Jonathon) | Intact | 6 | Chem |  | 2.3-4.6 |  | Precooling | 39 |
| 138 | P. malus (apple, Haraldson) | Intact | 6 | Chem |  | 1.7-3.7 |  | Precooling | 39 |
| 139 | P. malus (apple, Charlamoff) | Intact | 6 | Chem |  | 1.6-2.6 |  | Precooling | 39 |
| 140 | P. malus (apple, Duchess) | Intact | 6 | Chem |  | 1.5-2.4 |  | Precooling | 39 |
| 141 | P. malus (apple, Hibernal) | Intact | 6 | Chem |  | 1.2-2.0 |  | Precooling | 39 |
| 142 | Y. malus (apple, Mclntosh) | Intact | 6 | Chem |  | 1.7-3.8 |  | Precooling | 39 |
| 143 | Quercus coccifera (oak) | Segment | 21 | Mano |  | 31-11 | 0.91-0.83 | Growth, development, maturation | 38 |
| 144 | Raphanus raphanistrum (wild radish) | Intact | RT | Mano |  | 10.5 | 0.87 |  | 1 |
| 145 | Rhipsalis salicor (cactus) | Shoot | 18 | Mano |  | 3.1 | 1.04 |  | 6 |
| 146 | Ricinus communis (castor bean) | Shoot | 20 | Mano |  | 19.2 | 0.96 |  | 6 |
| 147 | Rochea falcata | Shoot | 23 | Mano |  | 0.03 | 0.92 |  | 6 |
| 148 | Rubia peregrina (madder) | Intact | RT | Mano |  | 6.3 |  |  | 1 |
| 149 | Rumex lunaria (dock) | 1r.tact | RT | Mano |  | 10 |  |  | 1 |
| 150 | R. pulcher (fiddle-dork) | Intact | RT | Mano |  | 11.8 | 0.85 |  | 1 |
| 151 | Ruscus hypophyllum (butcher's broom) | Intact | RT | Mano |  | 1.7 | 0.58 |  | 1 |
| 152 | Saccharum officinarum (sugar cane) | Intact | 28 | Chem |  | 27-4 ${ }^{\text {a }}$ |  | Growth, development, maturation | 40 |
| 153 | Sagittaria latifolia (arrowhead) | Rhizome | 25 | Chem |  | 4.1 |  |  | 4 |
| 154 | Salicornia herbacea (glasswort) | Shoot | 22 | Chem |  | $30^{3}$ |  |  | 10 |
| 155 | Salix herbacea (willow) | Shoot | 20 | Chem |  | 23.4 |  |  | 13 |
| 156 |  | Shoot | 10 | Chem |  | 9.1 |  |  | 13 |
| 157 |  | Shoot | 0 | Chem |  | 2.5 |  |  | 13 |
| 158 | Sambucus nigra (European elder) | Intact | RT | Mano |  | 9.8 |  |  | 1 |
| 159 | Saxifraga oppositifolia (purple mountain saxifrage) | Shoot | 40 | Chem |  | 25 |  |  | 13 |
| 160 |  | Shoot | 20 | Chem |  | 7.1 |  |  | 13 |
| 161 |  | Shoot | 0 | Chem |  | 0.87 |  |  | 13 |
| 162 | S. tridactylites (saxifrage) | Intact | 20 | Mano | $100^{3}$ |  |  |  | 11 |


Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value,
Experimental $\quad$ Refer

Contributors; (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M.. (d) Henderson, J. H., and Henderson, L. L., (e) Chapman, H. W..
(f) Lyon, C. J., (g) Vallance, K. B.
100 . RESPIHATION RATES: HIGHER PLANTS, LEAVES
Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Unde

| Species |  | Condition or Part | $\begin{gathered} \text { Temp }{ }^{1} \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{2}$ | Respiration Rate $\mu 1 / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | Experimental Variable | $\begin{gathered} \text { Refer- } \\ \text { ence } \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  | $\mathrm{Q}_{\mathrm{CO}_{2}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (1) | (I) |
| 1 | Abutilon striatum (flowering maple) | Intact | 20 | Chem |  | $1.2{ }^{3}$ |  |  | 1 |
| 2 | Acacia melanoxylon (blackwood acacia) | Tendril, phyllode. or cladode | RT | Mano |  | 11.9 | 0.66 |  | 2 |
| 3 | Acanthus mollis (bear's breech) | Intact | 22 | Mano |  | 18 | 0.77 |  | 3 |
| 4 | Âcer pseudoplatanus (sycamoremaple) | lntact |  | Chem |  | $61^{4}$ |  |  | 4 |
| 5 |  | Intact | 10 | Chem |  | 33 |  |  | 5 |
| 6 | A. pseudoplatanus atropurpureum (maple) | Intact | 16 | Chem |  | 23 |  |  | 5 |
| 7 | A. pseudoplatanus cupreum (maple) | Intact | 16 | Chem |  | 24 |  |  | 5 |
| 8 | A. pseudoplatanus luteo-virescens (maple) | Intact | 10 | Chem |  | 28 |  |  | 5 |
| 9 | A. pseudoplatanus lutescens (maple) | $\ln$ tact | 16 | Chem |  | 23 |  |  | 5 |
| 10 | A. pseudoplatanus purpureum (maple) | Intact | 16 | Chem |  | 25 |  |  | 5 |
| 11 | Achyranthes argentea | Blade | RT | Mano |  | 9.4 | 0.71 |  | 2 |
| 12 | Achras sapota (sapodilla) | Intact | 20 | Chem |  | $1.3^{3}$ |  |  | 1 |
| 13 | Acokanthera spectabilis (wintersweet) | Intact | 15 | Mano |  | 6 | 0.94 |  | 6 |
| 14 |  | Intact, red | 15 | Mano |  | 8 | 0.71 |  | 6 |

$1 / \mathrm{RT}=$ room temperature. $/ 2 / \mathrm{Mano}=$ manometric, Chem = chemical, Cond = conductometric. $/ 3 / \mu \mathrm{l} / \mathrm{sq} \mathrm{cm} / \mathrm{hour} . / 4 / \mathrm{\mu l} / \mathrm{l} 00 \mathrm{mg} \mathrm{dry} \mathrm{weight} / \mathrm{hour}$
Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.


| $\begin{aligned} & 54 \\ & 55 \\ & 56 \\ & 57 \end{aligned}$ | B. verrucosa (birch) | Intact <br> Intact <br> Intact <br> Intact | $\begin{aligned} & 10 \\ & 20 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$ | Chem <br> Chem | $6^{3}$ | $\left\lvert\, \begin{aligned} & 26 \\ & 11^{3} \\ & 5^{3} \end{aligned}\right.$ |  |  | $\begin{aligned} & 15 \\ & 26 \\ & 26 \\ & 10 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | Borago officinalis (borage) | Blade | $\begin{aligned} & \mathrm{RT} \\ & \mathrm{RT} \end{aligned}$ | Mano Mano |  | $\begin{aligned} & 6.9 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.77 \end{aligned}$ |  | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ |
| 59 |  | Petiole |  | Mano |  |  |  |  |  |
| 60 | Bougainvillea sp (bougainvillea) | Intact | 29 | Mano |  |  | 0.92 |  | 27 |
| 61 | Brassica alba (brussels sprouts) | Intact | 28 | Mano |  |  | 0.92 |  | 27 |
| 65 |  | Intact | 20 | Mano |  |  |  | Growth. development, maturation | 18 |
| 66 | Bryophyllum calycinum (life plant) | Segment | 20 | Mano | 13-11-14 |  | $\begin{gathered} 0.82-0.37- \\ 1.2 \end{gathered}$ |  | 28 |
| 67 68 69 70 | Calophyllum inophyllum | Intact <br> Intact <br> Intact <br> Intact | $\begin{array}{\|l\|} \hline 40 \\ 30 \\ 20 \\ 10 \\ \hline \end{array}$ |  |  | $\begin{aligned} & 12.7^{3} \\ & 6.6^{3} \\ & 3.6^{3} \\ & 2.0^{3} \\ & \hline \end{aligned}$ |  |  | 29 <br> 29 <br> 29 <br> 29 |
| 71 | Caltha palustris (marsh marigold) | Intact | 20 | Mano | 1004 |  |  |  | 30 |
| 72 | Canna indica (Indian shot) | Intact | 22 | Mano |  | 14 | 0.72 |  | 16 |
| 73 | Carpinus betulus (European hornbeam) | Intact | 28 | Mano |  |  | 0.97 |  | 27 |
| 74 75 76 77 | Cassia fistula (pudding-pipe tree) | Intact <br> Intact <br> Intact <br> Intact | 40 30 20 10 |  | - | $\left[\begin{array}{l} 213 \\ 8.1^{3} \\ 4.1^{3} \\ 2.0^{3} \end{array}\right.$ |  |  | 29 29 29 29 |
| 78 | Cassine maurocenia (Hottentot cherry) | Intact | $19$ | $\begin{aligned} & \text { Mano } \\ & \text { Mano } \end{aligned}$ |  | $\left[\begin{array}{l} 33 \\ 43 \end{array}\right.$ | $\begin{aligned} & 0.96 \\ & 0.89 \end{aligned}$ |  | 6 6 |
| 80 | Castanea sp (chestnut) | Intact | 25 | Mano |  |  | 1.02-0.92 | Growth, development, maturation | 20 |
| 81 | Catalpa bignonioides aurea (common catalpa) | Intact | 14 | Chem |  | 18 |  |  | 5 |
| 82 | C. bignonioides koehnei (common catalpa) | Intact | 14 | Chem |  | 25 |  |  | 5 |
| 83 | C. kaempferi (catalpa) | Intact | 18 | Chem |  | 30 |  |  | 5 |
| 84 | C. kaempferi atropurpurea (catalpa) | Intact | 17 | Chem |  | 43 |  |  | 5 |
| 85 | Celsia (figwort) | Intact | 22 |  |  | 31 | 0.80 |  | 3 |
| 86 | Cerinthe aspera | Blade | R'T | Mano |  | 6.3 | 0.66 |  | 2 |
| 87 | Chamaenerium latifolium (riverbeauty) | Intact |  | Chem |  | 34 |  |  | 15 |
| 88 |  | Intact | 10 | Chem |  | 13 |  |  | 15 |
| 89 |  | Intact | 0 | Chem |  | 6.6 |  |  | 15 |
| 90 |  | Intact | 20 |  |  | $13.4{ }^{3}$ |  |  | 26 |
| 91 |  | Intact | 10 |  |  | $5.3^{3}$ |  |  | 26 |
| 92 |  | Intact | 0 |  |  | 2.73 |  |  | 26 |
| 93 | Cheiranthus cheiri (wallflower) | Intact | 20 |  |  | 19 | 0.79 |  | 3 |
| 94 | Cistus albidus (rock rose) | Intact | 24 | Chem |  | $\left[\begin{array}{l} 203 \\ 313 \end{array}\right.$ |  |  | 18 |
| 95 | C. monspeliensis (rock rose) | Intact |  | Chem |  | $31^{3}$ |  |  | 18 |
| 96 | Citrus aurantium (lime) | Intact | 20 | Chem |  | 3.03 |  |  | 1 |
| 97 | C. Limonia (lemon, Eureka) | Intact |  | Mano | 7.7-9.5 ${ }^{3}$ |  |  |  | 31 |




$\cdots$
$\min _{-1}^{\infty}-\underset{\sim}{n}$

or
Part

R $\qquad$ -

| Intact |
| :--- |
| Intact |
| Intact |
| Intact |
| Intact |
| $\begin{array}{l}\text { Blade } \\ \text { Petiole }\end{array}$ |
| $\begin{array}{l}\text { Intact } \\ \text { Intact }\end{array}$ |
| Intact <br> Intact, red <br> Intact <br> Intact <br> Intact <br> Intact <br> Intact |
| Intact | Intact

Intact
 98 Citrus sinensis (orange, Blade Intact

Intact
Intact
Intact
Intact
Intact
Intact
Intact
Intact, w

103 年 104 Convallaria majalis (lily-of-the-valley)
99
100
101
102
108 Cotyledon ramosissima (cotyledon)
109 Crassula arborescens (crassula)
C. portulacea (crassula)
12 Croton sp (croton) (toothwort)
14 Dioscorea cayennensis (yam)
15 D. divaricata (yam)
116 Echinocystis fabacea (wild
117 Elodea canadensis (waterweed)
117
118
119
Eriobotrya japonica (loquat)
Euphorbia mamillaris (spurge)
Evonymus japonica (spindle tree)
Fagus silvatica (European beech)


| 134 | F. silvatica purpurea macrophylla (beech) | Intact | 120 | Chem |  | 132 |  |  | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | Ficus benjamina (fig) | Intact | 20 | Chem |  | 1.6 |  |  | 1 |
| 136 | Fragaria sp (strawberry) | Intact | 24.5 | Chem |  | 10-5 |  | Growth, development, maturation | 41 |
| 137 | Fraxinus excelsior (ash) | Intact | 20 | Chem |  | $\left\lvert\, \begin{aligned} & 1-6 \\ & 1-3 \end{aligned}\right.$ |  | Light or photoperiod | 40 |
| 138 |  | Intact | 16 |  |  | $15^{3}$ |  |  | 7 |
| 139 | Fumaria capreolata (fumitory) |  |  |  |  | 21.3 |  |  | 2 |
| 140 |  | Petiole | RT | Mano |  | 16.4 | 1.00 |  | 2 |
| 141 | Geranium robertianum (geranium) | Blade | RT | Mano |  | 13.9 | 0.72 |  | 2 |
| 142 |  | Petiole | RT | Mano |  | 4.4 | 0.91 |  | 2 |
| 143 | G. sanguineum (geranium) | Intact | 10 |  |  | $7-13^{3}$ |  | Light or photoperiod | 7 |
| 144 | Gladiolus sp (gIadiola) | Intact | 24 | Mano |  | 18 | 0.64 |  | 3 |
| 145 | G. gandavensis (gladiola) | Intact | 24 | Mano |  | 18 | 0.64 |  | 16 |
| 146 | Gossypium herbaceum (cotton, Roseum) | Intact | 38 | Chem |  | 224-94 ${ }^{4}$ |  | Growth, development, maturation | 42 |
| 147 | Hedera helix (English ivy) | Intact | 32 | Mano |  | 40 | 1.00 |  | 8 |
| 148 |  | Intact | 18 | Mano |  | 18 | 1.00 |  | 8 |
| 149 |  | Intact | 25 | Mano | 50-80 |  |  | Growth, development, maturation | 43 |
| 150 |  | Intact | 28 | Mano |  |  | 1. 20-1.00 | Growth, development, maturation | 27 |
| 151 | H. helix var. rotundifolia (English ivy) | Intact | 22.5 | Chem |  | 13.6-5.1 |  | Storage or starvation | 22 |
| 152 | Helianthus annuus (sunflower) |  |  |  |  |  |  |  |  |
| 153 |  | Intact | 25 | Chem |  | $9-3^{3}$ |  | Storage or starvation | 37 |
| 154 |  | Intact | 20 | Chem |  | $5.8^{3}$ |  |  | 23 |
| 155 |  | Intact | 31 | Chem |  | 16.63 |  |  | 23 |
| 156 |  | Intact | 42 | Chem |  | 24.53 |  |  | 23 |
| 157 | Heracleum sibiricum (cow-parsnip) | Intact | 10 |  |  | $14-63{ }^{3}$ |  | Light or photoperiod | 7 |
| 158 | Hibiscus rosa-sinensis (Chinese hibiscus) | Intact | 20 | Chem |  | $1.3{ }^{3}$ |  |  | 1 |
| 159 | Hordeum vuigare (barley) | Intact | 23 | Mano |  | 26.6 | 0.85 |  | 2 |
| 160 |  | $\begin{aligned} & \text { Intact, } \\ & \text { etiolated } \end{aligned}$ | 23 | Mano |  | 21.6 | 0.83 |  | 2 |
| 161 |  | Intact | 25 | Chem |  | 500-2504 |  | Growth, development, maturation | 45 |
| 162 |  | Intact | 25 | Chem |  | 58.23 |  | Storage or starvation | 46 |
| 163 |  | Intact | 25 | Chem |  | 76-15 | 1.2-0.8 | Storage or starvation | 47 |
| 164 |  | Intact | 24 | Mano. Cond | 32-17 |  | 1.1-1.8 |  | 48 |
| 165 | Hydrangea hortensis (hydrangea) | Intact | 25 | Chem |  | 4.5 |  |  | 37 |
| 166 | Hypoxis rooperi (stargrass) | Intact | 27 | Mano |  | $13{ }^{3}$ |  |  | 19 |
| 167 | Ilex aquifolium (holly) | Intact | 21 | Mano |  | 12 |  |  | 49 |
| 168 | Impatiens sp (balsam) | Intact | 38 | Chem |  | $312-1204$ |  | Growth, development, maturation | 42 |
| 169 | Ipomoea grandiflora (morning glory) | Intact | 20 | Mano | 2204 |  |  |  | 30 |
| 170 | 1ris germanica (iris) | Intact | 22.5 | Chem |  | 12-13,6-5 |  | Storage or starvation | 22 |
| 171 | Kleinia radicans (candle plant) | Intact | 25 |  | 4-9:2 |  |  | Storage or starvation | 50 |
| 172 | Lactuca sativa (lettuce) | Intact | 30 | Chem |  | 390-120 ${ }^{4}$ |  | Storage or starvation | 51 |
| 173 | L. sativa (lettuce, Imperial 44) | Intact | 24 | Chem |  | 3.3-2.6 | 2.12-0.99 | Storage or starvation | 52 |
| 174 |  | Intact | 10 | Chem |  | 1.3-0.73 | 1.09-0.93 | Storage or starvation | 52 |
| 175 |  | Intact | 0.5 | Chem |  | 0.8-0.35 | 0.84-0.98 | Storage or starvation | 52 |
| 176 | Laserpitium latifolium (laserwort) | Intact | 14 |  |  | $6-11{ }^{3}$ |  | Light or photoperiod | 7 |
| 177 | Lathyrus odoratus (sweet pea) | Intact | 20 | Mano | $170{ }^{4}$ |  |  |  | 30 |

Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value

| Species |  | $\begin{gathered} \text { Condition } \\ \text { or } \\ \text { Part } \end{gathered}$ | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{2}$ | Respiration Rate $\mu 1 / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | ExperimentalVariable | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  | $\mathrm{Q}^{\mathrm{CO}_{2}}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) |
| 178 | Laurus nobilis (laurel) | Intact | 22.5 | Chem |  | 8.5-3.42 |  | Storage or starvation | 22 |
| 179 |  | Intact | 13 | Chem |  | $10^{3}$ |  |  | 18 |
| 80 | Lavatera olbia (tree mallow) | Blade | RT | Mano |  | 10.5 |  |  | 2 |
| 181 |  | Petiole | RT | Mano |  | 5.7 |  |  | 2 |
| 182 |  | Intact | 21 | Mano |  | 76-21 | 0.80-0.69 | Growth, development, maturation | 13 |
| 183 |  | Intact | 22 |  |  | 39 |  |  | 3 |
| 184 | Lemna minor (duckweed) | Intact | 25 | Mano |  | 3004 |  |  | 53 |
| 55 | Ligustrum japonicum (privet)L. lucidulum | Intact | 26 | Mano |  | 68 | 0.84 |  | 2 |
| 6 |  | Intact, white | 26 | Mano |  | 53 | 0.80 |  | 2 |
| 187 |  | Intact | 25 | Mano | 120-50 |  |  | Growth, development, maturation | 43 |
| 188 | Lolium italicum (darnel) | Intact | 19-20 |  | 1044 |  |  |  | 54 |
| 189 | Lonicera xylosteum (honeysuckle) | Intact | 17 |  |  | 8-173 |  | Light or photoperiod | 7 |
| 90 | Lycopersicum esculentum (tomato) <br> L. esculentum (Iomato, 46-31) <br> L. esculentum (tomato, Bonny Best) <br> L. esculentum (tomato, Gem) <br> L. esculentum (tomato, Improved Wasath Beauty) | Intact | 22 |  |  | 3.2-8.5 ${ }^{3}$ |  |  | 57 |
| 1 |  | Intact | 28 | Mano | $210^{4}$ |  |  |  | 56 |
| 192 |  | Segment | 28 | Mano | 390-4304 | 0.96-0.91 |  | Inorganic nutrition, salts | 55 |
| 193 |  | Intact | 28 | Mano | 2604 |  |  |  | 56 |
| 194 |  | Intact | 28 | Mano | 1904 |  |  |  | 56 |
| 195 | L. esculentum (tomato, John Baer) | Intact | 28 | Mano | 2304 |  |  |  | 56 |
| 196 |  | Segment | 30 | Mano | 42-46 |  | 1.28-1.13 | Inorganic nutrition, salts | 59 |
| 7 | L. esculentum (tomato, Longred) | Intact | 28 | Mano | $2{ }^{210} 4$ |  |  |  | 50 |
| 198 | L. esculentum (tomato, Michigan | Intact | 27 | Mano | 260-320 ${ }^{4}$ |  |  | Light or photoperiod | 58 |
|  | State Forcing) |  |  |  |  |  |  |  |  |
| 199 | L. esculentum (tomato. Rutgers) | Intact | 28 | Mano | $210^{4}$ |  |  |  | 56 |
| 0 | Mahonia sp (mahonia) | Intact | 25 | Mano |  |  | 0.95 |  | 20 |
| 201 | Malva parviflora (mallow) | Blade | RT | Mano |  | 31.9 | 0.84 |  | 2 |
|  |  | Petiole | RT | Mano |  | 8.1 | 0.97 |  | 2 |
| 203 | M. silvestris (high mallow) | Blade | RT | Mano |  | 12.3 | 0.71 |  | 2 |
| 4 | Melandrium rubrum | Intact | 18 | Chem |  | $3.0{ }^{3}$ |  |  | 60 |
| 205 | Melianthus major (honey flower) | Intact | 16 | Mano |  | 26 | 0.66 |  | 3 |
| 206 | Mercurialis annua (mercury) | Blade | RT | Mano |  | 10.2 | 0.73 |  | 2 |
| 207 |  | Petiole | RT | Mano |  | 8.6 | 0.97 |  | 2 |
| 208 |  | Blade | 17 | Mano |  | 69-18 | 0.97-0.90 | Growth, development, maturation | 13 |
| 209 | Mesembryanthemum nodiflorum (midday-flower) | Blade | RT | Niano |  | 3.1 | 0.86 |  | 2 |
| 0 | Mirabilis jalapa (four-o'clock) | Intact | 15 | Chem |  | 25 |  |  | 5 |
| 1 | M. jalapa chlorina (four-o'clock) | Intact | 15 | Chem |  | 19 |  |  | 5 |
| 212 | Myrtillus nigra | Intact | 9 |  |  | 2-6 ${ }^{3}$ |  | Light or photoperiod | 7 |
| 213 | Myrtus communis (myrtle) | Intact | 20 | Chem |  | $10^{3}$ |  |  | 18 |
| 214 | Narcissus poeticus (poets ${ }^{1}$ narcissus) | Bulb |  |  |  |  | 0.96-2.36 | Oxygen | 49 |


| 215 216 217 | ```Nicotiana glauca }\times\mathrm{ N. langsdorfii (tobacco) N. tabacum (tobacco)``` | Segment <br> Segment Segment | $\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$ | $\begin{array}{\|l} \text { Mano } \\ \text { Mano } \\ \text { Mano } \\ \hline \end{array}$ | $\begin{aligned} & 330-170^{4} \\ & 220-150^{4} \\ & 43.0-41.5 \end{aligned}$ |  | $\begin{aligned} & 1.27-1.43 \\ & 0.98-0.98 \end{aligned}$ | Growth, development, maturation Growth, development, maturation Healthy vs diseased | 61 <br> 32 <br> 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 218 | Oenothera biennis (evening primrose) | Blade | 18 | Mano |  | 24-12 | 0.83-0.70 | Growth, development, maturation | 13 |
| 219 | Olea europaea (olive) | Intact Intact | $\begin{aligned} & 22 \\ & 14 \end{aligned}$ | Mano Chem |  | $\begin{aligned} & 32-13 \\ & 30^{3} \end{aligned}$ | 0.78-0.75 | Growth, development, maturation | 13 18 |
| 221 222 223 224 225 | Opuntia versicolor (prickly pear) | Intact <br> Intact <br> intact <br> Intact <br> Intact | $\begin{array}{\|l\|} \hline 21 \\ 35 \\ 45 \\ 55 \\ 05 \\ \hline \end{array}$ | Chem <br> Chem <br> Chem <br> Chem <br> Chem |  | $\begin{aligned} & 14-36 \\ & 15 \\ & 33 \\ & 21 \\ & 6 \end{aligned}$ | 0.70 |  | $\begin{aligned} & 02 \\ & 02 \\ & 62 \\ & 62 \\ & 62 \end{aligned}$ |
| 226 | Ornithogalum arabicum (Star-of-Bethlehem) | intact | 20 |  |  | ${ }^{6}$ | 0.89 |  | 3 |
| 227 228 229 230 231 232 233 234 235 | Oxalis acetosella (wood laurel) <br> O. cernua (Bermuda buttercup) <br> O. corniculata (creeping laurel) <br> O. stricta (wood sorrel) | Intact <br> intact <br> Intact <br> Blade <br> Petiole <br> Blade <br> Petiole <br> Blade <br> Petiole | 20 18 20 RT RT RT RT RT RT | Chem <br> Chem <br> Mano <br> Mano <br> Mano <br> Mano <br> Mano <br> Mano |  | $\begin{aligned} & 1 \\ & 3.1^{3} \\ & 1.2^{3} \\ & 8.5 \\ & 7.5 \\ & 20.7 \\ & 14.6 \\ & 18.9 \\ & 14.4 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 1.6 \\ & 0.84 \\ & 0.93 \\ & 0.86 \\ & 1.03 \end{aligned}$ |  | 9 60 20 2 2 2 2 2 2 |
| 236 237 238 | Oxyria digyna (mountain sorrel) | Intact Intact Intact | $\begin{aligned} & 20 \\ & 10 \\ & 0 \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 26 \\ & 16 \\ & 5 \\ & -3 \end{aligned}$ |  |  | $\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$ |
| 239 | Panicum maximum (guinea grass) | Intact | 31 | Mano |  | 53 |  |  | 19 |
| 240 | Papaver rhoeas (corn poppy) | Intact | 21 | Mano |  | 33 |  |  | 16 |
| 241 | Paris quadrifolia (herb-paris) | Intact | 18 |  |  | 5-9 ${ }^{3}$ |  | Light or photoperiod | 7 |
| 242 | Passiflora caerulea (passion-flower) | Blade | 22 | Mano |  | $173-21$ | 0.94-0.86 | Growth, development, maturation | 13 |
| 243 244 245 246 247 | ```Pelargonium hortorum (common bedding geranium) P. zonale (horseshoe geranium)``` | Intact <br> Intact <br> Intact <br> Intact <br> Intact | 36 <br> 5 <br> 22.5 <br> 20 <br> 28 | Mano <br> Mano Chem Chem Mano |  | $\left\{\begin{array}{l} 323 \\ 0.7^{3} \\ 29-13.6-29 \\ 2.3^{3} \end{array}\right.$ | $0.85$ $1.01$ | Storage or starvation | $\begin{aligned} & 24 \\ & 24 \\ & 22 \\ & 1 \\ & 27 \\ & \hline \end{aligned}$ |
| 248 | Pennisetum clandestinum (Kikuyu grass) | Intact | 25 |  |  | 43-13-38 |  | Storage or starvation | 63 |
| 249 | Penstemon gentianoides (beard-tongue) | Intact | 24 | Mano |  | 30 | 0.76 |  | 16 |
| 250 | Petasites albus (sweet coltsfoot) | Intact | 26 | Chem |  | 5.83 |  |  | 23 |
| 251 | Phaseolus vulgaris (kidney bean) | Intact <br> Intact | $\begin{aligned} & 26 \\ & 26 \end{aligned}$ | Mano Mano | $\begin{aligned} & 26-57 \\ & 6-64 \end{aligned}$ |  |  | pH; substrate; poisons-fumigants, insecticides | 64 64 |
| 253 | Phillyrea angustifolia (phillyrea) P. media (phillyrea) | Intact <br> Intact | $\begin{aligned} & 28 \\ & 28 \end{aligned}$ | Chem <br> Chem |  | $\begin{aligned} & 10^{3-} \\ & 10^{3} \end{aligned}$ |  |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ |
| 255 | Phleum pratense (timothy) | Intact | 21-26 |  | 1244 |  |  |  | 54 |
| 256 | Phoenix dactylifera (date palm) | Intact | 20 | Chem |  | 4.53 |  |  | 1 |
| 257 | Photinia glabra (photinia) | Intact | 15 | Mano |  | 7 | 0.90 |  | 6 |

Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value


| 298 | P. padus (European bird cherry) | Intact | 11 |  | 0.04-1.10 ${ }^{3}$ |  | Light or photoperiod | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 299 | Psoralea bituminosa (scurf-pea) | Blade | 24 | Mano | 76-22 | 0.90-0.81 | Growth, development, maturation | 13 |
| 300 |  | Blade | RT | Mano | 11.3 |  |  | 2 |
| 301 |  | Petiole | RT | Mano | 5.7 |  |  | 2 |
| 302 | Ptelea trifoliata (hop-tree) | Blade | RT | Mano | 9.6 | 0.67 |  | 2 |
| 303 |  | Petiole | RT | Mano | 7.0 | 0.72 |  | 2 |
| 304 |  | Blade | 15 | Mano | 35-9.6 | 0.87-0.67 | Growth, development, maturation | 13 |
| 305 |  | Intact | 16 | Chem |  |  |  | 5 |
| 306 | P. trifoliata aurea (hop-tree) | Intact | 15 | Chem | 22 |  |  | 5 |
| 307 | Pyrus malus (apple, McIntosh) | Intact | 33 | Chem | $8.6-43.0^{3}$ |  | Moisture | 67 |
| 308 | P. malus (apple, Stayman's Winesap) | Intact | 33 | Chem | $7.6-36.0^{3}$ |  | Moisture | 67 |
| 309 |  | Intact | $21$ | Mano | $44-13$ | 0.87-0.79 | Growth, development, maturation | 13 |
| 310 | Q. ilex (holly oak) | Intact | $24$ | Chem | $20^{3}$ |  |  | 18 |
| 311 | Ranunculus glacialis (buttercup) | Intact | 20 | Chem | 28 |  |  | 15 |
| 312 |  | Intact | 10 | Chem | 19 |  |  | 15 |
| 313 |  | Intact | 0 | Chem | 5.1 |  |  | 15 |
| 314 | R. pygmaeus (dwarf buttercup) | Intact | 30 | Chem | 93 |  |  | 15 |
| 315 |  | Intact | 10 | Chem | 16 |  |  | 15 |
| 316 |  | Intact | 0 | Chem | 8.7 |  |  | 15 |
| 317 | Raphanus raphanistrum (widd radish) | Blade | RT | Mano | 13.3 | $0.73$ |  | 2 |
| 318 |  | Petiole | RT | Mano | 6.2 | 0.86 |  | 2 |
| 319 | Raphiolepis ovata | Intact | 14 | Mano | 4 | 1.01 |  | 6 |
| 320 |  | Intact, red | 14 | Mano | 5 | 0.81 |  | 6 |
| 321 | Reseda alba (white mignonette) | Intact | 20 | Mano | 30 | 0.70 |  | 10 |
| 322 | Rhamnus alaternus (buckthorn) | Intact | 29 | Chem | 313 |  |  | 18 |
| 323 | Rheum rhaponticum (rhubarb) | Segment | 30 | Mano | 29 | 1.17 |  | 68 |
| 324 | Rhododendron fargesii (rhododendron) | Intact | 22.5 | Chem | 13.6-5.1 |  | Storage or starvation | 22 |
| 325 | Robinia pseudacacia (false acacia) | Intact | 28 | Mano |  | 0.96 |  | 27 |
| 326 | Rosa sp (rose) | Intact | 14 | Mano | 23 | 0.93 |  | 6 |
| 327 |  | Intact, red | 14 | Mano | 31 | 0.91 |  | 6 |
| 328 | Rubia peregrina (madder) | Blade | RT | Mano | 12.6 |  |  | 2 |
| 329 | Rubus idaeus (European raspberry) | Intact | 13 |  |  |  |  | 7 |
| 330 |  | Intact |  | Chem | $61^{4}$ |  |  | 4 |
| 331 | R. saxatilis (bramble) | Intact | 13 |  |  |  | Light or photoperiod | 7 |
| 332 | Rumex acetosa (garden sorrel) | Blade | RT | Mano | 21.6 | 0.76 |  | 2 |
| 333 |  | Petiole | RT | Mano | 11.5 | 0.88 |  | 2 |
| 334 | R. acetosella (field sorrel) | Intact | 20 | Chem | $5^{3}$ |  |  | 9 |
| 335 | R. Iunaria (sorrel) | Blade | RT | Mano | 13.6 |  |  | 2 |
| 330 |  | Petiole | RT | Mano | 8.5 |  |  | 2 |
| 337 | R. pulcher (fiddle-dock) | Blade | RT | Mano | 14.7 | 0.76 |  | 2 |
| 338 |  | Petiole | RT | Mano | 3.3 | 0.80 |  | 2 |
| 339 | Ruscus hypophyllum (butcher's broom) | Intact, cladode | 15 | Mano | 4-2 |  | Growth, development, maturation | 13 |
| 340 |  | $\begin{array}{\|l} \text { Tendril, phyllode, } \\ \text { or cladode } \end{array}$ | RT | Mano | 2.6 | 0.55 |  | 2 |
| 341 | Ruta angustifolia (rue) | Intact | 48 | Mano | 160 | 0.73 |  | 8 |
| 342 |  | Intact | 17 | Mano | 16 | 0.73 |  | 8 |
| 343 | R. graveolens (rue) | Intact | 28 | Mano |  | 1.00 |  | 27 |
| 344 | Salix glauca (willow) | Intact | 20 |  | 173 |  |  | 26 |

Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value


| 385 | Sorghum vulgare (sorghum) | Intact |  | Chem |  | $\sqrt{1.2-0.2}^{4}$ |  | Growth, development, maturation | 72 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 386 | Sparganium ramosum (bur-reed) | Intact | 22.5 | Chem |  | 32-12 |  | Storage or starvation | 22 |
| 387 | Sparmannia africana (African hemp) | Intact | 20 | Chem |  | $1.8{ }^{3}$ |  |  | 1 |
| 388 | Spartium junceum (Spanish broom) | Blade | RT | Mano |  | 17 | 0.71 |  | 2 |
| 389 | Spinacia oleracea (spinach) | Intact | 20 | Chem |  |  |  |  | 10 |
| 390 |  | Intact | 20 | Chem |  | 4.7-7.2 | 0.87-0.82 | Oxygen | 73 |
| 391 |  | Segment | 30 | Mano | 62-41 |  | 1.0-0.74 | Storage or starvation | 74 |
| 392 |  | Segment | 30 | Mano | 43-41 |  | 0.93-0.73 | pH | 74 |
| 393 | S. oleracea (spinach, Longstanding | Intact | 24 | Chem |  | 16.2-12.8 | 0.94-0.83 | Storage or starvation | 52 |
| 394 |  | Intact | 10 | Chem |  | 4.2-2.0 | 0.90-0.86 | Storage or starvation | 52 |
| 395 |  | Intact | 0.5 | Chem |  | 1.5-5.8 | 0.85-0.73 | Storage or starvation | 52 |
| 396 | Spiraea opulifolia (spiraea) | Blade | RT | Mano |  | 16.0 | 0.65 |  | 2 |
| 397 |  | Petiole | RT | Mano |  | 11.5 | 0.71 |  | 2 |
| 398 |  | Blade | 17 | Mano |  | 49-19 | 0.88-0.74 | Growth, development, maturation | 13 |
| 399 | S. ulmaria (spiraea) | Intact | 11 |  |  | 9-10 ${ }^{3}$ |  | Light or photoperiod | 7 |
| 400 | Spironema fragrans | Intact | 20 | Chem |  | 3.03 |  |  | 1 |
| 401 | Stachys hirta (woundwort) | Blade | RT | Mano |  | 13.3 | 0.80 |  | 2 |
| 402 |  | Petiole | RT | Mano |  | 5.0 | 0.91 |  | 2 |
| 403 | Statice limonium (sea-lavender) | Intact | 20 | Chem |  | $112^{4}$ |  |  | 21 |
| 404 |  | Intact | 20 | Chem |  | $01^{4}$ |  |  | 21 |
| 405 | Stelechocarpus burahol | Intact | 40 |  |  |  |  |  | 29 |
| 406 |  | Intact | 30 |  | 5.63 |  |  |  | 29 |
| 407 |  | Intact | 20 |  | $2^{3}$ |  |  |  | 29 |
| 408 |  | Intact | 10 |  | $0.8^{3}$ |  |  |  | 29 |
| 409 | Stellaria nemorum (chickweed) | Intact | 18 | Chem |  | 3.33 |  |  | 60 |
| 410 | Syringa vulgaris (lilac) | Intact | 28 | Mano |  |  | 1.00 |  | 27 |
| 411 |  | Intact | 32 | Mano |  | 28 | 0.99 |  | 8 |
| 412 |  | Intact | 24 | Mano |  | 7.5 | 0.94 |  | 8 |
| 413 |  | Intact | 18 | Mano |  | 3.7 | 0.98 |  | 8 |
| 414 | Taraxacum officinale (dandelion) | Intact | 19 | Mano |  | 48.5 | 0.95 |  | 75 |
| 415 | Taxus baccata (yew) | Intact | 46 | Mano |  | 55 | 0.89 |  | 8 |
| 416 |  | Intact | 34 | Mano |  | 23 | 0.80 |  | 8 |
| 417 |  | Intact | 16 | Mano |  | 6 | 0.86 |  | 8 |
| 418 |  | Intact | 28 | Mano |  |  | 0.98-0.89 | Growth, development, maturation | 27 |
| 419 | Teucrium scorodonia (wood-sage) | Intact | 20 | Mano |  | 90 |  |  | 76 |
| 420 | Thea sinensis (tea) | Segment | 36 | Mano | 80-46 |  | 1.27-0.74 | Storage or starvation | 77 |
| 421 |  | Segment | 36 | Chem |  | 16.4 |  |  | 77 |
| 422 | Themeda triandra var. glauca | Intact | 27 | Mano |  |  |  |  | 19 |
| 423 | T. triandra var. trachyspathea | Intact | 38 | Mano |  | 5.6 |  |  | 19 |
| 424 | Thrincia tuberosa | Blade | RT | Miano |  | 8.8 | 0.74 |  | 2 |
| 425 | Tilia platyphylla (linden) | Intact | 20 | Chem |  | $1.6{ }^{3}$ |  |  | 1 |
| 426 | Tradescantia viridis (wandering jew) | Intact | 29 | Mano |  |  | 1.01 |  | 27 |
| 427 | Tricholaena rosea (natal-grass) | Intact | 19 | Mano |  | 8.73 |  |  | 19 |
| 428 | Trifolium pratense (red clover) | Intact |  |  |  | $80-212^{4}$ | 0.86-0.89 | Healthy vs diseased | 79 |
| 429 | Triticum compactum (wheat, Little Club) | Intact |  |  |  | 15-10-18-14 |  | Storage or starvation | 80 |
| 430 | T. sativum (wheat) | Intact | 25 | Mano |  | 40.2 | 0.97 |  | 2 |

Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value

/1/ RT = room temperature. $/ 2 / \mathrm{Mano}=$ manometric, Chem = chemical, Cond = conductometric. $/ 3 / \mathrm{\mu} / \mathrm{sq} \mathrm{cm} / \mathrm{hour} . / 4 / \mu \mathrm{l} / \mathrm{ho0} \mathrm{mg} \mathrm{dry} \mathrm{weight} / \mathrm{hour}$.

Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value

| Species | $\begin{gathered} \text { Condition } \\ \text { or } \\ \text { Part } \end{gathered}$ | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | Respiration Rate $\mu l / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \text { R.Q. } \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | $\begin{aligned} & \text { Experimental } \\ & \text { Variable } \end{aligned}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{Q}_{\mathrm{O}}$ | $\mathrm{Q}_{\mathrm{CO}}$ |  |  |  |
| (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) |
| 1 Acanthus mollis (bear's breech) | Sepal | 24 | Mano |  | 63-41-28 | $\begin{aligned} & 1.06-1.03- \\ & .88 \end{aligned}$ | Growth, development, maturation | 1 |
| 2 | Petal | 20 | Mano |  | 56-37-32 | . $79-.83-.94$ | Growth, development, maturation | 1 |
| 3 | Stamen | 21 | Mano |  | 33-52-30 | . $97-.91-.71$ | Growth, development, maturation | 1 |
| 4 | Pistil | 21 | Mano |  | 31-27-25 | .89-.87-. 90 | Growth, development, maturation | 1 |

167. RESPIRATION RATES: HIGHER PLANTS, FLOWERS (Continued)
Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number = control or endogenous value.


| 47 | Cyclamen persicum (cyclamen) | Intact | 28 | Mano |  |  | 1.03 |  | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | Cymbidium lowianum (cymbidium) | Intact | 25 | Mano | $6^{64-122} 2$ |  | 0.9-1.0 | Pollination; hormones | 10 |
| 49 | Dahlia variabilis (dahlia) | Petal | 28 | Mano |  |  | 0.94 |  | 3 |
| 50 | Delphinium sinense (larkspur) | Intact | 28 | Mano |  |  | 0.94 |  | 3 |
| 51 | Gladiolus sp (gladiola) | Stamen | 24 | Mano |  | 27 | 0.77 |  | 9 |
| 52 |  | Pistil | 24 | Mano |  | 71 | 0.90 |  | 9 |
| 53 | G. gandavensis (gladiola) | Petal | 24 | Mano |  | 15 | 0.72 |  | 1 |
| 54 |  | Stamen | 24 | Mano |  | 27 | 0.77 |  | 1 |
| 55 |  | Pistil | 24 | Mano |  | 71 | 0.90 |  | 1 |
| 56 | Helianthus annuus (sunflower) | Inflorescence | 10 | Chem |  | 57-432 |  | Growth, development, maturation | 11 |
| 57 | Hibiscus rosa-sınensis (Chinese hibiscus) | Petal | 26 | Mano |  | 130-86-38 | $\begin{gathered} 1.06-1.04 \\ -0.96 \end{gathered}$ | Growth, development, maturation | 1 |
| 58 |  | Sepal | 24 | Mano |  | 75-44-29 | $\begin{gathered} 0.81-0.90- \\ 0.94 \end{gathered}$ | Growth, development, maturation | 1 |
| 59 | Hippeastrum sp (amaryllis) | Pollen | 20 | Mano | $650{ }^{2}$ |  |  |  | 5 |
| 60 | Jasminum nudiflorum (jasmine) | Intact | 28 | Mano |  |  | 1.01 |  | 3 |
| 01 | Lathyrus odoratus (sweet pea) | Petal | 20 | Mano | $330^{2}$ |  |  |  | 4 |
| 62 |  | Filament | 20 | Mano | $160{ }^{2}$ |  |  |  | 4 |
| 63 |  | Ovary | 20 | Mano | $300^{2}$ |  |  |  | 4 |
| 64 |  | Ovule | 20 | Mano | $420^{2}$ |  |  |  | 4 |
| 65 | Lavatera olbia (tree mallow) | Pistil | 22 |  |  | 89 |  |  | 9 |
| 66 |  | Stamen | 22 |  |  | 58 |  |  | 9 |
| 67 |  | Sepal | 22 | Mano |  | 62 |  |  | 1 |
| 68 |  | Petal | 22 | Mano |  | 30 |  |  | 1 |
| 69 |  | Pistil | 20 | Mano |  | 82-77 | 0.93-0.94 | Growth, development, maturation | 1 |
| 70 |  | Petal | 24 | Mano |  | 77-65 | 0.90-0.84 |  | 1 |
| 71 |  | Stamen | 24 | Mano |  | 138-106 | 0.90-0.84 |  | 1 |
| 72 | Lilium aratum (golden-banded lily) | Pollen | 25 | Mano | $1000{ }^{2}$ |  | 1.01 |  | 5 |
| 73 | L. elegans (lily) | Pollen | 25 | Mano | $610^{2}$ |  |  |  | 5 |
| 74 | L. hansonii (lily, Golden Turk's-cap) | Pollen | 25 | Mano | 3402 |  |  |  | 5 |
| 75 | L. longiflorum (Easter lily) | Pollen | 25 | Mano | $930^{2}$ |  |  |  | 5 |
| 76 | L. longiflorum (lily) | Anther | 25 | Mano |  | 73-31 |  | Growth, development, maturation | 12 |
| 77 | L. philippinensis (lily) | Pollen | 25 | Mano | $1140^{2}$ |  | 1.04 |  | 5 |
| 78 | L. philippinensis (lily, Iwado) | Pollen | 25 | Mano | $950^{2}$ |  |  |  | 5 |
| 79 | L. philippinensis (lily, Nahate) | Pollen | 25 | Mano | $520^{2}$ |  |  |  | 5 |
| 80 | L. croceum (orange lily) | Stamen |  |  |  | 56-21 | 1.14-0.98 | Growth, development, maturation | 13 |
| 81 |  | Pistil |  |  |  | 58-19 | 1.06-1.12 | Growth, development, maturation | 13 |
| 82 | Melianthus major (honey flower) | Stamen | 20 | Mano |  | 62-50-57 | $\begin{gathered} 0.94-0.89- \\ 0.90 \end{gathered}$ | Growth, development, maturation | 1 |
| 83 |  | Pistil | 20 | Mano |  | 52-75 | 0.89-0.97 | Growth, development, maturation | 9 |
| 84 |  | Pistil | 10 | Mano |  | 54 | 0.94 |  | 9 |
| 85 |  | Stamen | 16 | Mano |  | 35 | 0.80 |  | 9 |
| 86 | Narcissus tazetta (polyanthus narcissus) | Stamen | 17 | Mano |  | 56-51-26 |  | Growth, development, maturation | 1 |
| 87 |  | Pistil | 17 | Mano |  | 23-24-33 |  | Growth, development, maturation | 1 |
| 88 | Nerium sp (oleander) | Intact | 35 | Chem |  | $76-102{ }^{2}$ |  | Light or photoperiod | 8 |
| 89 | Ornithogalum arabicum (star-ofBethlehem) | Stamen | 20 | Mano |  | 49-29-20 | $\begin{gathered} 0.91-0.84- \\ 0.80 \end{gathered}$ | Growth, development, maturation | 1 |
| 90 |  | Pistil | 20 | Mano |  | 34-30-47 | $\begin{gathered} 0.90-0.94- \\ 1.00 \end{gathered}$ | Growth, development, maturation | 1 |
| 91 |  | Pistil | 20 |  |  | 40 | $1.04$ |  | 9 |
| 92 |  | Stamen | 20 |  |  | 22 | 0.93 |  | 9 |
| 93 | Paeonia albiflora (peony) | Pollen | 25 | Mano | 7002 |  |  |  | 5 |
| /1/ Mano = manometric, Chem = chemical. $/ 2 / \mu \mathrm{l} / 100 \mathrm{mg}$ dry weight/hour |  |  |  |  |  |  |  |  |  |

167. RESPIRATION RATES: HIGHER PLANTS, FLOWERS (Concluded)
Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.

| Species |  | Condition or Part | $\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Method ${ }^{1}$ | Respiration Rate $\mu l / 100 \mathrm{mg} / \mathrm{hr}$ |  | $\begin{gathered} \mathrm{R} . \mathrm{Q} . \\ \mathrm{CO}_{2} / \mathrm{O}_{2} \end{gathered}$ | $\begin{aligned} & \text { Experimental } \\ & \text { Variable } \end{aligned}$ | Reference | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\mathrm{Q}_{\mathrm{O}_{2}}$ |  |  | $\mathrm{Q}_{\mathrm{CO}}^{2}$ |  |  |  |
|  | (A) |  | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (1) |
| 94 | Papaver orientale (oriental poppy) | Pollen | 25 | Mano | 5202 |  |  |  | 5 |
| 95 | P. rhoeas (corn poppy) | Sepal | 21 | Mano |  | 39 |  |  | 1 |
| 96 |  | Petal | 21 | Mano |  | 37 |  |  | 1 |
| 97 |  | Stamen | 21 | Mano |  | 104 |  |  | 1 |
| 98 |  | Pistil | 21 | Mano |  | 69 |  |  | 1 |
| 99 | P. somniferum (opium poppy) | Bud | 17 | Mano |  | 8.2 | 1.01 |  | 14 |
| 100 | Pelargonium zonale (horseshoe geranium) | Sepal | 24 | Mano |  | 77-64-70 | $\begin{gathered} 1.00-1.04- \\ 1.07 \end{gathered}$ | Growth, development, maturation | 1 |
| 101 | Penstemon gentianoides (beard-tongue) | Sepal | 24 | Mano |  | 57 | 0.84 |  | 1 |
| 102 |  | Petal | 24 | Mano |  | 40 | 0.87 |  | 1 |
| 103 |  | Pistil | 24 | Mano |  | 69 | 0.94 |  | 1 |
| 104 |  | Stamen | 24 | Mano |  | 60 | 0.89 |  | 1 |
| 105 | Philadelphus sp (mock orange) | Intact | 28 | Mano |  |  | 1.03 |  | 3 |
| 106 | Pinus densiflora (Japanese red pine) | Pollen | 25 | Mano | $160^{2}$ |  |  |  | 5 |
| 107 | Primula obconica (primrose) | Intact | 28 | Mano |  |  | 0.96 |  | 3 |
| 108 | Reseda alba (white mignonette) | Stamen | 20 | Mano |  | 59 | 0.86 |  | 1 |
| 109 | Rosa sp (rose) | Intact | 28 | Mano |  |  | 1.04 |  | 1 |
| 110 | Sambucus nigra (European elder) | Intact | 28 | Mano |  |  | 0.95 |  | 3 |
| 111 | Saponaria officinalis (bouncingbet) | Pistil | 21 |  |  | 95 | 2.1 |  | 9 |
| 112 |  | Stamen | 21 |  |  | 95 | 1.9 |  | 9 |
| 113 |  | Pistil | 21 | Mano |  | 55 | 1.24 |  | 1 |
| 114 |  | Stamen | 21 | Mano |  | 57 | 1.06 |  | 1 |
| 115 |  | Sepal | 21 | Mano |  | 69 | 1.02 |  | 1 |
| 116 |  | Petal | 21 | Mano |  | 53 | 0.93 |  | 1 |
| 117 | Sauromatum guttatum | Spadix | 26 | Mano | 132 |  |  |  | 15 |
| 118 | Scilla hemisphoerica (squill) <br> S. peruviana (Cuban lily) | Pistil | 20 |  |  | 76 | 0.92 |  | 9 |
| 119 |  | Stamen | 20 |  |  | 31 | 0.89 |  | 9 |
| 120 |  | Pistil | 20 | Mano |  | 76 | 0.92 |  | 1 |
| 121 |  | Stamen | 20 | Mano |  | 31 | 0.89 |  | 1 |
| 122 |  | Stamen | 21 | Mano |  | 37-27 | 0.77-0.73 | Growth, development, maturation | 1 |
| 123 |  | Pistil | 20 | Mano |  | 31-67 | 0.85-1.04 | Growth, development, maturation | 1 |
| 124 | Sparmannia africana (African hemp) | Intact | 1 | Mano |  |  | 0.96 |  | 3 |
| 125 | Stenactis annua (fleabane) | Intact | 18 | Chem |  | 40 |  |  | 2 |
| 126 | Syringa vulgaris (lilac) | Intact | 20 |  |  | 40 |  |  | 16 |
| 127 | Tecoma capensis (trumpet vine) | Stamen | 16 | Mano |  | 53-37-29 |  | Growth, development, maturation | 17 |
| 128 | Thea sinensis (tea) | Pollen | 15 | Mano | 6902 |  | 1.18 |  | 5 |
| 129 | Trillium erectum (red trillium) | Anther | 25 | Mano | 67-51 |  |  | Growth, development, maturation | 18 |
| 130 131 | Tulipa gesneriana (tulip) | Intact Pollen | $\begin{aligned} & 28 \\ & 20 \end{aligned}$ |  | $300^{2}$ |  | 0.95 |  | 3 |
| 132 | Vaccinium sp (cranberry, Howes) | Intact | 24 | Chem |  | 38 |  |  | 19 |


/1/ Mano = manometric, Chem = chemical.
Values for rates of gaseous exchange are $\mu l / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.


Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.


| 149 | P. malus (apple, Grimes Golden) | Intact | -1 | Chem |  | 0.18 |  |  | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | P. malus (apple, Jonathan) | Intact | 27 | Mano |  | 2.4-5.1-0.6 | 0.43-0.91 | Growth, development, maturation | 51 |
| 151 |  | Intact | 20 | Chem |  | 1.7-0.8-0.8 |  | Growth, development, maturation | 52 |
| 152 | P. malus (apple, Maiden Blush) | Intact | 25 | Chem |  | 4.2-20.0 |  | Storage or starvation | 54 |
| 153 |  | Intact | 0 | Chem |  | 1.4-2.4 |  | Storage or starvation | 54 |
| 154 | P. malus (apple, McIntosh) | Intact | 22 | Chem |  | 25-1 |  | Storage or starvation; growth, development, maturation | 53 |
| 155 | P. malus (apple, Oldenburg) | Intact | 25 | Chem |  | 2.6-1.6 |  | Storage or starvation | 54 |
| 156 |  | Intact | 0 | Chem |  | 9.2-1.6 |  | Storage or starvation | 54 |
| 157 | P. malus (apple, Winesap) | Intact | 25 | Chem |  | 1.9-0.9 |  | Storage or starvation | 54 |
| 158 |  | Intact | 0 | Chem |  | 1.8-0.6 |  | Storage or starvation | 54 |
| 159 | P. malus (apple, Yellow Newtown) | Intact | 20 | Chem |  | 1.4-0.4-0.9 |  | Growth, development, maturation | 52 |
| 160 | Quercus alba (white oak) | Intact | 2.5 | Mano | $17^{2}$ |  | 0.16 |  | 55 |
| 161 |  | Intact | 10 | Mano | $16^{2}$ |  | 0.30 |  | 55 |
| 162 |  | Intact | 20 | Mano | $18^{2}$ |  | 0.47 |  | 55 |
| 163 |  | Intact | 30 | Mano | $21^{2}$ |  | 0.71 |  | 55 |
| 164 | Q. borealis var. maxıma (Northern red oak) | Intact | 2.5 | Mano | $20^{2}$ |  | 0.08 |  | 55 |
| 165 |  | Intact | 10 | Mano | 232 |  | 0.13 |  | 55 |
| 166 |  | Intact | 20 | Mano | $11^{2}$ |  | 0.29 |  | 55 |
| 167 |  | Intact | 30 | Mano | $14^{2}$ |  | 0.46 |  | 55 |
| 168 169 | Ribes grossularia (European gooseberry) <br> R. rubrum (Northern red currant) | Intact | 28 28 | Mano |  |  | 1.6 |  | 3 |
| 170 | Ricinus communis (castor bean) | Intact | 28 | Mano |  |  | 1.07 |  | 3 |
| 171 | Rosa sp (rose) | Intact | 28 | Mano |  |  | 0.86 |  | 3 |
| 172 | Sambucus nigra (European elder) | Intact | 25 | Mano |  |  | 1.20 |  | 3 |
| 173 |  | Intact | 18 | Chem |  | 12 |  |  | 16 |
| 174 | Secale cereale (rye, Abbruzzi) | Intact | 28 | Mano | $245-12^{2}$ |  |  | Growth, development, maturation | 56 |
| 175 | Solanum lycopersicum (nightshade) | Intact | 28 | Mano |  |  | 1.9 |  | 3 |
| 176 | Sorbopirus auricularis | Intact | 28 | Mano |  |  | 0.94 |  | 3 |
| 177 | Sorbus hybrida (chokeberry) | Intact | 22 | Mano | 3.6-2.5 |  | 0.93-0.84- | Growth, development, maturation | 57 |
| 178 | S. scandica (chokeberry) | Intact | 32 | Mano | 6.3-1.3 |  | $\begin{gathered} 1.06 \\ 1 .-1.4- \\ 0.8-1.5 \\ \hline \end{gathered}$ | Growth, development, maturation | 57 |
| 179 | Symphoricarpus racemosa (snowberry) | Intact | 25 | Mano |  |  | 0.97 |  | 3 |
| 180 |  | Intact | 17 | Chem |  | 33 |  |  | 16 |
| 181 | Syringa vulgaris (lilac) | Intact | 25 | Chem |  | 42.0-8.5 |  | Growth, development, maturation | 22 |
| 182 | Triticum vulgare (wheat, Leapland) | Intact | 28 | Mano | $340-8{ }^{2}$ |  |  | Growth, development, maturation | 56 |
| 183 | Vaccinium sp (cranberry, Howes) | Intact | 24 | Chem |  | 32-14 |  | Growth, development, maturation | 58 |
| 184 | V. myrtillus (whortleberry) | Intact | 28 | Mano |  |  | 1.25 |  | 3 |
| 185 | Vitis sp (grape, Thompson Seedless) | Intact | 18 | Chem |  | 0.9 |  |  | 39 |
| 186 | V. vlnifera (wine grape) | Intact | 28 | Mano |  |  | 1.6 |  | , |
| 187 | Zea mais (corn, Hopeland Sweet) | Intact | 30 | Chem |  | 21-13 |  | Growth, development, maturation | 25 |
| 188 | Z. mais (corn, Stowell's Evergreen Sweet) | Intact | 28 | Chem |  | 17-11 |  |  | 25 |
| 189 |  | Intact | 4.5 | Chem |  | 3.5 |  |  | 25 |
| /1/ Mano = manometric, Chem = chemical. $/ 2 / \mu / / 100 \mathrm{mg}$ dry weight/hour. |  |  |  |  |  |  |  |  |  |
| Contributors: (a) Mandels, G. R., and Darby, R. T., (b) Forward, D. F., (c) Klein, R. M., (d) Henderson, J. H., and Henderson, (f) Lyon, C. J., (g) Vallance, K. B. |  |  |  |  |  |  |  |  |  |
| References: [ 1] Sell, H. M., Best, A. H., Reuther, W., and Drosdoff, M., Plant Physiol. 23:359, 1948. [2] Langworthy, C. F., Milner, R. D., and |  |  |  |  |  |  |  |  |  |

Values for rates of gaseous exchange are $\mu 1 / 100 \mathrm{mg}$ wet weight/hour, unless otherwise specified. Underlined number $=$ control or endogenous value.


| 11 |  | Intact | 10 | Mano |  | 1.0 |  |  | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Neomammillarea microcarpa (haw) | Intact | 25 |  |  | 1.2-0.8 |  | Storage or starvation | 3 |
| 13 | Nicotiana tabacum (tobacco, Samsun) | Intact |  | Chem |  | 7.7-10.0 |  | Healthy vs diseased | 8 |
| 14 | Opuntia engelmannii (prickly pear) | Intact | 25 |  |  | ${ }_{3}^{1.0-1.5}$ |  | Storage or starvation Storage or starvation | 3 3 |
| 15 | O. versicolor (prickly pear) | Intact | 25 |  |  |  |  | Storage or starvation | 3 |
| 16 | Pelargonium zonale (horseshoe geranium) | Intact | 13 |  |  |  | 0.54 |  | 9 |
| 17 | Pistea sp (water lettuce) | Shoot | 35 | Chem |  | 204-85 ${ }^{3}$ |  | Storage or starvation | 14 |
| 18 | Ricinus communis (castor bean) | Intact | 30 | Mano | 180 |  | 0.78 |  | 10 |
| 19 | Sedum hybridum (stonecrop) | Intact | 26 |  |  |  | 0.37 |  | 9 |
| 20 | Solanum tuberosum (potato, Arran Comrade) | Intact | 19 | Chem |  | 10.7-14.3 |  | Healthy vs diseased | 11 |
| 21 | Trianea sp (false asphodel) | Intact | 17 | Chem |  | 29 |  |  | 12 |
| 22 | Triticum vulgare (wheat, Minhardi) | Intact | 2 | Chem |  | 38-13 ${ }^{3}$ |  | Storage or starvation | 2 |
| 23 | Veronica anagallis (speedwell) | Intact | 18 |  |  | 31-17 |  | Growth, development, maturation | 13 |

[^30]
## APPENDIXES

APPENDIX I. CONSTANTS FOR USE IN BODY SURFACE AREA FORMULA: MAMMALS $K$-values are derived from surface area values taken from extensive literature sources, using the formula $K=A(s q c m) W^{2 / 3}(g)$. Weights are given in grams for convenient use in the formula and do not imply significance corresponding to number of digits. Method of determining surface area: $C=p a p e r$ cover, $I=s u r f a c e$ integrator, $M=$ mold, $P=$ perimeter, $S=$ skinning, $T=$ triangulation. Values in parentheses are ranges, estimates " $c$ " (body weight) and " d " (K-value) of the $95 \%$ range (cf lntroduction).

|  | Animal | Subjects, no. | Method | Body Weight, g | K -value (Constant) | $\begin{gathered} \text { Refer- } \\ \text { ence } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (A) | (B) | (C) | (D) | (E) | (F) |
| 1 | Antelope | 1 | T | 6300 | 14.1 | 1 |
| 2 | Bat | 3 | S | 21.5(12.7-36.4) | 57.5(54.0-59.8) | 2 |
| 3 | Bat | 2 | S | 8.3(5.0-11.6) | 44.5(44.0-45.0) | 3 |
| 4 | Cat | 2 | T | 1550(1500-1600) | $8.7(8.6-8.9)$ | 1 |
| 5 | Cat ${ }^{1}$ | 2 | S | 100(84-116) | 10.0(9.9-10.0) | 4 |
| 6 | Cat 1 | 3 | S | 708(219-1389) | 10.7(9.5-11.9) | 4 |
| 7 | Cattle, Hereford-Shorthornl | 15 | S | 375,000(163,000-641,000) | 11.0(9.0-13.8) | 5 |
| 8 | Cattle, Hereford-Shorthorn | 15 | S | 476,000(208,000-762,000) | $9.3(8.1-10.8)$ | 5 |
| 9 | Cattle, Hereford-Shorthorn (thin) ${ }^{1}$ | 10 | S | 241,000(89,000-407,000) | $9.9(9.3-10.5)$ | 6 |
| 10 | Cattle, Hereford-Shorthorn (med.) ${ }^{1}$ | 11 | S | 315,000(78,000-493,000) | 9.4(8.8-10.0) | 6 |
| 11 | Cattle. Hereford-Shorthorn (fat)l | 7 | S | 695,000(476,000-815,000) | $7.6(7.3-7.9)$ | 6 |
| 12 | Dog | 6 | S | 1070(130-3650) | 10.1(9.3-11.0) | 4 |
| 13 | Dog | 1 | S | 1080 | 11.0 | 7 |
| 14 | Dog | 2 | T | 9,500(8,900-10,100) | 9.9(9.85-9.9) | 1 |
| 15 | Dog | 8 | $S$ and $P$ | 12,700(3,200-29,800) | 11.6(10.2-12.5) | 8 |
| 16 | Dog | 7 | M | 14,310(3,390-32,640) | 11.2(10.3-12.1) | 9 |
| 17 | Dog | 1 | C | 27,000 | 12.3 | 10 |
| 18 | Fox | 2 | T | 6200(6100-6300) | 13.0(12.9-13.2) | 1 |
| 19 | Goat | 1 | T | 15,100 | 10.5 | 1 |
| 20 | Guinea pig | 3 | S | 157(123-191) | 10.4(10.1-10.8) | 11 |
| 21 | Guinea pig | 6 | S | 206(123-269) | $9.5(8.4-10.8)$ | 11 |
| 22 | Guinea pig | 3 | S | 256(235-269) | 8.6(8.4-8.9) | 11 |
| 23 | Guinea pig ${ }^{2}$ | 13 | S | 323(160-810) | $8.9(7.9-9.6)$ | 12 |
| 24 | Guinea pig | 3 | S | 373(148-650) | 9.6(9.0-9.9) | 13 |
| 25 | Guinea pig | 2 | T | 400(380-420) | 7.1 | 1 |
| 26 | Hedgehog | 1 | S | 200 | 7.5 | 7 |
| 27 | Horse | 8 | S | (47,000-555,000) | 10.5 | 14 |
| 28 | Horse | 11 | 1 | (70,000-750,000) | (8.2-10.3) | 15 |
| 29 | Lion | 1 | T | 64.200 | 12.3 | 1 |
| 30 | Marten, pine | 1 | T | 1400 | 8.8 | 1 |
| 31 | Monkey, rhesus | 6 | M | 2670(800-6600) | 11.8(10.8-1 3.2) | 16 |
| 32 | Mouse, white ${ }^{2}$ | 64 | S | 13 | 6.9 | 11.17 |
| 33 | Mouse, white | 11 | S | 15(6-27) | 7.9 | 18 |
| 34 | Mouse, white | 3 | S | 16(11-20) | 10.5(10.4-10.5) | 13 |
| 35 | Mouse, white | 12 | S | 16(10-22) | 11.4(9.7-13.3) | 11 |
| 36 | Mouse, white | 13 | M | (16-25) | 9.0(8.4-9.4) | 19 |
| 37 | Mouse, field | 2 | S | 29(26-31) | $6.9(6.5-7.2)$ | 3 |
| 38 | Opossum | 4 | S | 1200(1000-1300) | 11.3(10.5-11.8) | 20 |
| 39 | Rabbit ${ }^{3}$ | 3 | S | 32(26-40) | 8.5 | 18 |
| 40 | Rabbit ${ }^{3}$ | 3 | S | 560(70-925) | 9.7 | 18 |
| 41 | Rabbit | 2 | T | 1130(1120-1140) | 10.0(9.0-11.0) | 1 |
| 42 | Rat, white | 5 | S | 42(35-53) | 10.5(10.1-10.8) | 16 |
| 43 | Rat, white | 5 | S | 80(50-129) | 9.9(9.6-10.4) | 21 |
| 44 | Rat, white ${ }^{2}$ | 14 | M | 95(22-164) | 7.6(7.3-8.8) | 22 |
| 45 | Rat, white | 56 | M | 125(24-366) | 7.5(6.6-8.3) | 22 |
| 46 | Rat, white | 14 | S | 133(70-310) | 11.6(10.9-12.1) | 16 |
| 47 | Rat, white | 2 | T | 170(164-177) | 7.15 | 1 |
| 48 | Rat, white | 62 | S | 176(25-461) | 11.4(9.6-13.0) | 23 |
| 49 | Rat, white | 72 | M | (19-418) | 9.0 | 24 |
| 50 | Rat, white | 22 | S | 197(65-335) | 10.5(9.0-12.7) | 25 |
| 51 | Sheep | 8 | S | (21,800-29,100) | 10.7 | 26 |
| 52 | Sheep | 115 | I | $(2,200-68,000)$ | 8.3 | 27 |
| 53 | Sheep | 14 | S | $(23,600-37,700)$ | 8.5 | 28 |
| 54 | Sheep | 15 | S | $(3,780-50,400)$ | 9.1 | 26 |
| 55 | Shrew, long-tailed | 1 | S | 3.5 | 8.0 | 3 |
| 56 | Shrew, short-tailed | 1 | S | 20 | 7.0 | 3 |
| 57 | Swine | 1 | T | 40,110 | 15.3 | 1 |
| 58 | Swine | 16 | 1 | (25,000-330,000) | 9.0 | 15 |
| 59 | Swine | 7 | S | 48,300(1, 100-123,000) | $9.9(8.6-12.4)$ | 5 |
| 60 | Whale, fin | 3 | P | 160,000(115,000-220,000) | $8.3(7.5-8.9)$ | 29 |
| 61 | Whale, fin | 1 | P | 43,000,000 | 11.1 | 29 |
| 62 | Woodchuck | 1 | M | 1236 | 9.3 | 16 |

[^31]Contributors: Morrison, P. R., and Meyer, M. P.

## APPENDIX I: CONSTANTS FOR USE IN BODY SURFACE AREA FORMULA: MAMMALS (Concluded)

References: [1] Custor, J., Arch. Anat. Physiol., Lpz. ?:503, 1873. [2] De Almeida, A. O., Fialko, B. de A., and Silva, O. B., C. rend. Soc. biol. 95:956, 1926. [3] Pearson, O. P., Ecology 28:127, 1947. [4] Thomas, K., Arch. Anat. Physiol., Lpz. ?:36, 1911. [5] Seuffert, R. W., Giese, R., and Meyer, R., Beitr. Physiol. 3:203, 1926. [6] Trowbridge, P., Moulton, C., and Haigh, L., Missouri Agr. Exp. Sta. Res. Bull. 18:1, 1915. [7] Giaja, J., and Males, B., Ann. Physiol., Par. 4:884, 1928. [ 8] Rubner, M., Zschr. Biol. 19:553, 1883. [9] Cowgill, G. R., and Drabkin, D. L.. Am. J. Physiol. 81:36, 1927. [10] Hecker, C., Zschr. Veterinärk. 6:97, 1894. [11] Pfaundler, M., Zschr. Kinderk. 14:69, 1916. [12] Kettner, H., Arch. Anat. Physiol. Lpz., p 447, 1909. [13] Dreyer, G., and Ray, W., Philos. Trans. Roy. Soc., London, 202:191, 1912. [14] Seuffert, R. W., and Hertel, F., Zschr. Biol. 82:7, 1925. [15] Brody, S., Comfort, J. E., and Matthews, J. S., Univ. Missouri Agr. Exp. Sta. Bull. 115:1, 1928.
[16] Benedict, F. G., Erg. Physiol. 36:300, 1934. [17] Rubner, M., "Die Gesetze des Energieverbranches bei der Ernährung," Leipzig and Vienna, 1902. [18] Giaja, J., Ann. physiol., Par. 1:597, 1925. [19] Benedict, F. G., Yale J. Biol. 4:385, 1932. [20] Gley, E., and De Almeida, A. O., C. rend. Soc. biol. $90: 467$, 1924. [21] Hill, A. V., and Hill, A. M., J. Physiol. 46:81, 1913. [22] Diack, S. L., J. Nutrit. 3:289, 1930. [23] Carman, G. G., and Mitchell, H. H., Am. J. Physiol. 76:380, 1926. [24] Lee, M. O., and Clark, E., ibid 89:24, 1929.
[25] Mardones, G., C. rend. Soc. biol. 108:118, 1931. [26] Lines, E. W., and Pierce, A. W., Bull. Counc. Sc. and Ind. Res., Melbourne $55: 21(f)$, 1931. [27] Ritzman, E. G., and Colovos, N. F., Agr. Exp. Sta. Circ., Univ. New Hampshire 32:1, 1930. [28] Mitchell, H. H., Ann. Rept. 1llinois Agr. Exp. Sta. 317:155, 1928. [29] Parry, D. A., Quart. J. Micr. Sc., Lond. 90:13, 1949.

APPENDIX II. BODY SURFACE AREA: INFANTS AND YOUNG CHILDREN
Nomogram is based on formula appearing in DuBois, D., and DuBois, E. F., Proc. Soc. Exp. Biol. 13:77, 1916.

| Height | Surface Area | Weight |
| :---: | :---: | :---: |
| ft cm | sq m | lb ${ }^{\text {b }}$ ( ${ }^{\text {kg }}$ |
|  | $E .8$ $E .7$ $E .6$ $E$ |  |

Reference: Talbot, N. B., Sobel, E. H., McArthur, J. W., and Crawford, J. D., "Functional Endocrinology from Birth through Adolescence," Cambridge, Mass.: The Commonwealth Fund, Harvard University Press, 1952 (as quoted in "Fluld and Electrolytes," Abbott Laboratories, North Chicago, 111.).

Nomogram is based on formula appearing in DuBois, D., and DuBois, E. F., Proc. Soc. Exp. Biol. 13:77, 1916.

| Height | Surface Area | Weight |
| :---: | :---: | :---: |
| $\mathrm{ft} \quad \mathrm{cm}$ | sq m | 1b ${ }^{\text {l }}$ |
|  |  |  |

Reference: Talbot, N. B., Sobel, E. H., McArthur, J. W., and Crawford, J. D., "Functional Endocrinology fram Birth through Adolescence," Cambridge, Mass.: The Commonwealth Fund, Harvard University Press, 1952 (as quoted in "Fluid and Electrolytes," Abbott Laboratories, North Chicago, I11.).

The following symbols conform to standards adopted by pulmonary physiologists, as published in Federation Proceedings 9:602, 1950. Use of these symbols throughout the HANDBOOK OF RESPIRATION was not feasible because of mechanical limitations in the preparation of copy.

Primary Symbols
(Large capital letters)
$V=$ gas volume
$\dot{V}=$ gas volume/unit time
$P=$ gas pressure in mm Hg
$F=$ fractional concentration in dry gas phase
$f$ = respiratory frequency, breaths/unit time
$\mathrm{R}=$ respiratory exchange ratio, $\dot{\mathrm{V}} \mathrm{CO}_{2} / \mathrm{V}_{\mathrm{O}_{2}}$

Secondary Symbols
(Small capital letters)
$\mathrm{I}=$ inspired gas
$E=$ expired gas

|  | Secondary Symbols (Small capital letters) |
| :---: | :---: |
|  | $\mathrm{I}=$ inspired gas |
|  | $E=$ expired gas |
|  | $A=$ alveolar gas |
|  | $T=$ ridal gas |
|  | $D=$ dead space gas |
|  | $B=$ barometric |
| STPD | $\begin{aligned} & =\text { standard temperature and pressure, dry } \\ & \qquad\left(0^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}\right) \end{aligned}$ |
| BTPS | $=$ body temperature and pressure, saturated with water vapor |
| $\begin{aligned} & \text { ATPD } \\ & \text { ATPS } \end{aligned}$ | $\begin{aligned} & \text { ambient temperature and pressure, dry } \\ & \text { or saturated } \end{aligned}$ | or saturated

$\dot{V}_{A}$ (alveolar veatilation) is in $\mathrm{L} / \mathrm{min}$ (BTPS). $\mathrm{V}_{2}$ and $\dot{\mathrm{V}} \mathrm{CO}_{2}$ are in $\mathrm{ml} / \mathrm{min}$ (STPD). Dash ( - ) above any symbol indicates a meao value. Dot $(\cdot)$ above any symbol indicates a time derivative.

The following conventions for symbols denote location and molecular species:
I. Localization in the gas phase is represented by a small capital letter immediately following the principal variable.
2. Molecular species is denoted by the full chemical symbol, printed in small capital letters immediately following the principal variable.
3. When specification of both location and molecular species is required, the first modifying letter is used for localization and the second for species. In the latter case, the chemical symbol appears as a subscript.

Contributor: Swann, H. G.
Reference: Comroe, J. H., Jr., et al, Fed. Proc. 9: $602,1950$.

## APPENDIX V. RESPIRATORY EQUATIONS

I. $\mathrm{O}_{2}$ consumption and $\mathrm{CO}_{2}$ production:

$$
\begin{align*}
& \text { (1) } V_{\mathrm{O}_{2}}=\dot{\mathrm{V}} \frac{\left(\mathrm{~F}_{\mathrm{I}_{2}}\left(1-\mathrm{FE}_{\mathrm{CO}_{2}}\right)-\mathrm{F}_{\mathrm{E}_{\mathrm{O}_{2}}}\left(1-\mathrm{FI}_{\mathrm{CO}_{2}}\right)\right]}{\left(1-\mathrm{F}_{\mathrm{O}_{2}}-\mathrm{FI}_{\left.\mathrm{I}_{\mathrm{O}_{2}}\right)}\right.}  \tag{1}\\
& \text { (2) } \dot{\mathrm{V}} \mathrm{CO}_{2}=\dot{\mathrm{V}} \frac{\left[\mathrm{FE}_{\mathrm{CO}_{2}}\left(1-\mathrm{FI}_{\mathrm{O}_{2}}\right)-\mathrm{FI}_{\mathrm{IO}_{2}}\left(1-\mathrm{FE}_{\mathrm{O}_{2}}\right)\right]}{\left(1-\mathrm{FI}_{\mathrm{O}_{2}}-\mathrm{FI}_{\mathrm{CO}_{2}}\right)} . \tag{1}
\end{align*}
$$

II. Alveolar gas equations:

If $\mathrm{V}^{\mathrm{I}} \mathrm{CO}_{2}=0$,
(3) $\mathrm{P}_{\mathrm{AO}_{2}}=\mathrm{F}_{\mathrm{I}_{2}}\left(\mathrm{~PB}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}_{\mathrm{H}_{2} \mathrm{O}}}\right)-\mathrm{P}_{\mathrm{ACO}_{2}}\left[\mathrm{FI}_{\mathrm{O}_{2}}+\frac{\left(1-\mathrm{FI}_{\mathrm{O}_{2}}\right)}{\mathrm{RA}}\right]$.
(4) $\mathrm{P}_{\mathrm{A}_{\mathrm{O}_{2}}}=\mathrm{P}_{\mathrm{I}_{\mathrm{O}_{2}}}-\frac{.863 \dot{\mathrm{~V}}_{\mathrm{O}_{2}}\left(1-\mathrm{FI}_{\mathrm{O}_{2}}\right)}{\dot{\mathrm{V}}_{\mathrm{A}}}-\mathrm{FI}_{\mathrm{O}_{2}} \times \mathrm{P}_{\mathrm{ACO}_{2}}$.

1f $\mathrm{V}_{\mathrm{I}_{\mathrm{CO}}^{2}}>0$,
(5) $\mathrm{P}_{\mathrm{A}_{\mathrm{O}_{2}}}=\frac{\mathrm{P}_{\mathrm{I}_{2}} \mathrm{R}+\mathrm{P}_{\mathrm{ACO}_{2}} \mathrm{FI}_{\mathrm{O}_{2}}(1-\mathrm{R})+\mathrm{P}_{\mathrm{I}_{\mathrm{CO}_{2}}-\mathrm{P}_{\mathrm{ACO}_{2}}}}{\mathrm{FI}_{\mathrm{CO}_{2}}(1-\mathrm{R})+\mathrm{R}}$.
III. Alveolar ventilation equations $\left(\mathrm{V}_{\mathrm{I}_{1}} \mathrm{CO}_{2}=0\right)$ :
(6) $\dot{V}_{A}=\left(V_{T}-V_{D}\right) f$.
(7) $\dot{\mathrm{V}}_{\mathrm{A}}=\frac{\dot{\mathrm{V}} \mathrm{CO}_{2}}{\mathrm{FACO}_{2}}$.
(8) $\dot{\mathrm{V}}_{\mathrm{A}}=\frac{\mathrm{RA}_{\mathrm{A}}}{\mathrm{FACO}_{2}} \cdot \dot{\mathrm{~V}}_{2}$.
(9) $\dot{V}_{A}=\left(P_{B}-P_{A_{H_{2}} \mathrm{O}}\right) \cdot \frac{R_{A}}{P_{A_{C O}}} \cdot \dot{V}_{O_{2}}$.

In equations (6)-(9), $\dot{\mathrm{V}}_{\mathrm{A}}$ and $\dot{\mathrm{V}} \mathrm{CO}_{2}$ are under the same conditions and in the same units. However, the general condition for $\dot{\mathrm{V}} \mathrm{CO}_{2}$ is at STPD and for $\dot{\mathrm{V}}_{\mathrm{A}}$ at BTPS. If, furthermore, we express the former in $\mathrm{ml} / \mathrm{min}$ and the latter in $\mathrm{L} / \mathrm{min}$ and change $\mathrm{FA}_{\mathrm{CO}_{2}}$ to $\mathrm{P}_{\mathrm{A}} \mathrm{CO}_{2}$, we have customary units for all parameters at any barometric pressure. After these changes, equarion (7) becomes

$$
\begin{align*}
& \text { (10) } \dot{\mathrm{V}}_{\mathrm{A}}(\mathrm{~L} / \mathrm{min}, \mathrm{BTPS})=\frac{\dot{\mathrm{V}}_{\mathrm{CO}_{2}}(\mathrm{ml} / \mathrm{min}, \mathrm{STPD}) \times .863}{\mathrm{PACO}_{2}} \text {, and }  \tag{2}\\
& \text { (11) } \dot{\mathrm{V}}_{\mathrm{A}}=\frac{\dot{\mathrm{V}}_{2} \times \mathrm{R} \times .863}{\mathrm{P}_{\mathrm{ACO}_{2}}} . \tag{2}
\end{align*}
$$

1V. Respiratory dead space equations:

$$
\begin{equation*}
\text { (12) } V_{A}=\left(V_{T}-\frac{\dot{V}_{A}}{f}\right) \text {. } \tag{1}
\end{equation*}
$$

Boht Equation using any gas $x$ (at BTPS):

$$
\begin{equation*}
\text { (13) } V_{D_{x}}=\frac{\left(F_{E_{x}}-F_{A_{x}}\right)}{\left(F_{I_{x}}-F_{A_{x}}\right)} \cdot V_{T} \tag{1}
\end{equation*}
$$

Contriburors: (a) Swann, H1. G., (b) Cassin, S. W.
References: [1] Comroe, J. H., Jr., et al, Fed. Proc. 9:602, 1950. [2] Rahn, H., and Fenn, W. O., "A Graphical Analysis of the Respiratory Gas Exchange: The $\mathrm{O}_{2}-\mathrm{CO}_{2}$ Diagram," Washington, D. C.: The American Physiological Society, 1955.
APPENDIX VI. SUMMARY: VALUES USEFUL IN PULMONARY PHYSIOLOGY
 with position, age, size, sex and altitude; there is variability among members of a homogenous group under standard conditions.


[^32]INDEX

## Asterisk (*) indicates graph or diagram.

ABBREVLATIONS in respiratory physiology, 390
ACAPNIA, effect on cerebral respiration (dog), 313
ACCLIMATIZATION to altitude (See ALTITUDE(S))
ACETONE
effect on pulmonary function (mammals), 178, 179
partition coefficients, 5
ACETYLENE
diffusion coefficients, 11
partition coefficients, 5
solubility coefficients, 8
ACID, definition, 95
ACID-BASE BALANCE OF BLOOD (man), 86-92;
(vertebrates), 93, 94
arterial blood, 88, 90, 91, 93, 94, 96*, 97
ionic patterns, 96*
constants, factors, formulas, 86-87
cutaneous blood, 90-92, 97
definitions, 95
physiological variability, 91, 92
venous blood, 89, 90, 92-94
ACID-BASE IMBALANCE OF BLOOD, 94-98
classification, 97
definitions, 95
ionic patterns, 96*
pathways, 98*
ACIDOSIS
in acid-base imbalance, $98^{*}$
alveolar $\mathrm{CO}_{2}$ in, 267
as defined in acid base, 95
effect on acid-base variables, 97
respiratory dead space during, 51
AGE
vs basal respiratory functions, 44, 45
effect on acid-base balance, 91,92
vs lung volumes, 38,39
vs maximal breathing capacity, 130, 132
and sitting height vs vital capacity, 37
and standing height vs vital capacity, 36
vs tidal and minute volumes, 43
vs vital capacity, 30
AIR (See also specific air)
density at altitude, 2
inhalation during decompression (dog), 175
as respiratory medium, 3
AlR FLOW
rate, 137,138
respiratory characteristics, 138
AlR VELOCITY INDEX, prediction formula and normal values. 29
A LKALOSIS
in acid-base imbalance, 98*
alveolar $\mathrm{CO}_{2}$ in, 267
as defined in acid base, 95
effect on acid-base variables, 97
ALTITUDE(S)
atmospheric pressure, $\mathrm{O}_{2}$ partial pressure, and air density at, 2
blood gases at, 151-156
diffusion capacity of lungs at, 52
effect on pulmonary function, 151-156
after acclimatization, 151, 156
with exercise. 155, 156
effect on venous blood lactate, 60

ALTITUDE(S) (concluded)
erythrocyte values at (vertebrates), 106, 107
hemoglobin values at (vertebrates), 106, 107
respiratory characteristics of air at, 3
temperature at various, 2
ALVEOLAR-CAPILLARY DIFFUSION, 53*
ALVEOLAR DUCTS AND SACS, 13, 14*, 17
ALVEOLAR GAS(ES) (See also specific gases)
in acidosis and alkalosis, 267
added dead space, 266
added resistance, 266
at altitude, 151-156
before and after apnea, 263
in basal respiration, 44, 45
$\mathrm{CO}_{2}$ (See CARBON DIOXIDE)
composition and partial pressures, 4
effect of combined anoxia and hypercapnia, 158. 159*
effect of exercise, 155
equations, 390,391
factors affecting, 263-267
during hyperventilation, 263
$\mathrm{N}_{2}$ (See NITROGEN)
$\mathrm{O}_{2}$ (See OXYGEN)
physiological variability, 91, 92
during pulmonary fibrosis, 268
summary of values, 392
ALVEOLAR VENTILATION (See also VENTILATION)
effect of drugs (mammals), 178-199
equations, 391
vs pulmonary capıllary blood flow, 392
ALVEOLI, RESPIRATORY, 13, 14*, 17
ANATOMIC DEAD SPACE (See DEAD SPACE, RESPIRATORY)
ANATOMY, BASIC RESPIRATORY, I2-26
ANESTHESLA
A $-V$ differences during (mammals), 58
cerebral blood flow and $\mathrm{O}_{2}$ consumption during (mammals), 312
ANESTHETICS (See also DRUGS, effects of, 178-252)
as antagonists of drugs acting on the bronchi (vertebrates), 226-230, 252
respiratory response to (mammals), 200, 201
ANTHRACOSIS, 270
ANTICHOLINESTERASES (See also DRUGS, effects of, 178-252)
as antagonists and potentiators of drugs acting on the bronchi (vertebrates), 230
respiratory response to (mammals), 200
ANTIHISTAMINES (See also DRUGS, effects of, 178-252)
as antagonists of drugs acting on the bronchi (mammals), 231-238
ANOXIA (See also ALTITUDE(S))
cerebral metabolism during (dog), 314
effect on alveolar $\mathrm{CO}_{2}$ and $\mathrm{O}_{2}$ pressures, 158, 159*
effect on pulmonary function (dog), 157
survival and revival times of animal tissues, 311
AORTIC-BODY AND CAROTID-BODY RESPIRATORY REFLEX, 139

## APNEA

alveolar air, before and after, 263
artificial respiration for, 141
ARGON, partition coefficients, 5

ARM-LIFT METHOD, artificial respiration, 141, 142 ARTERIAL BLOOD (See ACID BASE; BLOOD; BLOOD GAS(ES); specific blood gases)
ARTERIO-VENOUS DIFFERENCES
effect of decompression (dog), 175
for gases (mammals), 56, 58, 314
for glucose, 59, 61
for Iactate, 59, 60
for pyruvate, 59
ARTIFICIAL RESPIRATION, 141, 142
ASBESTOSIS, 268, 270
ASTHMA
and pulmonary compliance, 137
and respiratory dead space, 51
ATMOSPHERIC PRESSURE, at altitude, 2
ATPS, definition, 1,2

BASAL RESPIRATORY FUNCTIONS
vs age, 44, 45
prediction formulas and normal values, 28, 29
BASE, definition, 95
BAUXITE FUME PNEUMOCONIOSIS, 270
BERYLLIOSIS, chronic, 270
BERYLLIUM GRANULOMATOSIS, 268
BICARBONATE, in acid-base imbalance, 96*, 97
BILADIENES, 120,121
BILADIENONES, 122
BILANES, 119
BILATRIENES, 122
BILENEDIONES, 122
BILENES, 120
BILIRUBINOIDS, 118-123
BLOOD
acid-base balance and imbalance (See ACID BASE)
A-V differences (See ARTERIO-VENOUS DIFFERENCES)
$\mathrm{CO}_{2}$ (See BLOOD GAS(ES); CARBON DIOXIDE)
erythrocyte values, 99-107 (See aiso ERYTHROCYTE(S)
fetal (See OXYGEN DISSOCIATION)
glucose, 59, 61
$\mathrm{H}_{2} \mathrm{CO}_{3}$ dissociation
constants (mammals), 63
formula, 86
lactate, 59, 60
hemoglobin values, 99-107 (See aIso HEMOGLOBIN) maternal (See OXYGEN DISSOCIATION)
$\mathrm{O}_{2}$ (See BLOOD GAS(ES); OXYGEN)
$\mathrm{O}_{2}$ dissociation (See OXYGEN DISSOCIA TION)
pyruvate, 59
in relation to cerebral respiration (dog), 313, 314 umbilical, 82, 83
BLOOD GAS(ES) (See also specific gases)
In acid-base balance and imbalance (See ACID BASE; specific gases)
at a! titude, 151-156
comparisons, 57
composition of transported gases, 4
during decompression (dog), 175, 176
effect of anoxia, 152-157
effect of drugs (mammals), 178-199
effect of exercise, 155
at Increased atmospheric pressures (mammals), 172, 174
in newborn and adult man, 57
in pulmonary capillaries, 53*
during pulmonary fibrosis, 268
pressure (See speciflc gases)

BLOOD GAS(ES) (concIuded)
in relation to cerebral respiration (dog), 313, 314
saturation (See OXYGEN)
and temperature changes (mammals), 62*, 63*, 72, 73*, 75*
in umbilical blood, 82, 83
variables, factors, and constants, 56
BLOOD pH, 88-94, 96*. 97. 98*
in acid-base balance and imbalance (See ACID BASE)
breathing $\mathrm{CO}_{2}$ concentrations, 163,164
in calculating serum $\mathrm{pK}^{\prime}$ (mammals), 63*
effect of anoxia (dog), 157
effect of hyperventilation, 157
at increased atmospheric pressures (mammals),
172, 173
$\mathrm{O}_{2}$ dissociation curves at various levels of, 74*
values for constructing $\mathrm{O}_{2}$ dissociation curves (invertebrates), 70, 71; (vertebrates), 66-70

## BLOOD PRESSURE

breathing $\mathrm{O}_{2}$ at increased atmospheric pressures, 174
during decompression (dog), 175-177
under various conditions (mammals), 54, 55
BODY SURFACE AREA (See SURFACE AREA)
BODY TEMPERATURE (See TEMPERATURE)
BODY WEIGHT (See WEIGHT)
BOHR EQUATION, 391
BREATHHOLDING
effect on aIveolar air, 263
effect on respiratory dead space, 48, 49
BREATHING (See also RESPIRATORY RATE; VENTILATION)
depth of (See TIDAL VOLUME)
mechanics of, 130-139
BRONCHI, 12, 14*, 17, 18
drugs acting on, 202-252 (See also DRUGS, effects of, 178-252)
BRONCHIOLES, 14*, 17
BRONCHIOLO-RESPIRATORY REFLEX, 139
BRONCHOPULMONARY SEGMENTS, 15*
BTPS, definition, 1,2
BUFFER BASE, in acid-base balance and imbalance, 86 , 88, 90-92, 95, 96*-98* (See also ACID BASE)
definition, 95
formula, 86

CAPILLARIES, PULMONARY, $\mathrm{O}_{2}$ diffusion, 53*

## CAPILLARY BLOOD

composition of transported gases in, 4
summary of values, 392
CARBON DIOXIDE
composition and partial pressure in respiratory gases, 4
consumption (plants), 316-383 (See also RESPIRATION RATES)
depression of solubility by various salts, 5
diffusion coefficients, 10,11
effect of breathing various concentrations on respired air, 265
in expired air, 44
molecule, respiratory: characteristics, 3
permeation coefficients, 10,11
production equation, 390
production at increased ambient pressure. 174
in respiratory media, 3
solubility coefficients, 6-9, 56
survival time, breathing concentrations of (mouse), 165, 166

CARBON DIOXIDE (ALVEOLAR)
in acidosis and alkalosis, 267
added dead space values, 266
in basal respiration, 44, 45
breathing various $\mathrm{CO}_{2}$ concentrations, 163, 164
effect of exercise, 155, 263-265
during hyperventilation, 263
pressure, 392
at altitude, 151-155
in basal state, 45
breathing various $\mathrm{CO}_{2}$ concentrations, 163, 164
breathing $\mathrm{O}_{2}$ concentrations, 170, 174
effect of combined anoxia and hypercapnia, 158, 159* physiological variability, 91, 92
respiratory dead space for, 49
threshhold, 163, 164
CARBON DIOXIDE (BLOOD), 56, 57 (See also ACID BASE)
absorption as function of $\mathrm{pCO}_{2}$ (animals), 64, 65
A-V differences (mammals), 56, 58, 314
equations for calculating absorption, 64, 65
pressure, 56, 57, 392
at altitude, 151, 156
effect of anoxia, 156, 157
breathing various $\mathrm{CO}_{2}$ concentrations (mammals). 163, 173
effect of decompression (dog), 175
effect of drugs (mammals), 178-199
effect of temperature changes (mammals), 62*
in fetal and maternal blood, 83, 84
during pulmonary fibrosis, 268
in relation to cerebral respiration (dog), 313
values for constructing $\mathrm{O}_{2}$ dissociation curves, 66-71 (See also OXYGEN DISSOCIATION)
CARBONIC ACID
calculation of serum $\mathrm{pK}^{\prime}$ (mammals), 63*
dissociation constants (mammals), 63
dissociation formula, 86
CARBON MONOXIDE
diffusion coefficients, 11
effect on pulmonary function (dog), 182, 183
permeation coefficients, 11
solubility coefflcients, 6
CAROTID-BODY CHEMORECEPTORS, respiratory action of drugs influencing (mammals), 200
CEREBRAL BLOOD FLOW, $\mathrm{O}_{2}$ consumption, and vascular resistance (mammals). 312
CEREBRAL RESPIRATION (dog), 313, 314
CHEMORECEPTORS, CAROTID-BODY: respiratory action of drugs influencing (mammals), 200
CHLORIDE ION, plasma constituent (vertebrates), 93, 94 CHLOROFORM
partition coefficients, 5
respiratory action, 200, 204, 250
CHLOROPLASTS, pigments of, 124, 125
CIRCULATION, PULMONARY (mammals), 54, 55
summary of values, 392
COEFFICIENTS of various gases
diffusion, 3, 10, 11
partition, 5
permeation, 10, 11
solubility, 6-9, 56
COMPLIANCE, 392
lung-thorax system (mammals), 135
pulmonary (vertebrates), 135-137
CORONARY REFLEX, 139
COR PULMONALE (mammals), 54, 55
CORPUSCLES (See ERYTHROCYTE(S) ; RBC)
CUIRASS METHOD, artificial respiration, 142

CYCLOPROPANE
partition coefficients, 5
respiratory action, 201
CYTOCHROMES
animals and higher plants, 124, 125
bacterial, 128, 129
iron-porphyrin pigments, 115-117

DALTON'S LAW, 4
DEAD SPACE, RESPIRATORY
added, effect on respired air, 266
anatomic (mammals), 46-48*, 49, 50*, 51
during $\mathrm{CO}_{2}$ hyperpnea, 47
effect of breathholding, 48, 49
effect of exercise, 47
equations, 391
and functional residual capacity (dog), 48*
in pathological conditions, 51
physiologic (mammals), 28, 46-48*, 49, 50*,51, 392
and tidal volume (mammals), 47, 48*, 50*, 51
for various gases, 49
DECOMPRESSION
effect on blood gases (dog). 175
effect on blood pressure, respiratory rate and pulse rate (dog), 176*
effect on internal pressures (dog), 177
DEFLATION RECEPTORS, PULMONARY: respiratory action of drugs influencing (mammals), 201
DENSITY, AIR, 2,3
DIFFUSION, ALVEOLAR-CAPILLARY, 53*
DIFFUSION CAPACITY of lungs, 52
DIFFUSION COEFFICIENTS of gases, 3, 10, 11
DIPYRROLIC COMPOUNDS, characteristics, 123
DISEASE (See also specific disease)
comparative pathology of the pneumoconioses, 270
effect on cerebral blood flow and $\mathrm{O}_{2}$ consumption (mammals), 312
effect on lung compliance, 137
effect on pulmonary circulation (mammals), 54, 55
effect on pulmonary function, 268
respiratory dead space during, 51
DISSOCIATION CONSTANTS, $\mathrm{H}_{2} \mathrm{CO}_{3}$ (mammals), 63
dissociation, O2 (See OXYGEN dissociation)

## DIVINYL ETHER

partition coefficients, 5
respiratory action, 200
DRUGS
effects of, 178-252
effect on $\mathrm{A}-\mathrm{V} \mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ differences (mammals), 58
effect on cerebral blood flow and $\mathrm{O}_{2}$ consumption (mammals), 312
effect on pulmonary circulation (mammals), 54
effect on pulmonary function (mammals). 178-199
influencing afferent end-organs, respiratory action (mammals), 200, 201
DRUGS ACTING ON THE BRONCHI (vertebrates), 202-252
aerosols, gases and vapors, 250-252
antagonists and potentiators of, 226-248, 252
direct action of, 202-214, 250, 251
$\mathrm{pA}_{\mathrm{x}}$ values for antagonists of, 249
sympathomimetic amines, 215-225, 251
DYSPNEA, physiology of, 274

EISENMENGER SYNDROME, effect on pulmonary circulation (mammals), 54, 55

EMERSON METHOD, artificial respiration, 141, 142
EMPHYSEMA (mammals), 51, 54, 270
end-CAPILLARY $\mathrm{O}_{2}$ PRESSURE, 53*
ENDOPLASMIC RETICULUM, pigments of, 124
END-ORGANS, AFFERENT: respiratory action of drugs influencing (mammals), 200, 201
ENERGY EXPENDITURE
basal, 45
with exercise, 149
EPIGLOTTIS, 12, 14*
EQUATIONS in respiratory physiology, 28, 29, 390, 391

## ERGOT DERIVATIVES

as antagonists and potentiators of drugs acting on the bronchi (mammals), 239, 240, 249
respiratory action, 188, 189
ERYTHROCYTE(S) (mammals), 100-102; (man), 99, 100, 102, 103, 107; (vertebrates), 103-106
from birth to maturity, 102, 103
$\mathrm{CO}_{2}$ absorption at various $\mathrm{pCO}_{2}, 64$
in fetus, newborn and adult female, 100-102
gases, 56
$\mathrm{H}_{2} \mathrm{CO}_{3}$ dissociation constants (mammals), 63
$\mathrm{O}_{2}$ consumption, 103, 286
during pregnancy and postpartum, 100-102
at sea level and at altitude, 106, 107
ESTERS (See also DRUGS, effects of, 178-201)
as antagonists of drugs acting on the bronchi (mammals), 244-246
ETHYLENE
partition coefficients, 5
solubility coefficients, 8,9
ETHYL ETHER
partition coefficients, 5
respiratory action, 200
EVE ROCKING METHOD, artificial respiration, 141, 142
EXERCISE (See also WORK)
effect on $\mathrm{A}-\mathrm{V}$ lactate levels and differences, 60 effect on $\mathrm{A}-\mathrm{V} \mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ differences (mammals), 58 effect on heart rate, 144-146*
effect on $\mathrm{O}_{2}$ diffusion, 52
effect on pulmonary circulation (mammals), 54, 55
effect on pulmonary compliance, 136
effect on pulmonary fibrosis, 268
effect on pulmonary function, 143-146*, 147-150* at altitude, 155, 156
effect on respired air, 263-265
respiratory dead space during, 47
ventilation during, prediction formulas and normal values, 29
EXPIRATORY RESERVE VOLUME, 27*, 38, 392
definition, 27
effect of posture, 40
effect of pregnancy, 40
EXPIRED AIR, 4, 44, 285 (See also ALVEOLAR GAS(ES); RESPlRED AIR; specific gases)

FETAL TISSUES, $\mathrm{O}_{2}$ consumption, 299-307
FETUS, erythrocyte and hemoglobin values, 100-102
FIBROSIS, PULMONARY, 268
effect on lung compliance, 137
incidence in the pneumonconioses, 270
from radiation exposure, $253,254,257,258$
and respiratory dead space, 51
FUNCTIONAL RESIDUAL CAPACITY, 27*, 39, 40, 392 definition, 27
and pulmonary compliance, 136
and respiratory dead space (dog), 48*

GANGLIONIC STIMULANTS, respiratory response to (mammals), 200 (See also DRUGS, effects of, 178-252)
GAS(ES) (See also ALVEOLAR GAS(ES); BLOOD GAS(ES); specific gases)
diffusion coefficients, 10,11
inhaled, effect of various concentrations, 151-177, 250 (See also DRUGS, effects of, 178-252)
partition coefficients, 5
permeation coefficients, 10, 11
respiratory equations, 390, 391
in respiratory media, 3
solubility coefficients, 6-9
GAS VOLUMES, conversion factors, 1, 2
GLUCOSE (BLOOD)
in cerebral respiration (dog), 313
effect of ingestion on $\mathrm{A}-\mathrm{V}$ differences, 61
postabsorptive, A-V differences, 59

HALDANE EFFECT, at various $\mathrm{pCO}_{2}$ (animals). 65
2-HALOETHYLAMINES, as antagonists and potentiators of drugs acting on the bronchi (mammals). 240-242
HAMMAN-RICH SYNDROME, effect on pulmonary function, 268
HEART RATE
at altitude, 152-155
effect of decompression and recompression (dog), 176*
effect of exercise, 144-146*, 155
effect of $\mathrm{O}_{2}$ inhalation at increased ambient pressures, 174
HEAT, effect on respired air, 264
HEAT PRODUCTION
in basal respiration, 45
during exercise, 147-150
prediction formula and normal values, 28
HEIGHT
vs maximal breathing capacity, 130, 132
and weight, in calculating body surface area, 388*, 389*
HEIGHT, SITTING, and age vs vital capacity, 37
HEIGHT, STANDING
and age vs vital capacity, 36,38
vs maximal breathing capacity, 130
vs vital capacity, 31, 34*, 35*, 36, 38

## helium

dead space for, 49
diffusion coefficients, 11
partition coefficients, 5
permeation coefficients, 11
solubility coefficients, 8,9
HEMATIN ENZYMES, characteristics, 114-117
HEMATOCRIT values, 86, 90, 99-107
HEMOGLOBIN (mammals), 100-102; (man), 88, 89, 91, $92,99,100,102,103,107$; (vertebrates), 93, 94, 104-106
in pregnancy and postpartum, 100-102
saturation (See OXYGEN DISSOCIATION)
at sea level and at altitude, 106, 107
HEMOGLOBIN COMPOUNDS, characteristics, 111-114
HENDERSON-HASSELBALCII EQUATION, 86
HERING-BREUER REFLEX, 139
H1P-LIFT METHOD, artificial respiration, 141, 142
HIP-ROLL METHOD, artificial respiration, 141, 142
HYDROBILANES, characteristics, 119
IIYDROBILENES, characteristics, 120

## HYDROGEN

diffusion coefficients, 11
partition coefficients, 5

HYDROGEN (concluded)
permeation coefficients, 11
solubility coefficients, $6,8,9$

## HYPERCAPNIA

effect on acid-base variables, 97, 98
effect on respiratory variables (mammals), 158, 159*. 160-166
HYPERGLYCEMIA, alimentary: effect on A-V glucose differences, 61
HYPERPNEA, $\mathrm{CO}_{2}$ : dead space during, 47
HYPERTENSION, primary pulmonary (mammals), 54, 55
HYPERVENTILATION
alveolar $\mathrm{CO}_{2}$ during, 263
and cerebral respiration (mammals), 312, 313
effect on $\mathrm{A}-\mathrm{V}$ lactate levels and differences, 60
effect on blood $\mathrm{CO}_{2}$ carriage, 157
HYPOCAPNIA, effect on acid-base variables, 97, 98
HY POXIA(S) (See also ANOXIA)
effect on pulmonary circulation (mammals), 54
physiologic classification, 272, 273

## INFANT(S)

apneic, artificial respiration, 141
A-V blood gas comparisons, 56, 57
bronchi, 18
erythrocyte and hemoglobin values, 100-103
lung and airway resistance, 137
lung weight, 16
increments during first year, 16*
and volume Increments, 17*
minute volume, 42, 43
nomogram for calculating body surface area, 388
pulmonary compliance, 137
respiratory alveoli, 17
respiratory rate, 42
sinuses, 19
tidal volume, 42, 43
trachea, 18, 19
1NSPIRATORY CAPACITY, 27*, 38, 392
definition, 27
effect of posture, 40
effect of pregnancy, 40
INSPIRATORY RESERVE VOLUME, 27*
definition, 27
INSPIRED AIR, 4, 285 (See specific gases)
1ONIC PATTERNS, acid-base balance and imbalance, 96*
IRON POR PHYRINS, characteristics, 110-118

KRYPTON, partition coefficients, 5

LACTATE (BLOOD)
A-V differences, 59, 60
effect of exercise and hyperventilation, 60
LACTIC ACID (BLOOD)
depression of $\mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ solubility by, 5
effect of exercise, 144, 145, 264
in relation to cerebral respiration, 313, 314
LARYNX, 12, 14*
LINE CHARTS
blood $\mathrm{O}_{2}$ dissociation, 72, 73
temperature changes vs blood $\mathrm{CO}_{2}$ and $\mathrm{O}_{2}$ pressures (mammals), 62

LUNG(S), 12-14*, 15*, 20*
and airway resistance, 137
compliance, 135-137
development, 12, 13
diffusion capacity of, 52
lobes, 14*, 20*
bronchopulmonary segments, 15*
weight relationships, 21
$\mathrm{O}_{2}$ uptake and ventilation, right vs left, 45
tissues
$\mathrm{CO}_{2}$ capacity (dog), 165
$\mathrm{O}_{2}$ consumption (vertebrates), 291
volume, right vs left, 29
weight (amphibians), 26; (birds), 25; (mammals), 16*, 17*, 21-24; (reptiles), 26
increments during first year, 16*
relationships, 20*, 21-26
and volume increments during first year, 17*
LUNG CAPACITIES (See TOTAL, VITAL, INSPIRATORY, and FUNCTIONAL RESIDUAL CAPACITIES)
LUNG-THORAX SYSTEM, compliance of (mammals), 135
LUNG VOLUME(S), 28, 38, 39 (See also VITAL
CAPACITY; TIDAL, INSPIRATORY RESERVE, EXPIRATORY RESERVE, and RESIDUAL VOLUMES)
and barometric pressure, 1*
conversions, 1*, 2
definitions, 1, 2, 27
effect of posture, 40
effect of pregnancy, 40
intrapulmonary pressures at various, 133, 134
prediction formulas, 28
and pulmonary function, 27-54
and pulmonary pressures (mammals), 133-135
subdivisions of, 27*
summary of values, 392

MANUAL ROCKING, artificial respiration, 141, 142
MAXIMAL BREATHING CAPACITY, 29, 132, 392
vs age, 130, 132
vs body surface area, 131, 132
effect of pregnancy, 40
effect of pulmonary fibrosis, 268
prediction formula, 29
vs standing height, 130, 132
vs weight, 131, 132
media
diffusion coefficients of gases in various, 3, 10, 11
effect of $\mathrm{K}^{+}$on tissue $\mathrm{O}_{2}$ consumption in various, 309, 310
permeation coefficients of gases in various, 10, 11
respiratory, characteristics, 3
solubility coefficients of gases in various, 6-9
METABOLIC FACTOR in acidosis or alkalosis, definition, 95
METABOLISM, CEREBRAL: during anoxia (dog), 314
MINUTE VOLUME (man), 42-45, 392; (vertebrates), 41,42
at altitude, 151-156
in basal state, 44
breathing $\mathrm{CO}_{2}$ concentrations (mammals), 160-162
breathing $\mathrm{N}_{2}$ concentrations (mammals), 151, 174
breathing $\mathrm{O}_{2}$ concentrations (mammals), 167-169, 174
effect of added dead space, 266
effect of drugs (mammals), 178-199
effect of exercise, 155, 156, 263-265
effect of heat, 264
effect of posture, 43

MINUTE VOLUME (concluded)
effect of pregnancy, 40
during hyperventilation, 157, 263
in infants, 42
MITOCHONDRIA
cytochrome system of, 126*-127*
pigments of, 124
MOLECULES, RESPIRATORY: characteristics, 3
MOUTH-TO-MOUTH METHOD, artificial
respiration, 141, 142

NARES, 12
NASAL EPITHELIUM, 12
NASAL-LACRIMAL DUCT, 12
NEON, partition coefficients, 5
NEWBORN (See INFANT(S))
NITROGEN
in alveolar air, 29
in blood, 56
composition and partial pressure in respiratory air, 4
diffusion coefficients, 11
in expired air, 266
exposure, effect on respiratory rate, tldal and minute volumes, 151
molecule, respiratory: characteristics, 3
partition coefficients, 5
permeation coefficients, 11
respiratory dead space for, 49
in resplratory media, 3
solubility coefficients, $6,8,9,56$
washout, pulmonary, 171*
NITROUS OXIDE
diffusion coefficients, 11
partition coefficients, 5
respiratory action, 201, 250
solubility coefficients, 8, 9
NOMOGRAMS
for calculating body surface area, 388, 389
for estimating tidal volume in tank respirator settings, 140
serum $\mathrm{pK}^{\prime}$ for given temperature and pH (mammals), 63 NOSE, 12, 14*

## OXYGEN

consumption (See OXYGEN CONSUMPTION)
depression of solubility by various salts, 5
diffusing capacity, lungs, during pulmonary fibrosis, 268
diffusion coefficients, 10,11
diffusion of lungs, 52
effect of breathing various concentrations (mammals), 167-170
in expired air, 44, 285
inhalation during decompression (dog), 175, 176*
molecule, respiratory: characteristics, 3
permeation coefficients, 10,11
in respiratory gases, 3, 4, 285
solubility coefflcients, 6-9, 56
uptake (See OXYGEN CONSUMPTION)
OXYGEN (ALVEOLAR)
at altitude, 151-155
before and after apnea, 263
effect of added dead space, 266
effect of added resistance, 266
effect of breathing varlous concentrations, 174
effect of combined anoxia and hypercapnla, 158, 159*
effect of exercisc, 155, 263-265

OXYGEN (ALVEOLAR) (concluded)
pressure, 44, 392
in pulmonary capillaries, 53*
during pulmonary fibrosis, 268
respiratory dead space for, 49
OXYGEN (BLOOD), 56, 57, 392
at altitude, 151-155
A-V differences (mammals), 56, 58, 175, 314
breathing $\mathrm{CO}_{2}$ concentrations, 163, 164
breathing $\mathrm{O}_{2}$ concentrations, 169,170
capacity during pregnancy, 82. 83
dissociation (See OXYGEN DISSOCLATION (BLOOD))
effect of decompression (dog). 175
pressure, 56, 57, 392
at altitude, 156
vs blood $\mathrm{O}_{2}$ saturation (mammals), 66*, 72, 73*-75*, 77*-81*, 85*
breathing various $\mathrm{O}_{2}$ concentrations, 169. 170
in cerebral respiration (dog), 313
effect of exercise, 156
fetal and maternal blood, 83
in pulmonary capillaries, 53*
during pulmonary fibrosis, 268
and temperature changes (mammals), 62*, 72, 73*, 75*
values for constructing $\mathrm{O}_{2}$ dissociation curves, 66
saturation (See also AClD BASE)
at altitude, 151-155
curves (mammals), 66*, 74*, 75*, 77*-81*, 85*
definition, 66, 76
effect of anoxia (mammals), 152-155, 157, 314
effect of decompression (dog), 175
effect of exercise, 155
in fetus (mammals), 82, 83, 85*
line charts, 72,73
vs $\mathrm{O}_{2}$ pressure (mammals), 66*, 72, 73*-75*.
77*-81*, 85*
vs $\mathrm{pH}, 74 *$
during pregnancy, 82, 83
in pulmonary fibrosis, 268
vs temperature, 72, 73*, 75*
OXYGEN CONSUMPTION, 28, 45, 392
at altitude, 151-153, 155
animal organisms (helminths, 276, 277); (invertebrates), 278-280; (mammals), 283-285; (protozoa). 275, 276; (vertebrates other than mammals), 281-283
animal tissues
blood-formed elements, 286, 287
blood vessels, 286, 287
brain (vertebrates), 294, 295, 312
effect of $\mathrm{K}^{+}$, 308-310
epithelium, 287, 288
fetal tissues (chick), 300-302; (frogs), 303, 304;
(guinea pig), 300; (killifish), 307; (newt), 305; (rat). 299, 300; (salamanders), 305, 306; (salmon), 307; (sheep), 299: (snake), 302
gland tissues, 288, 289
liver, 290, 291
lung, 291
lymph nodes, 286, 287
marrow, 286, 287
muscle tissues, 291, 292
ncoplasms, 293
nerve tissues, 294-296
placental tissues, 298
reproductive tissues, 297, 298
spleen, 286, 287
thymus, 286, 287
effect of drugs (mammals), 178-199

OXYGEN CONSUMPTION (concluded)
equation, 390
erythrocytes, 103, 286
during exercise, 143-146*, 147-150*, 155, 263-265
plants, 315-383 (See also RESPIRATION RATES)
OXYGEN DISSOCIATION (BLOOD), 66-85
curves (carnivores), 78; (cetacean), 81; (man), 74, 75,
77; (rodents), 79; (ungulates), 80
curves, fetal (mammals), 85
data for constructing curves (amphibians), 69; (birds), 68; (fish), 69, 70; (invertebrates), 70, 71; (mammals), 66-68; (man), 66; (reptiles), 68, 69
line charts, 72, 73
relationship of fetal and maternal, 83
OXYGEN UPTAKE (See also OXYGEN CONSUMPTION) comparison of right and left lung, 45
effect of exercise, 144-146*

PARASYMPATHOLYTICS (See also DRUGS, effects of, 178-252)
as antagonists of drugs acting on the bronchi (vertebrates), 226-230
PARTIAL PRESSURE (See PRESSURE(S); specific gases)
PARTITION COEFFICIENTS of gases, 5
PATENT DUCTUS ARTERIOSUS (mammals), 54, 55
pA $A_{x}$ VALUES FOR ANTAGONISTS OF DRUGS ACTING ON THE BRONCH1 (mammals), 249
PERICARDITIS (mammals), 54, 55
PERMEATION COEFFICIENTS of gases, 10, 11
pH (See BLOOD)
PHOSGENE, retention in resplred air, 267
PHOSPHORUS, in cerebral respiration (dog), 313, 314
PHYSIOLOGIC DEAD SPACE (See DEAD SPACE, RESPIRATORY)
PIGMENTS, RESPIRATORY, 108-129
cytochrome, characteristics, 124-129
pyrrole, characteristics, 108-123
PLANTS, respiration rates, 315-383
PLASMA (See BLOOD)
PLEURITIS, tuberculous, 268
PNEUMOCONIOSES, 270, 271
PNEUMONECTOMY
and pulmonary compliance, 137
and respiratory dead space, 51
PNEUMOTHORAX, and respiratory dead space, 51
PORPHYRINS, characteristics, 108-118

## POSTPARTUM

erythrocyte and hemoglobin values, 100-103
ventilatory variables, 40
POSTURE
effect on acid-base balance, 91, 92
effect on lung volumes, 40
effect on minute volume, 43
effect on tidal volume, 43
effect on ventilation and $\mathrm{O}_{2}$ uptake, 45
effect on vital capacity, 36,37
POTASSIUM ION
depression of $\mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ solubility by, 5
effect on tissue $\mathrm{O}_{2}$ consumption, 308-310
PREGNANCY
effect on ventilatory variables, 40
erythrocyte and hemoglobin values, 100-102
$\mathrm{O}_{2}$ capacity and saturation of umbilical blood during. 82, 83
PRESSURE(S) (See also BLOOD; CARBON DIOXIDE; OXYGEN)
increased ambient, effect on pulmonary function (mammals), 172-175
internal, effect of decompression (dog), 177

PRESSURE(S) (concluded)
intrapleural, 135
intrapulmonary, at various lung volumes, 134
pulmonary, vs vital capacity, 134*, 135*
reduced barometric, effect on pulmonary function, 151-156
PRESSURE CURVE, RELAXATION, 135*
PRESSURE-DEPTH GRADIENT in the sea, 4
PRESSURE EQUIVALENTS in the sea, 4
PRESSURE-VOLUME CURVES (cat), 133*
PRESSURE-VOLUME DIAGRAM, chest and lungs, 134*
PROPRIOCEPTO-RESPIRATORY REFLEX, 139
PROTEIN, plasma constituent (vertebrates), 93, 94
PULMONARY CAPILLARIES, $\mathrm{O}_{2}$ diffusion, 53*
PULMONARY CIRCULATION (mammals), 54, 55
summary of values, 392
PULMONARY COMPLIANCE (vertebrates), 135-137
methods for measuring. 136
vs vital capacity, 136
PULMONARY DEFLATION RECEPTORS, respiratory
action of drugs influencing (mammals), 201
PULMONARY FIBROSIS, 268, 269
incidence in the pneumoconioses, 270
and pulmonary compliance, 137
from radiation exposure, 253, 254, 257, 258
and respiratory dead space, 51
PULMONARY PHYSIOLOGY, equations and formulas, 28, 29, 390, 391
summary of values, $28,29,392$
PULMONARY STENOSIS (mammals), 54, 55
PULMONARY STRETCH RECEPTORS, respiratory action of drugs influencing (mammals), 200, 201

## PULMONARY VEIN REFLEX, 139

PULSE RATE
at altitude, 152-155
effect of decompression and recompression (dog), 176*
effect of exercise, 144-146*, 155
effect of $\mathrm{O}_{2}$ inhalation at increased ambient pressures, 174
PYRROLE PIGMENTS, characteristics, 108-123
PYRUVATE (BLOOD), A-V differences, 59

## RADIATION

external ionizing, effect on respiratory system (mammals), 253-259
internal emitters, effect on respiratory system (mammals), 259-262
RADON
effect on respiratory system (mammals), 259-262
partition coefficients, 5
RBC (mammals), 100-102; (man), 99, 100, 102, 103, 107; (vertebrates), 103-106
from birth to maturity, 102, 103
$\mathrm{CO}_{2}$ absorption at various $\mathrm{pCO}_{2}, 64$
in fetus, newborn and adult female, 100-102
gases, 56
$\mathrm{H}_{2} \mathrm{CO}_{3}$ dissociation constants (mammals), 63
$\mathrm{O}_{2}$ consumption, 103, 286
during pregnancy and postpartum, 100-102
at sea level and at altitude, 106-107
RECEPTORS, PULMONARY: respiratory action of drugs influencing (mammals), 200, 201
RECOMPRESSION
effect on blood gases (dog), 175, 176*
effect on blood pressure. respiratory rate, and pulse rate (dog), 176*
REFLEXES, RESPIRATORY, 139
RELAXATION PRESSURE CURVE, 134*, 135*
RESIDUAL VOLUME, 27*, 39
definition, 27

RESIDUAL VOLUME (concluded)
effect of posture, 40
effect of pregnancy, 40
effect of pulmonary fibrosis, 268
prediction formula, 28
summary of values, 28,392
RESISTANCE, ADDED: effect on respired air, 266
RESISTANCE OF LUNGS AND AIRWAY, 137
RESPIRATION, ARTIFICIAL, 140*-142
RESPIRATION RATES (algae), 316-319; (bacteria), 315; (ferns), 347; (fungi), 322-345; (higher plants), 348-383; (horsetails), 347; (lichens), 320, 321; (liverworts), 346; (mosses), 346
RESPIRATORS, MECHANICAL, 140*, 142
RESPIRA TORY AIR FLOW, characteristics, 138
RESPIRATORY ALVEOLI, 13, 14*, 17
RESPIRATORY DEAD SPACE (See DEAD SPACE, RESPIRATORY)
RESPIRATORY EXCHANGE, characteristics (vertebrates), 285
RESPIRATORY FACTOR in acidosis or alkalosis, definition, 95
RESPIRATORY FUNCTIONS, BASAL, 44, 45
equations and prediction formulas, 28, 29, 390, 391
summary of values, 28, 29, 392
RESPIRATORY GASES, composition and partial pressure, 4 (See also specific gases)
RESPIRATORY MOLECULES, characteristics, 3
RESPIRATORY PHYSIOLOGY, standard symbols, 390
RESPIRATORY PIGMENTS, 108-129
RESPIRATORY QUOTIENT (plants), 315-383; (vertebrates), 285; (animal tissues), 299-301, 303, 304, 307 at altitude, 151, 156
effect of exercise, 156
RESPIRATORY RATE (vertebrates), 41, 42, 44, 45 at altitude, 151, 156
breathing $\mathrm{CO}_{2}$ concentrations (mammals), 160-162 breathing $\mathrm{N}_{2}, 151$
breathing $\mathrm{O}_{2}$ concentrations (mammals), 157, 167-169, 174
during decompression (dog), 175, 176*
effect of anoxia, 156, 157
effect of drugs (mammals), 178-199
effect of exercise, $144,145,156$
effect of pregnancy, 40
infants, 42
RESPIRATORY REFLEXES, 139
RESPIRATORY SYSTEM, 12-14*
RESPIRED A1R, 4, 44, 285 (See also ALVEOLAR GAS(ES); specific gases)
factors affecting composition, 263-267
acidosis and alkalosis, 267
added dead space, 266
added resistance, 266
$\mathrm{CO}_{2}$ inhalation, 265
exercise, 263-265
heat, 264
$\mathrm{O}_{2}$ inhalation, 265,266
phosgene retention, 267
voluntary control, 263

SAGITTAL SINUS BLOOD, A-V differences (dog), 314 SALTS
depression of $\mathrm{CO}_{2}$ and $\mathrm{O}_{2}$ solubility by, 5
in respiratory media, 3
SARCOIDOSIS
effect on pulmonary function, 268
and pulmonary compllance, 137
and respiratory dead space, 51

SCHAFER-EMERSON-IVY METHOD, artificial respiration, 141
SCHAFER METHOD, artificial respiration, 141, 142 SEA
pressure equivalents, 4
pressure-depth gradient in the, 4
SEA WATER, as respiratory medium, 3
SEPTAL DEFECT, 54, 55
SERUM (See BLOOD)
SHAVER'S DISEASE, 270
SILICOSIS, 268, 270
SILVESTER METHOD, artificial respiration, 141, 142
SINUSES, 12, 19
SODIUM ION
depression of $\mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ solubility by, 5
plasma constituent (vertebrates), 93, 94
SOLUBILITY COEFFICIENTS, gases, 6-9, 56
SOLUBILITY OF RESPIRATORY MOLECULES, 3
SPEED, effect on $\mathrm{O}_{2}$ requirement, 148-150*
STANDARD WALKING VENTILATION, 29
STPD, definition, 1,2
STREETER'S HORIZONS, 12, 13
STRETCH RECEPTORS, PULMONARY: respiratory action of drugs influencing (mammals), 200, 201
SUBCUTANEOUS TISSUE, $\mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ pressures, 44
SURFACE AREA, BODY
constants for use in formula (mammals), 387
vs lung volumes, 38,39
vs maximal breathing capacity, 131, 132
nomograms for calculating, 388, 389
vs vital capacity, 33, 39
SYMBOLS IN RESPIRATORY PHYSIOLOGY, 390
SYMPATHOMIMETIC AMINES (See also DRUGS, effects of, 178-252)
acting on the bronchi (vertebrates), 215-225, 251

## TEMPERATURE(S)

acid-base balance of blood at various, 92
blood $\mathrm{O}_{2}$ dissociation at various (invertebrates), 70, 71; (vertebrates), 66-70, 72, 73*, 75*
and $\mathrm{CO}_{2}$ and $\mathrm{O}_{2}$ pressures in blood (mammals), 62* coefficients for various blood factors, 72, 73*, 86 corrections for pH measurements, 87
diffusion coefficients of gases in water at various, 11
effect on respired air, 264
and $\mathrm{K}^{+}$, effect on tissue $\mathrm{O}_{2}$ consumption, 308
and serum $\mathrm{pK}^{\prime}$ (mammals), 63*
solubility coefficients of gases at various, 6-9
at various altitudes, 2
TEMPERATURE MULTIPLIER, for adjusting oxyhemoglobin dissociation data, 72, 73*
TENSION (See CARBON DIOXIDE and OXYGEN pressures)
TETRALOGY OF FALLOT, 54, 55
THORACOPLASTY, and respiratory dead space, 51
TIDAL POSITION, END-: effect of breathing $\mathrm{CO}_{2}$ concentrations (mammals), 165
TIDAL VOLUME, 27*, 392; (vertebrates), 41-44
with artificial respiration, 140*-142
breathing $\mathrm{CO}_{2}$ concentrations (mammals), 160-162 breathing $\mathrm{N}_{2}, 151,174$
breathing $\mathrm{O}_{2}$ concentrations (mammals), 167-169, 174 definition, 27
effect of drugs (mammals), 178-199
effect of pregnancy. 40
infants, 42
nomogram for estimating, 140
relation to dead space (mammals), 44, 50*, 51
TIMED VITAL CAPACITY, 28, 392
effect of $\mathrm{K}^{+}$on $\mathrm{O}_{2}$ consumption, 308-310
$\mathrm{O}_{2}$ consumption, 286-310
survival and revival times under conditions of anoxia, 311
diffusion coefficients of gases in, 10, 11 permeation coefficients of gases in, 10, 11
solubility coefficients of gases in, 8, 9
subcutaneous, $\mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ pressures in, 44
TISSUE FLUID, composition of transported gases in, 4
TOTAL LUNG CAPACITY, 27*, 39
definition, 27
effect of posture, 40
effect of pregnancy, 40
prediction formulas, 28
summary of values, 28,392
TRACHEA, 12, 14*, 17-19
TRACHEOBRONCHIAL TREE, 15*, 17
TRIAZINES, as antagonists of drugs acting on the bronchi (guinea pig), 242, 243
TUBERCULOSIS, effect on pulmonary function, 268, 270
TURBINALS, 12-14*

VAPORS (See also DRUGS, effects of, 178-252)
acting on the bronchi (mammals), 250
VENA CAVO-RESPIRATORY REFLEX, 139
VENOUS BLOOD (See ACID BASE; BLOOD GAS(ES); specific gases)
VENTILATION (See also RESPIRATORY RATE; MINUTE VOLUME; TIDAL VOLUME; RESPIRED AIR)
at altitude, 151-156
basal, 44
breathing concentrations of $\mathrm{CO}_{2}$ (mammals), 160-162 breathing $\mathrm{N}_{2}$ (mammals), 151
breathing concentrations of $\mathrm{O}_{2}$ (mammals), 167-169 comparison of right and left lung, 45
effect of anoxia (mammals), 152-157
effect of drugs (mammals), 178-199
effect of various work loads, 145
equations, 391
vs exercise, 143-146*, 155, 156
nomogram for estimating accuracy of tank respirator settings, 140
standard walking, 29
summary of values, 28, 392
volume (See MINUTE VOLUME)
VENTILATORY EQUIVALENT
effect of pregnancy, 40
effect of various work loads, 145
normal value, 28
VENTILATORY RATE, during artificial respiration, 142
VENTURI METHOD, artificial respiration, 142
VERATRUM AL.KALOIDS, respiratory response to (mammals), 200 (See also DRUGS, effects of, 178-252)
VITAL CAPACITY, 27*, 39
vs age, 30,38
vs body surface area, 33, 38
vs body weight, 32,38
breathing $\mathrm{CO}_{2}$ concentrations, 165
breathing $\mathrm{O}_{2}$ concentrations, 170
definition, 27
effect of exercise, 143-146*
effect of posture, $36,37,40$
effect of pregnancy, 40
effect of pulmonary fibrosis, 268

VITAL CAPACITY (concluded)
prediction formulas, 28
vs pulmonary compliance, 136
vs pulmonary pressure, 134*, 135*
vs sitting height and age, 37
vs standing height, 31, 34*, 35*
and age, 36
summary of values, 28,392
VOMERO-NASAL ORGAN, 12, 13

WALKING DYSPNEA INDEX, prediction formula and normal value, 29

## WALKING VENTILATION, STANDARD, 29

WATER
diffusion coefficients of gases in, 10, 11
permeation coefficients of gases in, 10,11
in respiratory gases, $1 *, 2,4$
as respiratory medium, 3
solubility coefficients of gases in, 6, 8
WEIGHT, BODY
and breathing frequency in calculating tidal volume, 140*
and height, in calculating body surface area, 388*, 389*
vs lung weight (amphibians), 26; (birds), 25; (mammals), 21-24; (reptiles), 26
vs maximal breathing capacity, 131, 132
vs vital capacity, 32,38
W EIGHT, LUNG (amphibians), 26; (birds), 25; (mammals), 16*, 17*, 20*-24; (reptiles) 26
WHOLE BLOOD (See ACID BASE; BLOOD)
WORK (See also EXERCISE)
effect on heart rate, 144-146*
effect on lung $\mathrm{O}_{2}$ diffusion, 52
effect on pulmonary function, 144-146*, 147-150
effect on respiratory dead space, 47

XENON, partition coefficients, 5



[^0]:    *Handbooks published 1949-1958
    $\begin{array}{ll}\text { Standard Values in Blood } & 1951\end{array}$
    Standard Values in Nutrition and Metabolism 1953
    Handbook of Toxicology, Vol. I, Acute Toxicities 1955
    Handbook of Biological Data 1956
    Handbook of Toxicology, Vol. 11, Antibiotics 1957
    Handbook of Respiration 1958

[^1]:    *Deceased.

[^2]:    References: [1] Van Slyke, D. D., Dillon, R. T., and Margaria, R., J. Biol. Chem. 105:571, 1934. [2] Winkler, L. W., Ber. deut. chem. Ges. 24:3602,
    
     Chiodi, H., Am. J. Physiol. 147:54, 1946. [13] Kety, S. S., J. Biol. Chem. 173:487., Acta physiol. scand. 4:(suppl.) Xl, 1942. [12] Fasciolo, J. C., and 06: 463,1934 . [15] Eckenhoff, J. E., Hafkenschiel, J. H., Harmel, M. H., Goodale, W. T., Lubin, M., Bing. R. J., and Kety, San Slyke, D. D., ibid 18] Krogh, A., J. Physiol. 52:391, 1919 [19] L., Quart. J. Exp. Physiol., Lond. 23:219, 1933. [17] Wright, C. I., J. Gen. Physiol. 17:657, 1934. B5: 207, 1928. [22] Hagenbach, A., Ann. Phys. Chem. 65:673, 1898. [23] Vibrans, F, 1927. [20] Fenn, W, O., ibid 84:110, 1928. [21] Fenn, W, O., ibid H. S., ibid $20: 161$, 1943. [25] Vernon, H. M., Proc. Roy. Soc., Lond., B 79:366, 1907. [26] Behnke, A. R., and Yarbrough Shafer, P. S., and Haller, Balt. 37:198, 1941-42. [29] Daynes, H. A., Proc. Roy. Soc., Lond., A 97:268, 1920. H., J. Physiol. 105:197, 1946. [28] Behnke, A. R., Jr., Harvey Lect.

[^3]:    Contributor: Morrow, P. E.
    Reference: Stewart, C. A., Am. J. Dis. Child. 24:451, 1922.

[^4]:    Contributor: Severinghaus, J. W.

[^5]:    Reference: Dill, D. B., in "Handbook of Respiratory Data in Aviation, " Committee on Medical Research, Washington, 1944.

[^6]:    Contributors: Singer, R. B., and Hastings, A. B.

[^7]:    Williams and Wilkins Co., 1932. W. H., ibid 102:19, 1933. [6] Van 8] Marples, E., and Lippard, V. W., E., and Earle,
    nvest. 24:106, 79:781, 1928. [14] Cullen, G. E., and Robinson, S. 7 Light, A. B., Am. J. Physiol. 73:127, 1925. 44. [19] Eisenman, A. J., J. Biol. Chem. 71:611, Baltimore: $\qquad$ J. Obst. 32:375. D. D., and Sendroy, J., Jr., 3:539, J. Physiol. 142:708, 19 References: [1] Peters, J. P., and Van Slyke, D. D.. "Quantitative Clinical Chemistry," vol II, 65:701, 1925. [4] Cullen, G. E., ibid 52:501, 1922. [5] Myers, V. C., Muntwyler. E., Binns, Slyke, D. D., and Neill, J. M., ibid 61:523, 1924. [7] Van Slyke, D. D., and Sendroy, J., Jr., Am. J. Dis. Child. 44:31, 1932. [9] Nice, M., Mull, J. W., Muntwyler, E., and Myers, V. C., I. P., J. Blol. Chem. $\frac{83: 545, ~ 1929 . ~[11] ~ C o u r n a n d, ~ A .: ~ R i l e y, ~ R . ~ L ., ~}{\text { 1945. [12] Kydd, D. M., J. Biol. Chem. } 91: 63,1931 \text {. [13] Van Slyk }}$ H. W., ibid 57:533, 1923. [15] Earle, 1. P., and Cullen, G. E., ibid 83 , 1926-27

[^8]:    Part V：SUMMARY：BLOOD，ADULTS

[^9]:    ／1／Sitting position．$/ 2 /$ Hemoglobin content（recumbent position）$=8.95(7.7-10.3) \mathrm{mM} / \mathrm{L}$ or $15.0(13-17) \mathrm{g} / 100 \mathrm{ml}$ ．$/ 3 / \mathrm{RBC} \mathrm{CO} 2 \mathrm{content}(\mathrm{calculated}$ ，in
    part，from whole blood $\mathrm{CO}_{2}$ content）$=16.4(14.5-18.5) \mathrm{mM} / \mathrm{L}$ or $36.5(32-41)$ vol $\% . / 4 /$ Calculated，in part，from whole blood CO 2 content ． Contributors：Singer，R．B．，and Hastings，A．B．

[^10]:     basal.

[^11]:    References: [1] Shock, N. W., Am. J. Physiol. 133:610, 1941. [2] Rahn, H., in "Methods in Medical Research," (Comroe, J. H., Jr., ed.), vol 11, 223, Chicago: Yearbook Publishers, 1950. (3) Maxfield, M. E., Bazett, H. C., and Chambers, C. C., Am. J. Physiol. . 104:585, 1934. [10] Hastings, A. B., and Eisele, C. W., Proc. Soc. Exp. Biol. $43: 308,1940$. Int. M. $46: 630$
    $64: 53,1925$.

[^12]:    of acid, base, and buffer base given on Page 95, Table 80, Part I.
    Part VI: PHYSIOLOGICAL VARIABILITY (Concluded) of acid, base, and buffer base given on Page 95, Table 80, Part I.
    Part VI: PHYSIOLOGICAL VARIABILITY (Concluded)
    78. ACID-BASE BALANCE OF BLOOD: MAN (Concluded) Definitions of acid, base, and buffer base given on Page 95, Table 80, Part I.
    Part VI: PHYSIOLOGICAL VARIABILITY (Concluded)

[^13]:    'ITEH "M 'r 'uostim C., "Standard Krapf, W., Jahrber. Vet. Med. 67:326, T.,
    ibid $90: 565$,
    M. Bg. E. M., and Vos
    24. [17] Lyman.
    astings, A. B., R., Allison, Wallace
    $\pm$ and Stormont,
    636.
    6:243, unpublished. Chem. 148:261, 1943.
    H. T., and Florkin,
     Brownell, K. A., Snelden, F. F., and Wa Dessauer, H. C., Proc. Soc. Exp. Biol. 74:866, 1950.

[^14]:    1/ $\mathrm{MW}=$ molecular weight; $\mathrm{E}_{\mathrm{O}}=$ oxidation-reduction potential. $/ 2 / \lambda$ maximum in $m_{\mu}=$ wave length of maximum absorption; figures in parentheses are $\mathrm{E}_{1 \mathrm{~cm}}^{\mathrm{mM}}$, i.e., extinction coefficients of millimolar solutions of 1 cm thickness; [s]=Soret band.

[^15]:    $\underset{\text { H }}{\mathrm{H}}$㲘 figures in parentheses are $E \mathrm{~m}_{\mathrm{cm}}$, i.e.. extinction coefficients of millimolar solution of 1 cm thickness. /4/ The nomenclature is misleading. "Stercobilin" and "stercobilinogen," as well as "urobilin" and "urobilinogen," occur in feces and urine. All six compounds (1-6), not only 1 and 4 , belong to pigment type 1X-a. 1-, $d^{-}$, and $\underline{i}$ - (inactive) refer to the optical rotations of the bilenes (4-6), but these three compounds are not stereochemical isomers.

[^16]:    Contributor: Morton, R. K.

[^17]:    Contributors: (a) Ferris, B. G., Jr., (b) Whittenberger, J. L.

[^18]:    Contributor: Ebert, R. V.

[^19]:    /1/31 subjects. /2/21 subjects. /3/Values calculated as ratio of actual $O_{2}$ uptake to maximal $O_{2}$ uptake capacity. $/ 4 /$ Line $5 \div$ Line $1 . / 5 /$ Values calculated as ratio of actual ventilation to maximal ventilation capacity.
    Contributors: (a) Astrand, P.-O.. (b) Asmussen, E., (c) Suskind, M., (d) Filley, G. F.
    Reference: Astrand, P.-O., "Experimental Studies of Physical Working Capacity in Relation to Sex and Age,"
    Copenhagen: Ejnar Munksgaard, 1952.

[^20]:    Contributor: Asmussen, E.
    References: [1] Astrand, P. -O. "Experimental Studies of Physical Working Capacity in Relation to Sex and Age," Copenhagen: Ejnar Munksgaard, 1952. [2] Robinson, S., Arbeitsphysiologie 10:251, 1938.

[^21]:    16/Pressure greater than 1 atmosphere. /7/Controls not breathing air. /8/ Boothby, Lovelace. Bulbulian mask. /9/Alveolar $\mathrm{pO}_{2}$ greater than $80 \%$. 50 min . / $15 /$ Anesthesia for 150-300 min.

[^22]:    /1/ Change observed; \% increase or decrease from resting value. /2/ Alveolar $\mathrm{pO}_{2}$ mask checks.

[^23]:    11/Change observed; \% increase or decrease from resting value. /3/Approximate figure from graph. /4/At Oz consumption of $3 \mathrm{~L} / \mathrm{min}$. $/ 5 / \mathrm{Boothby}$, Lovelace, Bulbulian mask. /6/Alveolar $\mathrm{pO}_{2}$ greater than $80 \%$. /7/ For first 20 min ; subsequent return to normal. Contributor: Shephard, R. J. Contributor: Shephard, Loeschcke, H. H., and Schmidt, C. F., J. Appl. Physiol. 5:471, 487, 803, 1952. [3] Comroe, J. H., Dripps, R. D., Dumke, P. R., and Deming, M., J. M. Ass. 128:710, 1945. [4] Dautrehande, L., and Haldane, J. S., J. Physiol., Lond. 55:296, 1921. [5] Bannister, R. G., and Cunningham, D. J., 8] Becker-Freysung, H., and Clamann, 11. G., Klin. Wschr. 18:1382, 1939. [9] Benedict. F. G., and Higgins. H. L.. Am. J. Physiol. 28:1, 1911. 10] Behnke, A. R., Fenimore, S. J., Poppen, J. R., and Motley, E. P., ibid 110:565, 1935. [11] Richards, D. W., and Barach, A. L., Quart. J. M. 1934. [12] Alveryd. A., and Brody. S., Acta physiol. scand. 15:140, 1948.

[^24]:    /1/ Recorded from a manometer connected to a cannula in femoral artery.

[^25]:    11 / The lesions reported may not be primary radiation effects, but a secondary manifestation of response to inflammatlon or infection which may be inter-

[^26]:    /1/ Recalculalion of published data.

[^27]:    11 Data on cases with severe pulmonary emphysema not included. /2/Results expressed in \% of predicted normal. / $3 /$ Ventilatory equivalent for
    $\mathrm{O}_{2}=$ minute volume (BTPS)/ $\mathrm{O}_{2}$ uptake (STPD). /4/ Breathing air at sea level. $/ 5 /$ Calculated from alveolar equation and assumption that $C O_{2}$ arterial
     17 / Without pleural thickening. /8/ Most patients reviewed had lst or 2nd stage silicosis only, since 3rd stage is so often complicated by emphysema 19/ Not classifiable as Hamman-Rich syndrome. /10/Blood sampled after, rather than during, exercise.

[^28]:    Contributor: Fitzgerald, L. R.
    References: [1] Philips, F. S., Biol. Bull. 78:256, 1940. [2] Hyman, L. H., ibid 40:32, 1921. [3] Amberson,

[^29]:
    

[^30]:    References: [1] Krascheninnikoff, T., C. rend. Acad. sc. 182:939, 1926. [2] Dexter, S. T., Plant Physiol. 9:831, 1934. [3] Gustafson, F. G., Am. J. Aubert, E.. Rev. gen. botan. J: Gen. Physiol. 17:283, 1933. [11] Whitehead, R., Ann. Appl. Biol. 21:48, 1934. [12] Stich. C., Flora 74:1, 1891. [13] Gertrude, M., Rev. gén. botan. 49:161, 243, 328, 375, 396, 449, 1937. (14] Ranjan, S., J. Ind. Botan. Soc. 19:19, 1940.

[^31]:    /1/"Empty" weight. /2/ Starved animals. /3/ With surface area of one side of ear only.

[^32]:    Reference: Comroe, J. H., Jr., et al, p 171, "The Lung," Chicago: The Year Book Publishers, 1956.

